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Confidence intervals for predicted outcomes in

regression models for categorical outcomes

Jun Xu and J. Scott Long
Indiana University

Abstract. We discuss methods for computing confidence intervals for predictions
and discrete changes in predictions for regression models for categorical outcomes.
The methods include endpoint transformation, the delta method, and bootstrap-
ping. We also describe an update to prvalue and prgen from the SPost package,
which adds the ability to compute confidence intervals. The article provides several
examples that illustrate the application of these methods.

Keywords: st0094, prvalue, prgen, confidence interval, predicted probability, dis-
crete choice models, endpoint transformation, delta method, bootstrap

1 Overview

The interpretation of regression models often involves the examination of predicted
outcomes at specific values of the independent variables. The prvalue command by
Long and Freese (2006) makes it simple to compute such postestimation predictions.
After fitting a model, the user specifies values of interest for the independent variables,
and prvalue computes the predicted value (or values) of the outcome. Changes in the
predictions as values of the independent variables change can also be computed. In this
article, we describe enhancements to prvalue that allow the computation of confidence
intervals for both predicted outcomes and discrete changes in predictions. Depending on
the regression model and options chosen, confidence intervals are computed using stan-
dard maximum likelihood methods, the method of endpoint transformations, the delta
method, or bootstrapping. The command produces predictions and confidence inter-
vals after cloglog, cnreg, intreg, logistic, logit, mlogit, nbreg, ologit, oprobit,
poisson, probit, regress, tobit, zinb, and zip. The prvalue command produces
predictions but not confidence intervals after mprobit, slogit, ztnb, and ztp.

2 Predictions and methods for computing confidence in-
tervals

For a variety of regression models, prvalue computes predicted outcomes along with
confidence intervals for these predictions. For models with categorical outcomes, the
probability of each outcome is computed. For example, with the binary probit model,
the probability of observing a 1 is estimated as π̂ = Φ(x′β̂), where x is a vector of

independent variables and β̂ contains the estimated parameters. We can also estimate
a confidence interval for π. For a given confidence level, the upper and lower bounds

c© 2005 StataCorp LP st0094



538 Confidence intervals for predicted outcomes

define the confidence interval. For example, the 95% confidence interval for π includes
upper and lower bounds such that

Pr (πLB ≤ π ≤ πUB) = .95

To understand what this means, imagine that we take repeated samples from our popula-
tion and that for each sample we estimate the upper and lower bounds of the confidence
interval for that probability. About 95% of these confidence intervals would contain the
true probability, π.

For count models, both the predicted rate and the probability of each count are
computed along with confidence intervals. For example, with the Poisson regression

model, the expected rate is µ̂ = exp
(
xβ̂
)
, and we compute the confidence interval such

that Pr (µLB ≤ µ ≤ µUB) = .95. With count models, we also compute probabilities
of specific values of the outcome. For example, we might compute the probability
Pr (y = 2 | x) of observing a count of 2 given the levels of the independent variables,
with the confidence interval such that

Pr
{

Pr (y = 2 | x)LB ≤ Pr (y = 2 | x) ≤ Pr (y = 2 | x)UB

}
= .95

Table 1 lists the values computed for each model:1

Table 1: Values computed by models

Model Pr (y) y or y∗ Rate µ Pr (count)
cloglog, logistic, logit, probit Default Yesa No No
ologit, oprobit Default Yesa No No
mlogit Default No No No
nbreg, poisson, ztnb, ztp No No Default Default
cnreg, intreg, regress, tobit No Default No No
aWhen ystar is specified as an option.

We can also compute changes in the predicted outcome as levels of the x’s change.
Suppose that we have two sets of values for the independent variables, xA and xB . We
could compute how the predicted outcome changes when the values of x change from
xA and xB . For example, for a binary model this would be

∆Pr (y = 1)

∆x
= Pr (y = 1 | xA) − Pr (y = 1 | xB)

along with the confidence interval

Pr

{
∆Pr (y = 1)

∆x LB
≤ ∆Pr (y = 1)

∆x
≤ ∆Pr (y = 1)

∆x UB

}
= .95

For more details, see Long and Freese (2006).

1. With Stata 9, prvalue can also compute predicted outcomes for the models fitted by mprobit,
slogit, ztp, and ztnb. However, confidence intervals are not available for these commands.
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prvalue uses four methods to compute confidence intervals: maximum likelihood,
endpoint transformation, the bootstrap method, and the delta method. While the tech-
nical details on each method are given in section 7, here we provide general information.

1. Maximum likelihood. For models such as the linear regression model, the
standard method of computing confidence intervals using maximum likelihood
theory is used.

2. Endpoint transformation. For binary models, this method computes the upper
and lower bounds of the confidence intervals for the linear combination x′β and
then transforms these bounds into the probability of observing a one. For example
for probit, the lower bound (x′β)LB would be transformed into the lower bound
for the probability as Pr (y = 1)LB = Φ {(x′β)LB}. One advantage of this method
is that the bounds cannot be smaller than 0 or greater than 1. This method
cannot be used for computing confidence intervals for changes in predictions.

3. Delta method. This method takes a function that is too complex for analytically
computing the variance (for example, the change in the predicted probabilities in
a multinomial logit model) and creates a linear approximation of that function.
The variance of the simpler approximation is used for constructing the confidence
interval. Because prvalue uses analytic formulas for the derivatives rather than
numerical estimation, the computation of confidence intervals is extremely fast.
Unlike the method of endpoint transformation, the bounds computed by the delta
method can include values that exceed the range of the statistic being estimated
(e.g., a bound for a predicted probability could be negative or greater than one).

4. Bootstrap method. The idea of the bootstrap (see Guan [2003] for an intro-
duction to the bootstrap using Stata) is that by taking repeated samples from the
sample used to fit your model, you can estimate the sampling variability that would
occur by taking repeated samples from the population. This estimation is done by
taking a random sample from the estimation sample, computing the statistics of
interest, and repeating this for some number of replications. The variation in the
estimates across the replications is used to estimate the standard deviation of the
sampling distribution. Although the bootstrap method generally works quite well
and avoids assumptions implicit in other methods, it is computationally intensive.
For example, computing the confidence intervals for a multinomial logit with five
outcomes, three variables, and 337 cases by the delta method took .15 seconds,
whereas computing the confidence intervals by bootstrap took 141 seconds using
1,000 replications. Computations of confidence intervals for a multinomial logit
with six outcomes, four variables, and 7,357 cases using the delta method took .61
seconds, whereas computing the confidence intervals by bootstrap took 13 min-
utes 2 seconds for 1,000 replications.2 Roughly speaking, each replication in a
bootstrap takes as long as the entire computation for the delta method. The zip

2. Computations were made using Stata/SE 8.2 (born 10 Jan 2005) on a Dell XPS with an Intel r©

Pentium r© 4 running at 3.4 GHz. Estimates of times for the delta method were based on the average
of 1,000 computations. We expect that the timings would be similar with Stata 9.
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and zinb models are too complex for computing the derivatives necessary for the
delta method, so only the bootstrap method is available.

A summary of which methods work for which models is shown in table 2.

Table 2: CI methods for each model

Endpoint
Maximum transfor- Delta Bootstrap Default

Model likelihood mations method method method

cloglog, logistic, Yesa Yesb Yes Yes Delta
logit, probit

ologit, oprobit Yesa No Yes Yes Delta
mlogit, nbreg, poisson No No Yes Yes Delta
zinb, zip No No No Yes No CI

cnreg, intreg, ystar No No No ML

regress, tobit
aWhen ystar is specified.
bThis method does not work for changes in predictions.

We now discuss how to install prvalue and prgen, followed by a discussion of the syntax
and options for each command.

3 Installation

prvalue and prgen are part of the SPost package of programs for postestimation analysis
(see Long and Freese 2006 and http://www.indiana.edu/˜jslsoc/spost.htm for details).
Installation should be simple if you are connected to the Internet. If you have installed
a prior version of SPost, we suggest that you begin by uninstalling it. To do this,
enter the command ado. This will list all packages that have been installed, with each
package marked with a number in square brackets ([ ]). Scan the list and record the
number of the package containing the SPost ado-files and any other packages related
to SPost. Although the ado-files for Stata 9 are contained in the package spost ado9,
other names were used in the past. Uninstall these packages with the command ado

uninstall [#], where # is the package number (you must include the brackets, for
example, ado uninstall [3]). You must run ado uninstall once for each package
to be uninstalled.

Next type search spost, net to get a list of packages related to SPost. Look
for the package labeled spost ado9 from http://www.indiana.edu/~jslsoc/stata,
which contains the commands for Stata 9 and later. The package for Stata 8 is la-
beled spostado from http://www.indiana.edu/~jslsoc/stata. Click on the blue
label for your version of Stata, and you will be given information on how to install
the programs. To install examples on using prvalue and prgen, click on the label
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spostci from http://www.indiana.edu/~jslsoc/stata. These do-files and datasets
will reproduce the examples in this article and will include other examples of using these
commands.

If you have do-files that used commands from prior versions of SPost, they should
continue to work as before. The only exception is that now prvalue, ystar does not
print predicted probabilities. To compute the predicted probabilities, simply run the
command without the ystar option. The formatting of output has also changed to
incorporate the confidence intervals.

4 Syntax for prvalue

prvalue
[
if
] [

in
] [

, x(variable1=value1
[
. . .
]
) rest(stat) maxcnt(#) save

diff ystar nobase nolabel brief all level(#) delta ept bootstrap

reps(#) dots match size(#) saving(filename, save options)
[
percentile | biascorrected | normal

] ]

4.1 Options

x(variable1=value1
[
. . .
]
) sets the values of independent variables for calculating pre-

dicted outcomes. The list must alternate variable names and either numeric values
or terms describing the value to use. mean, median, min, and max are used to specify
the mean, median, minimum value, and maximum value for a variable. upper sets
a variable to its minimum or maximum depending on which value yields the larger
predicted value; lower sets a variable to its minimum or maximum depending on
which value yields the smaller predicted value. If prvalue has already been run,
previous will set variables to their prior values; for example, x(wc=1 age=median)

or x(wc=1 hc=previous age=mean age=40).

rest(stat) sets the values of all variables not specified in x() to the sample statistic
indicated by stat. For example, rest(mean) sets all variables to their mean. If x()
is not specified, all variables are set to stat. The value of stat can be calculated for
the whole sample or can be conditional based on the values specified by x(). For
example, if x(female=1) is specified, rest(grmean) specifies that all other variables
should equal their mean in the sample defined by female==1. This is referred to as
a group statistic (i.e., statistics that begin with gr). If you specify a group statistic
for rest(), only numeric values can be used for x(). For example, x(female=mean)
rest(grmean) is allowed. If rest() is not specified, rest(mean) is assumed.

maxcnt(#) is the maximum count value for which the probability is computed in count
models. For example, the default maxcnt(9) lists probabilities for values from 0
to 9.
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save saves information from the current prvalue for use in computing changes in pre-
dictions using the diff option.

diff computes differences between current predictions and those that were saved using
save. You must use the same method for computing confidence intervals with diff

as was used for the save results.

ystar requests that the predicted value of y∗ rather than predicted probabilities be
computed for binary and ordinal models.

nobase suppresses the listing of the base values that were specified with x() or rest().

nolabel uses the numeric values of the outcome rather than value labels in the output.

brief prints only limited output showing predictions and confidence intervals, without
listing values of the independent variables.

all specifies that calculation of means, medians, and other statistics use the entire
sample instead of the possibly smaller sample used to fit the model.

4.2 Options for computing confidence intervals

level(#) specifies the confidence level, as a percentage, for confidence intervals. For
example, level(95) specifies that you want a 95% confidence interval.

One of the following options can be chosen to specify the method used to compute
confidence intervals:

delta calculates confidence intervals by the delta method using analytic derivatives.

ept computes confidence intervals for predicted probabilities for cloglog, logit, and
probit by endpoint transformation. This method cannot be used for changes in
predictions.

bootstrap computes confidence intervals using the bootstrap method. This method
takes roughly 1,000 times longer to compute than other methods.

4.3 Options used for bootstrapped confidence intervals

reps(#) specifies the number of bootstrap replications to be performed. The default
is 1,000. The accuracy of a bootstrap estimate depends critically on the number
of replications. While sources differ on the recommended number of replications,
Efron and Tibshirani (1993, 188) suggest 1,000 replications for confidence intervals.
You can use bssize (Poi 2004) to calculate the number of bootstrap replications to
be used. In our experience, this method suggests more than 1,000 replications. See
the documentation for saving below.

dots is used with bootstrap to write a dot (.) at the beginning of each replication
and periodically prints the percentage of total replications that has been completed.
If computations appear to be stuck (i.e., new dots do not appear), the estimation is
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probably not converging for the current bootstrap sample. We have found this to
be most common with zip and zinb. When this happens, you can press the Break
button to stop computations for the current sample or wait until the maximum
number of iterations have been computed (by default, the maximum number of
iterations is 16,000). When a model does not converge for a given bootstrap sample,
that sample is dropped.

match specifies that the bootstrap will resample within each category of the dependent
variable in proportion to the distribution of the outcome categories in the estimation
sample. If match is not specified, the proportions in each category of the bootstrap
sample are determined entirely by the random draw, and it is possible to have
samples with no cases in some of the categories. This option does not apply to
cnreg, intreg, nbreg, poisson, regress, tobit, zinb, and zip.

size(#) specifies the number of cases to be sampled when bootstrapping. The default
is the size of the estimation sample. If size() is specified, # must be less than or
equal to the size of the estimation sample. In general, it is best to not specify size()

(see http://www.stata.com/support/faqs/stat/reps.html for more information).

saving(filename, save options) creates a data file with the estimates from each of the
bootstrapped samples with one case for each replication. This option is useful when
you need to examine the distribution of bootstrapped estimates. For example, this
option is required if you plan to use bssize to calculate the number of replications
to be used (Poi 2004).

One of the following can be chosen if you are computing bootstrapped confidence inter-
vals:

percentile computes the bootstrapped confidence interval using the percentile
method. This is the default method.

biascorrected computes the bootstrapped confidence interval using the
bias-corrected method.

normal computes the bootstrapped confidence interval using the normal approxima-
tion method.

5 Syntax for prgen

prgen varname
[
if
] [

in
]
, generate(prefix)

[
from(#) to(#) ncases(#)

gap(#) x(variable1=value1
[
. . .
]
) rest(stat) maxcnt(#) brief all noisily

marginal ci prvalueci options
]

varname is the name of the variable that changes while all other variables are held at
specified values.
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5.1 Options

x(), rest(), maxcnt, brief, and all work the same way as for prvalue.

generate(prefix) sets the prefix for the new variables created by prgen. Choosing a
prefix that is different from the beginning letters of any of the variables in your
dataset makes it easier to examine the results. For example, if you choose the prefix
abcd, you can use the command summarize abcd* to examine all newly created
variables.

from(#) and to(#) are the start and end values for varname. The default is for
varname to range from the observed minimum to the observed maximum of varname.

ncases(#) specifies the number of predicted values prgen computes as varname varies
from the start value to the end value. The default is ncases(11).

gap(#) is an alternative to ncases(). You specify the gap or size between tic marks and
prgen determines if the specified value divides evenly into the range specified with
from() and to(). If it does, prgen determines the appropriate value for ncases().

noisily indicates that you want to see the output from prvalue that was used to
generate the predicted values.

marginal requests that a variable or variables be created containing the marginal change
in the outcome relative to varname, holding all other variables constant.

ci generates confidence intervals corresponding to the predictions that are created.

prvalueci options are any options available with prvalue, except for save() and diff,
and can be used to specify how the upper and lower bounds are created when the
ci option is used.

5.2 Variables generated

Table 3 indicates the variables that are created by prgen. The observations contain
predicted values or probabilities for a range of values for the variable varname, holding
the other variables at the specified values. n observations are created, where n is 11 by
default or can be specified by ncases() or gap(). The new variable names start with
the prefix specified by gen().
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Table 3: Variables created by prgen

For model(s) Name Content
All prefixx Values of varname from from(#) to to(#)

logit, probit prefixp0 Predicted probability Pr(y = 0)
prefixp1 Predicted probability Pr(y = 1)

mlogit, mprobit, prefixpk Predicted probability Pr(y = k),
ologit, oprobit, for all outcomes
slogit prefixsk Cumulative probability Pr(y ≤ k),

for all outcomes

nbreg, poisson, zinb, prefixmu Predicted rate µ
zip, ztnb, ztp prefixpk Predicted probability Pr(y = k),

for 0 ≤ k ≤ maxcnt()

prefixsk Cumulative probability Pr(y ≤ k),
for 0 ≤ k ≤ maxcnt()

zinb, zip prefixinf Predicted probability Pr(Always 0 = 1) =
Pr (inflate)

cnreg, intreg, prefixxb Predicted value xβ̂

regress, tobit

If ci is specified as an option for prgen, variables are created containing the upper
and lower bounds for the confidence interval for the outcome. These variables have
the same names as those in the table above, except for adding ub at the end for the
variable with the upper bound and lb for the lower bound. If marginal is specified,
variables are created that contain the marginal change in the outcome with respect
to varname, holding all other variables constant. The variables containing marginals
have the same names as those in the table above, except for adding a D before the
outcome abbreviation and Dvarname after. For example, the marginal for prefixp0 is
named prefixDp0Dvarname. Marginals are computed only for those models for which
the prchange command can compute the marginal change (see Long and Freese 2006).

6 Examples

The examples that follow illustrate increasingly complex ways in which prvalue can be
used. In addition to these examples, other examples are downloaded when you install
the spostci package. For more details on the data and models, see either Long (1997)
or Long and Freese (2006).

6.1 Simple predictions

The commands generating the output in this section are in prvalue predict.do in the
spostci package.
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Binary logit

Here we use a binary logit model to predict labor force participation for a sample of
women. The independent variables are the number of children younger than 6, the
number of children aged 6–18, the wife’s age, whether the wife went to college, whether
the husband went to college, the log of the wife’s estimated wages, and the family income
excluding wife’s income.

. use binlfp2, clear
(Data from 1976 PSID-T Mroz)

. logit lfp k5 k618 age wc hc lwg inc
(output omitted )

After the model is fitted, we compute the predicted probability of labor force partici-
pation for a woman who is 35 years old (age=35), has two young children (k5=2), did
not attend college (wc=0), and is average on all other characteristics (rest(mean)):

. prvalue, x(age=35 k5=2 wc=0) rest(mean)

logit: Predictions for lfp

Confidence intervals by delta method

95% Conf. Interval
Pr(y=inLF|x): 0.1174 [ 0.0495, 0.1852]
Pr(y=NotInLF|x): 0.8826 [ 0.8148, 0.9505]

k5 k618 age wc hc lwg inc
x= 2 1.3532537 35 0 .39176627 1.0971148 20.128965

For someone with these characteristics (which are listed in the line beginning x=), the
predicted probability of being in the labor force is .117, with a 95% confidence interval
from .050 to .185.

With binary and ordinal models, we can also predict the latent y∗ used in the latent
variable formulation of the model. To do this, we add the option ystar:

. prvalue, x(age=35 k5=2 wc=0) rest(mean) ystar

logit: Predictions for lfp

95% Conf. Interval
Predicted y*: -2.0177 [-2.6723, -1.3631]

k5 k618 age wc hc lwg inc
x= 2 1.3532537 35 0 .39176627 1.0971148 20.128965

Negative binomial regression

Here we examine a count model predicting the number of papers published by bio-
chemists. Independent variables are whether the scientist is a woman, whether the
scientist is married, the number of young children in the scientist’s family, the prestige
of scientist’s Ph.D. department, and the number of articles published by the scientist’s
mentor.
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. use couart2, clear
(Academic Biochemist / S Long)

. nbreg art fem mar kid5 phd ment
(output omitted )

Since few scientists publish more than six papers, we use the option maxcnt(6) so that
prvalue will compute predicted probabilities only for publications from 0 to 6. For a
single (mar=0) woman (fem=0) without young children (kid5=0) who is average on all
other characteristics, we find

. prvalue, x(mar=0 fem=1 kid5=0) rest(mean) maxcnt(6)

nbreg: Predictions for art

Confidence intervals by delta method

95% Conf. Interval
Rate: 1.4079 [ 1.2237, 1.5921]
Pr(y=0|x): 0.3346 [ 0.2966, 0.3726]
Pr(y=1|x): 0.2905 [ 0.2809, 0.3000]
Pr(y=2|x): 0.1818 [ 0.1731, 0.1904]
Pr(y=3|x): 0.0991 [ 0.0863, 0.1118]
Pr(y=4|x): 0.0500 [ 0.0395, 0.0604]
Pr(y=5|x): 0.0240 [ 0.0170, 0.0310]
Pr(y=6|x): 0.0111 [ 0.0070, 0.0153]

fem mar kid5 phd ment
x= 1 0 0 3.1031093 8.7672131

We predict 1.41 publications, from 1.22 to 1.59 with a 95% confidence interval. Below
the rate, the probabilities that a person with these characteristics will publish a given
number of papers are listed along with confidence intervals computed with the delta
method.

Predictions at observed values

The prvalue command is designed to compute predictions at values specified by the
user (e.g., x(k5=0)) or at values corresponding to summary statistics in the sample
(e.g., rest(mean)). If you want to compute predictions along with confidence intervals
at observed values for a given observation, you need to explicitly indicate those values.
For example, the first observation in the data used with nbreg is

. list in 1

art fem mar kid5 phd ment

1. 0 Men Married 0 2.52 7
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To compute the predicted outcomes at these values, we can use the command

. prvalue, x(fem=0 mar=1 kid5=0 phd=2.52 ment=7)

nbreg: Predictions for art

Confidence intervals by delta method

95% Conf. Interval
Rate: 1.913 [ 1.6587, 2.1673]
Pr(y=0|x): 0.2499 [ 0.2155, 0.2843]
Pr(y=1|x): 0.2591 [ 0.2421, 0.2762]
Pr(y=2|x): 0.1937 [ 0.1925, 0.1949]
Pr(y=3|x): 0.1261 [ 0.1162, 0.1360]
Pr(y=4|x): 0.0760 [ 0.0646, 0.0874]
Pr(y=5|x): 0.0436 [ 0.0339, 0.0533]
Pr(y=6|x): 0.0242 [ 0.0171, 0.0313]
Pr(y=7|x): 0.0131 [ 0.0083, 0.0179]
Pr(y=8|x): 0.0069 [ 0.0039, 0.0100]
Pr(y=9|x): 0.0036 [ 0.0018, 0.0055]

fem mar kid5 phd ment
x= 0 1 0 2.52 7

Using a bit of simple Stata programming, we can automate this process to compute pre-
dictions for all observations. This is shown in the sample do-file pravlue observed.do

that is installed as part of the spostci package.

6.2 Discrete change

The commands generating the output in this section are in prvalue change.do in the
spostci package.

Binary probit

One way to interpret the results of regression-type models is to see how the predictions
change when levels of the independent variables change. To illustrate this, we examine
how the probability of being in the labor force is expected to increase when a woman
has gone to college. We begin by fitting a probit model:

. use binlfp2, clear
(Data from 1976 PSID-T Mroz)

. probit lfp k5 k618 age wc hc lwg inc
(output omitted )

The next command predicts the probability for someone who is average on all charac-
teristics and who has not gone to college (wc=0). This command is prefixed by quietly

since we do not want to see the results yet, but we save the results with the save option.

. quietly prvalue, x(wc=0) rest(mean) save

We run prvalue again, this time for someone who attended college (wc=1). We use the
diff option to compute changes in predictions from the saved results:
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. prvalue, x(wc=1) rest(mean) diff

probit: Change in Predictions for lfp

Confidence intervals by delta method

Current Saved Change 95% CI for Change
Pr(y=inLF|x): 0.7082 0.5238 0.1844 [ 0.0892, 0.2795]
Pr(y=NotInLF|x): 0.2918 0.4762 -0.1844 [-0.2795, -0.0892]

k5 k618 age wc hc lwg
Current= .2377158 1.3532537 42.537849 1 .39176627 1.0971148

Saved= .2377158 1.3532537 42.537849 0 .39176627 1.0971148
Diff= 0 0 0 1 0 0

inc
Current= 20.128965

Saved= 20.128965
Diff= 0

For someone who is average on all other variables, attending college increases the prob-
ability of being in the labor force by .18 with a 95% confidence interval from .09 to .28.

Poisson regression

Our next example computes the change in the rate of publication when two variables
change at the same time. We also illustrate the computation of bootstrapped confidence
intervals.

. use couart2, clear
(Academic Biochemists / S Long)

. poisson art fem mar kid5 phd ment
(output omitted )

We want to compare the predicted productivity for an unmarried woman without chil-
dren to the productivity for a married, female scientist with two young children:

. quietly prvalue, x(mar=0 fem=1 kid5=0) maxcnt(5) boot save

. prvalue, x(mar=1 fem=1 kid5=2) maxcnt(5) boot diff

poisson: Change in Predictions for art

Bootstrapped confidence intervals using percentile method
(1000 of 1000 replications completed)

Current Saved Change 95% CI for Change
Rate: 1.138 1.4102 -.27228 [-0.5110, -0.0300]
Pr(y=0|x): 0.3205 0.2441 0.0764 [ 0.0080, 0.1535]
Pr(y=1|x): 0.3647 0.3442 0.0205 [ 0.0022, 0.0384]
Pr(y=2|x): 0.2075 0.2427 -0.0352 [-0.0728, -0.0034]
Pr(y=3|x): 0.0787 0.1141 -0.0354 [-0.0652, -0.0039]
Pr(y=4|x): 0.0224 0.0402 -0.0178 [-0.0327, -0.0020]
Pr(y=5|x): 0.0051 0.0113 -0.0062 [-0.0121, -0.0007]

fem mar kid5 phd ment
Current= 1 1 2 3.1031093 8.7672131

Saved= 1 0 0 3.1031093 8.7672131
Diff= 0 1 2 0 0
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By default, 1,000 replications are computed, all of which completed successfully as
indicated by the count of the number of replications completed.

6.3 Plotting confidence intervals

The commands generating the output in this section are in prgen plotpred.do in the
spostci package.

Predicted probabilities with logit

prgen makes it simple to plot predictions and confidence bands for those predictions as
one variable changes, holding all other variables constant. First, we fit a binary logit
model:

. use binlfp2, clear
(Data from 1976 PSID-T Mroz)

. logit lfp k5 k618 age wc hc lwg inc
(output omitted )

We want to plot the predicted probability of being in the labor force for average women
at various ages. The resulting plot looks like figure 1:

0
.2

.4
.6

.8
1

P
ro

ba
bi

lit
y 

of
 B

ei
ng

 in
 L

ab
or

 F
or

ce

20 30 40 50 60 70
Age

Predicted probability 95% upper limit
95% lower limit

Figure 1: Predicted probability of labor force participation for women, by age

As would be expected, the probability of being in the labor force decreases with age
and the confidence interval narrows at the center of our data. To create this graph,
we use prgen to compute predictions at many different values of age and to store the
predictions. The command that follows includes several options governing the confidence
interval. First, ci tells prgen that you want to save values for plotting the confidence
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interval. The ept option indicates that the confidence interval should be computed
using endpoint transformations, rather than the default, which is the delta method.
Finally, noisily indicates that you want to see the results of prvalue each time it is
used to compute a prediction and its confidence interval; in practice, you would use
noisily only if you were having problems getting the results to converge. Using prgen,
we now compute predictions as age ranges from 20 to 70 in steps of 5 years:

. prgen age, from(20) to(70) gap(5) gen(prlfp) ci ept noisily
Results from prvalue called by prgen

logit: Predictions for lfp

95% Conf. Interval
Pr(y=inLF|x): 0.8495 [ 0.7565, 0.9111]
Pr(y=NotInLF|x): 0.1505 [ 0.0889, 0.2435]

k5 k618 age wc hc lwg inc
x= .2377158 1.3532537 20 .2815405 .39176627 1.0971148 20.128965

(output omitted )

logit: Predicted values as age varies from 20 to 70.

k5 k618 age wc hc lwg inc
x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148 20.128965

The variables that are created all begin with the prefix prlfp:

. describe prlfp*

storage display value
variable name type format label variable label

prlfpx float %9.0g Wife’s age in years
prlfpp0 float %9.0g pr(NotInLF)=Pr(0)
prlfpp1 float %9.0g pr(inLF)=Pr(1)
prlfpp0lb float %9.0g LB pr(NotInLF)=Pr(0)
prlfpp1lb float %9.0g LB pr(inLF)=Pr(1)
prlfpp0ub float %9.0g UB pr(NotInLF)=Pr(0)
prlfpp1ub float %9.0g UB pr(inLF)=Pr(1)

prlfpx contains values of age between 20 and 70. prlfpp1 is the probability of being in
the labor force, while prlfpp1ub and prlfpp1lb hold the upper and lower bounds. We
can plot these with the following commands, which generated the graph above. First,
we create variable labels that are used to label the plot:

. label var prlfpp1 "Predicted probability"

. label var prlfpp1ub "95% upper limit"

. label var prlfpp1lb "95% lower limit"

. label var prlfpx "Age"
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Next we use twoway to plot the results:

. twoway
> (connected prlfpp1 prlfpx, clcolor(black) clpat(solid)
> clwidth(medthick) msymbol(i) mcolor(none))
> (connected prlfpp1ub prlfpx, msymbol(i) mcolor(none)
> clcolor(black) clpat(dash) clwidth(thin))
> (connected prlfpp1lb prlfpx, msymbol(i) mcolor(none)
> clcolor(black) clpat(dash) clwidth(thin)),
> ytitle("Probability of Being in Labor Force")
> yscale(range(0 .35)) ylabel(, grid glwidth(medium)
> glpattern(dot)) xscale(range(20 70)) xlabel(20(10)70)

6.4 Effects of the number of replications

The number of replications is important for the quality of the bootstrapped confidence
interval. To illustrate this, we consider our earlier example of labor force participation:

use binlfp2, clear
logit lfp k5 k618 age wc hc lwg inc

For this model, we compute the 95% confidence interval using the bootstrap method
with the number of replications varying from 50 to 3,000. This approach leads to the
following graph, which shows that the upper and lower bounds from the bootstrap vary
substantially when the number of replications is less than 1,000 (especially for the upper
bounds) but stabilize after 1,000.
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Here is how the graph was generated. First, we compute the predicted probability
of being in the labor force with inc set to 100 and other variables held at the mean,
with the 95% confidence interval computed by the delta method:



J. Xu and J. S. Long 553

prvalue, x(inc=100) rest(mean) delta
local PrLFP = pepred[2,2]
local UpperDelta = peupper[2,2]
local LowerDelta = pelower[2,2]

The values of predicted probability along with the upper and lower bounds are saved
to the local variables PrLFP, UpperDelta, and LowerDelta that are used to plot the
solid line for the predicted probability at .080 and the dashed lines for the lower and
upper bounds at −.015 and .176 in the graph above. Next we create variables that will
hold the values for the number of bootstrap replications used and the bounds computed
using a given number of replications. These variables are plotted to create our graph:

gen reps = .
label var reps "# of replications"
gen ubboot = .
label var ubboot "Bootstrap: Upper bound"
gen lbboot = .
label var lbboot "Bootstrap: Lower bound"

Before computing the first bootstrapped confidence interval, we set the random-number
seed so that we can reproduce our results later (without this, a new sequence of random
numbers is generated each time we run the program). We then loop through values
for the number of replications ranging from 50 to 3,000. Within the loop, we compute
bootstrapped confidence intervals and save the values into the variables we created
above:

set seed 2399194
local j = 0
foreach reps in 50 100 200 300 400 500 600 700 800 900 1000 ///

1200 1400 1600 1800 2000 2200 2400 2600 3000 {
local ++j
qui replace reps = ‘reps’ if _n==‘j’
di "= Start for ‘reps’ replications: " c(current_time)
di "= Seed: " c(seed)
prvalue , x(inc=100) rest(mean) boot rep(‘reps’)
scalar UpperBoot = peupper[2,2]
qui replace ubboot = UpperBoot if _n==‘j’
scalar LowerBoot = pelower[2,2]
qui replace lbboot = LowerBoot if _n==‘j’
di
di "= End for ‘reps’ replications: " c(current_time)
di

}

The results were then plotted. Consistent with the recommendations given above, we
see that the bounds begin to stabilize at around 1,000 replications, which is our default.
The commands generating the output in this section are in prvalue boot reps.do.

7 Methods for computing confidence intervals

Here we provide a more technical discussion of the ideas behind the methods used by
prvalue to compute confidence intervals. Let δ be some parameter fitted by your model
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[ e.g., Pr (y = 1) in the logit model ]. We are interested in computing the lower and up-
per bounds such that Pr (LB ≤ δ ≤ UB) = α. This can be interpreted as saying that
the population parameter δ is contained within the interval with confidence 1 − α. In
the simplest case, the confidence interval can be computed directly using results from

maximum likelihood theory. Under the usual conditions for ML, β̂
a∼ N

{
β,Var

(
β̂
)}

.

Then xβ̂
a∼ N

{
x′β,x′Var

(
β̂
)
x
}

, which can be used to compute confidence intervals

for linear combinations xβ̂, such as ŷ in linear regression. For example, to compute
the 100 (1 − α) confidence interval, define z as the (1 − α/2) percentile from a standard
normal distribution (i.e., the probability of being greater than z is α/2 and the proba-

bility of being less than −z is α/2). Since xβ̂ is asymptotically normal with variance

x′Var
(
β̂
)
x, the 100 (1 − α) confidence interval for x′β is

{
xβ̂ − z

√
x′Var

(
β̂
)
x

}
≤ x′β ≤

{
xβ̂ + z

√
x′Var

(
β̂
)
x

}
(1)

Since many of the quantities computed by prvalue are nonlinear transformations of
x′β, other methods are required.

7.1 Endpoint transformations

The method of endpoint transformation can compute confidence intervals for monotonic
functions of x′β (i.e., a function that is always increasing or always decreasing), such
as the predicted probabilities in binary logit or probit. First, the confidence interval for
xβ̂ is computed as the symmetric interval (LBx′β ≤ x′β ≤ UBx′β). Since Pr (x′β) =
F (x′β) is a monotonic transformation of x′β, the confidence interval for F (x′β) is
computed by transforming the bounds using the same function F :

{
Pr (x′β)LB ≤ Pr (x′β) ≤ Pr (x′β)UB

}
=
[
F
{

(x′β)LB

}
≤ F (x′β) ≤ F

{
(x′β)UB

}]

For example, consider the binary logit model. Using (1), we compute the 100 (1 − α)

confidence interval for xβ̂. To compute the predicted probability, we take the logit
transformation of xβ̂:

Pr
(
xβ̂
)

=
exp

(
xβ̂
)

1 + exp
(
xβ̂
) = Λ

(
xβ̂
)

where Λ (.) is the cumulative distribution function (CDF) for the logistic distribution. By
applying the logit transformation to the endpoints from (1), we obtain the asymmetric
confidence interval for Pr (x′β):

Λ

{
xβ̂ − z

√
x′Var

(
β̂
)
x

}
≤ Pr (x′β) ≤ Λ

{
xβ̂ + z

√
x′Var

(
β̂
)
x

}
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Although computationally simple, this method is limited to those few cases in which the
outcome of interest is a monotonic function of x′β. For more discussion, see Cox and Ma
(1995) and Liao (2000).

7.2 Delta method

The delta method is a more general method for computing confidence intervals. This
method takes a function that is too complex for analytically computing the variance

(e.g., Var

[
exp

(
xβ̂
){

1 + exp
(
xβ̂
)}−1

]
, creates a linear approximation of the func-

tion, and then computes the variance of the simpler linear function that is used for
large-sample inference. While we illustrate this approach with a simple one-parameter
example, the approach generalizes readily to the case with multiple parameters. Details
on the equations used to implement the delta method for the models in prvalue are
available at http://www.indiana.edu/˜jslsoc/stata/spostci/spost deltaci.pdf.

Let F (xβ) be the estimator of interest, for example, F (xβ) = Pr (xβ) = Φ (xβ),
where Φ is the cumulative density function for the standard normal distribution. The
first step is to use a Taylor expansion to linearize the function evaluated at β̂:

F
(
xβ̂
)
≈ F (xβ) + (β̂ − β)f(xβ)

where f (β) = F ′ (β) is the derivative of F evaluated at β. Then we take the variance
of both sides of the equation:

Var
{

F
(
xβ̂
)}

≈ Var
{

F (xβ) + (β̂ − β)f(xβ)
}

We can easily simplify the right-hand side:

Var
{

F (xβ) + (β̂ − β)f(xβ)
}

= Var {F (xβ)} + Var
{

(β̂ − β)f(xβ)
}

+ 2Cov
{

F (xβ), (β̂ − β)f(xβ)
}

= 0 + Var
{

(β̂ − β)f(xβ)
}

+ 0

= {f (β)}2
Var

(
β̂ − β

)

= {f(β)}2
Var

(
β̂
)

where we use the fact that β, f (xβ), and F (xβ) are constants.

To make our example concrete, consider binary probit where Pr
(
xβ̂
)

= Φ
(
xβ̂
)

and x is any specific value. The linear expansion is

Φ
(
xβ̂
)
≈ Φ(xβ) +

(
β̂ − β

) ∂Φ(xβ)

∂β
(2)
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where
∂Φ(xβ)

∂β
= xφ (βx)

Then
Var

{
Φ(xβ) +

(
β̂ − β

)
φ (xβ)

}
= {xφ (βx)}2

Var
(
β̂
)

which leads to the symmetric confidence interval
[
Pr
(
xβ̂
)
− z

√{
xφ
(
xβ̂
)}2

Var
(
β̂
) ]

≤ Pr (xβ) ≤
[
Pr
(
xβ̂
)

+ z

√{
xφ
(
xβ̂
)}2

Var
(
β̂
) ]

Unlike the asymmetric confidence interval based on endpoint transformations, this con-
fidence interval could include values less than 0 or greater than 1.

Next consider a discrete change Pr
(
xaβ̂

)
−Pr

(
xbβ̂

)
= Φ

(
xaβ̂

)
−Φ

(
xbβ̂

)
, where

xa and xb are two values of x. The linearization is

Φ
(
xaβ̂

)
− Φ

(
xbβ̂

)
≈ {Φ(βxa) − Φ(βxb)} +

(
β̂ − β

) ∂ {Φ(xaβ) − Φ(xbβ)}
∂β

Taking the variance of the right-hand side and simplifying:

Var

[
{Φ(xaβ) − Φ(xbβ)} +

(
β̂ − β

) ∂ {Φ(xaβ) − Φ(xbβ)}
∂β

]

= Var

[(
β̂ − β

) ∂ {Φ(xaβ) − Φ(xbβ)}
∂β

]

=

[
∂ {Φ(xaβ) − Φ(xbβ)}

∂β

]2
Var

(
β̂
)

=
{

x2
aφ (xaβ)

2
+ x2

bφ (xbβ)
2 − 2xaφ (xaβ) xbφ (xbβ)

}
Var

(
β̂
)

To evaluate it, we simply replace β with β̂.

7.3 Bootstrap

The bootstrap is a computationally expensive, nonparametric technique for making
statistical inferences. The bootstrap method allows us to approximate the variation
of parameter estimates (or function of these estimates). For a basic introduction with
specific applications using Stata, we recommend Poi (2004) and Guan (2003). For a thor-
ough treatment of this method, see Efron and Tibshirani (1986) and Mooney and Duval
(1993). Here we present only the most basic information.

To compute bootstrap confidence intervals for predicted outcome, the following steps
are taken:
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1. From the original estimation sample, draw a simple random sample of size N with
replacement. This is called a resample. Using the resample, fit the model and
compute the quantities of interest.

2. Repeat step 1 R times and collect the estimates from each subsample. Use the
R estimates to create an empirical probability distribution of the quantities of
interest. This distribution, known as the bootstrap distribution, is used to con-
struct the confidence interval. Essentially, the variation in estimates among the
resamples is used to estimate the standard error of the sample estimate.

We use three methods for computing confidence intervals from the R empirical estimates
of each parameter. The normal method assumes that the bootstrap distribution is
approximately normal and uses the standard deviation from the bootstrap distribution
to compute the appropriate percentiles from a normal distribution. The percentile
method determines the α and 1 − α percentile from the bootstrap distribution with no
assumption about the shape of that distribution. With this method, the bounds cannot
exceed possible values for the statistic in question. The bias-corrected method adjusts
for bias between the predicted probabilities and the average of simulated predicted
probabilities. By default, prvalue uses the percentile method.

8 Saved results

All results that might be useful for Monte Carlo simulations, plotting, or other postes-
timation analysis are saved to global strings or matrices. Although the typical user will
not need this information, it is needed when you are writing programs that use the re-
sults computed by prvalue. More information can be obtained with help pecollect.

petype is a global string with the type of model being fitted. The string contains three
words. The first word contains e(cmd) for the model being analyzed. Word 2 classifies
the type of model as either typical for all models, except zip and zinb, which are
classified as twoeq. Word 3 indicates the general type of outcome and is one of the
following words: binary, count, mlogit, ordered, regress, or tobit.

pecimethod is a global string indicating the type of confidence interval that was com-
puted. The first word is ml, delta, ept, or bootstrap. The second word indi-
cates how the bootstrap confidence intervals were computed: normal, percentile,
or biascorrected.

peinfo is a 3 × 11 matrix with information about the model and options used with
prvalue. Row 1 contains information on the current call to prvalue. Row 2 contains
information on prvalue for the model last saved with the save option. Row 3 contains
information on the differences between the current and saved information. Normally,
rows 1 and 2 have identical information. Columns contain the following information:
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Column 1: number of right-hand-side variables.

Column 2: number of categories in the outcome.

Column 3: level for confidence interval (e.g., 95, not .95).

Column 4: z-value for confidence interval at the given level.

Column 5: number of right-hand-side variables for inflation in zip and zinb.

Column 6: 1 if model has no constant, else 0.

Column 7: base category for mlogit.

Column 8: stdp for binary models.

Column 9: number of requested replications for bootstrap (i.e., the number specified
by the rep option).

Column 10: number of completed replications for bootstrap. When an estimate cannot
be computed for a given bootstrap sample, it is not counted.

Column 11: value of the maximum number of values of predicted probabilities in count
models, corresponding to the maxcnt option.

pebase and pebase2 contain the base values for the x’s in computing the predictions.
The jth column of pebase is the jth right-hand-side variable in the model. The jth
column of pebase2 is the jth right-hand-side inflation variable in zip or zinb. If save
and diff are used, the three rows in the matrix correspond to (1) the current model,
(2) the saved model, and (3) differences between the current and saved values.

pepred contains the predictions computed by prvalue. This matrix has seven rows. It
has one column for each outcome. Rows contain the following information.

Row 1: values of the outcome category (e.g., 0, 1, 2).

Row 2: predicted probabilities for the value in row 1 for the current model.

Row 3: predictions other than probabilities for the current model.

Row 4: predicted probabilities for the value in row 1 for the saved model.

Row 5: predictions other than probabilities for the saved model.

Row 6: the difference between rows 2 and 4.

Row 7: the difference between rows 3 and 5.

For rows 2, 4, and 6, the columns contained predicted probabilities corresponding to
the categories in row 1. Rows 3, 5, and 7 contain predictions for other quantities (where

not all columns are used for all models). Column 1 contains x′β̂ from the first part of

the model. Column 2 contains µ̂ for count models. Column 3 contains x′β̂ from the
inflation part of zip and zinb. Column 4 contains P̂r (always 0) for zip and zinb.
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peupper and pelower contains the lower and upper confidence limits corresponding to
the information in pepred.

peuppct, pelopct, peupbias, pelobias, peupnorm, and pelonorm are created when
the bootstrap method is used. They contain the upper and lower limits for all three
methods of computing confidence intervals: percentile, bias-corrected, and normal ap-
proximation. Whichever method is selected as an option in the prvalue command (e.g.,
prvalue, boot normal) is also contained in peupper and pelower. The information
in each matrix corresponds to the information in pepred.
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