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Abstract. I describe a command that simultaneously solves the extended es-
timating equations estimator for parameters in the link and variance functions
along with those of the linear predictor in a generalized linear model. The method
addresses difficulties in choosing the correct link and variance functions in these
models. It decouples the scale of estimation for the mean model, determined by
the link function, from the scale of interest for the scientifically relevant effects.
It also estimates a flexible variance structure from the data, leading to efficient
estimation.

Keywords: st0092, pglm, pglmpredict, EEE, GLM, skewed, costs, estimating equa-
tions, link functions, variance functions

1 Introduction

Many outcome variables in health economics and biostatistics are characterized by non-
negative values, heteroskedasticity, heavy skewness in the right tail, and kurtosis dis-
tributions. Researchers have demonstrated the usefulness of several advanced modeling
strategies to address these aspects of the underlying distributions (Blough, Madden, and
Hornbrook 1999; Manning and Mullahy 2001). However, in most econometric applica-
tions, critical assumptions are made regarding the functional forms of the heteroskedas-
tic variance and mean function that incorporate the effect of a covariate on the outcome.
For example, in ordinary least squares (OLS) regression, the effect of a covariate is ad-
ditive; in log-transformed ordinary least squares (log-OLS) regression and in generalized
linear models (GLMs) with a log link, the effect is multiplicative. Similarly, in many
GLMs, the variance function is specified a priori that corresponds to a particular form
of heteroskedasticity. For example, a gamma variance implies that the variance is pro-
portional to the square of the mean function. However, incorrect specifications of the
mean function and the variance function can lead to bias and inefficiency in estimation.
These biases and inefficiencies can be identified using conventional goodness-of-fit tests.
Unfortunately, although these diagnostic tests may detect problems, they provide no
guidance on how to fix those problems.

c© 2005 StataCorp LP st0092



502 Extended generalized linear models

This lack of guidance motivated me to develop a new estimator that relaxes the limi-
tation of prespecifying a scale of estimation and the functional form of heteroskedasticity
(Basu and Rathouz 2005). Rather, it allows estimation of a flexible mean function using
the data at hand, thereby reducing bias in estimating the conditional mean outcome
that may have arisen because of the misspecification of the scale of estimation. It also
estimates a flexible variance structure from the data, leading to efficient estimation and
allowing for different heteroskedastic specifications. I have shown elsewhere that by
allowing flexible mean and variance functions, many of the problems of misspecifica-
tion can be overcome considerably (Basu and Rathouz 2005). Here I describe the Stata
command pglm, which I have written to implement this estimator.

Now I briefly explain the differences between the pglm command and the commands
and materials currently available in Stata that allow for GLM estimation and for ex-
tending the GLM estimator to include nonstandard link functions. The glm command
in Stata fits GLMs, using either iteratively reweighted least squares (IRLS; maximum
quasilikelihood) or Newton–Raphson (maximum likelihood) optimization. The addi-
tional programs provided by Guan and Gutierrez (2002) extend the glm command to
include customized link functions. However, whether using the glm command or the
extensible programs provided by Guan and Gutierrez (2002), the analyst always needs
to specify the particular link parameter (e.g., log, identity, or any other power func-
tion) and the variance function corresponding to a distribution that he wants to fit.
It is in this aspect that pglm differs from the remaining commands in Stata. The
pglm command does not require the analyst to know what the appropriate link or the
variance function should be for a given dataset. Instead, it uses additional estimating
equations, which are not part of the current glm module, to estimate these ancillary
parameters. Also the pglm command fits a semiparametric model that does not use full
distributional assumptions or full likelihood estimation methods but instead uses IRLS

(maximum quasilikelihood) optimization.

Hardin and Hilbe (2001) explained how the glm command can also be used to search
for the optimal link and the variance functions. Based on the profile-extended quasilike-
lihood approach (Nelder and Pregibon 1987), the glm command has to be run for many
combinations of values for the link and variance parameters. The combination of values
that produces minimal deviance may be used as the optimal link and variance functions.
Such a method was also proposed by Blough, Madden, and Hornbrook (1999). Unfortu-
nately, this procedure is extremely time-consuming and does not take into account the
uncertainty in estimating the link and variance parameters from the data. In contrast,
the pglm command is one regression step that simultaneously estimates the link and
variance parameters from the data along with the regression coefficients.
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2 Background

2.1 Model descriptions

Let Y be the nonnegative outcome variable and X = (X0, X1, X2, . . . , Xp)
T be the

vector of covariates used in a regression model, where X0 is a vector of ones. Interest
is on modeling the mean function µ(x) ≡ E(Yi|Xi = x) and functionals thereof. For
example, when Xj is binary, the parameter of interest is the incremental effect given by
πj ≡ EX−j

{Dj(µ;X−j)}, where Dj(µ;x−j) ≡ µ(xj = 1, x−j) − µ(xj = 0, x−j), x−j is
the vector x without xj and the expected value is over X−j , marginally with respect to
Xj . The parameter πj is the population average contrast in the mean of Y for Xj = 1
and Xj = 0. The parameter πj may be interpreted as the effect of Xj on the mean
of Y , adjusting for all other covariates in the model, where this adjustment is to the
population distribution of X. An analogous effect for a continuous covariate, termed
the marginal effect of the covariate, may also be of interest where Dj(µ;x) ≡ ∂µ(x)/∂xj

(Basu and Rathouz 2005).

Letting µi = µ(Xi), a GLM (McCullagh and Nelder 1989) can be framed, wherein
g(µi) = ηi, ηi = XT

i β, and β is a p × 1 vector of regression parameters. Here g(.) is
a strictly monotone differentiable link function that relates µi to the linear predictor
ηi. Also the variance of the outcome variable is given by, Vi = Var(Yi|Xi). Define a
parametric family of link functions indexed by λ:

ηi = g(µi;λ) =

{
(µλ

i − 1)/λ, if λ 6= 0

log(µi), if λ = 0

(McCullagh and Nelder 1989, chapter 2; Box and Cox 1964; Hardin and Hilbe 2001,
81–83; Wooldridge 1992). Similar to the link function, define a family h(µi; θ1, θ2) of
variance functions indexed by (θ1, θ2). Two such families are considered. The first,
referred to as the power variance (PV) family (Hardin and Hilbe 2001, 81–83), sets
h(µi; θ1, θ2) = θ1µ

θ2

i . It includes as special cases the variances of several standard
distributions used for modeling health outcomes (table 1).

(Continued on next page)
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Table 1: Special cases of distributions under PV and QV variance formulations

Variance formulation Distribution

PV QV

θ1 θ2 θ1 θ2

1 1 1 0 Poisson

> 0 2 0 > 0 Gamma

> 0 3 – – Inverse Gaussian

– – 1 > 0 Negative binomial

PV = power variance, where V (yi) = θ1µ
θ2

i
;

QV = quadratic variance, where V (yi) = θ1µi + θ2µ
2

i .

– = True value unknown since distribution does not conform to
the particular variance structure assumed.

An alternative is the quadratic variance (QV) family given by h(µi; θ1, θ2) = θ1µi +
θ2µ

2
i ; standard distributions corresponding to this form of variance are also listed in

table 1.

2.2 Estimation

The regression and link parameters are estimated via an extension of quasilikelihood
(Wedderburn 1974), and the variance parameters are estimated using additional esti-
mating equations. We refer to this method as the extended estimating equations (EEE)
estimator.

For the ith individual, the extended set of estimating functions for parameter vector
γ = (βT , λ, θ1, θ2)

T is given as (Basu and Rathouz 2005):

Gi
βj

= (Yi − µi)V
−1
i (∂µi/∂βj) j = 1, . . . , p

Gi
λ = (Yi − µi)V

−1
i (∂µi/∂λ)

Gi
θ1

=
{
(Yi − µi)

2 − Vi

}
V −2

i (∂Vi/∂θ1)

Gi
θ2

=
{
(Yi − µi)

2 − Vi

}
V −2

i (∂Vi/∂θ2)

Defining Gi
γ = (Gi

β0
, Gi

β1
, Gi

β2
, . . . , Gi

βp
, Gi

λ, Gi
θ1

, Gi
θ2

)T and the extended estimating

function for γ as Gγ = ΣN
i=1G

i
γ , the parameter vector γ is estimated by solving Gγ = 0,

yielding estimator γ̂. The predicted mean in this model is obtained by µ̂(x) = (xT β̂ ·
λ̂ + 1)1/bλ ∀λ̂, λ̂ 6= 0. For λ̂ = 0, which can almost never happen, µ̂(x) is undefined.
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To estimate the incremental effect πj of an indicator variable, Xj , one can use the
method of recycled predictions (StataCorp 2005, 2: 406; Basu and Rathouz 2005). This
method, in obvious analogy to the definition of incremental effect πj for covariate Xj ,
estimates πj as

π̂j = ÊX−j
{Dj(µ̂;X−j)} = N−1ΣN

i = 1 {µ̂(Xi,−j , Xij = 1) − µ̂i(Xi,−j , Xij = 0)}

The variance of π̂j is obtained using Taylor-series approximations and is given by

Var(π̂j) = Var
[
ÊX−j

{Dj(µ;X−j)}
]

+

(
∂πj

∂γ

∣∣∣∣
γ

)
AN

(
∂πj

∂γ

∣∣∣∣
γ

)T

(1)

In (1), the first term is the sample variance of π̂j due to using the empirical expected

value over X−j , ÊX−j
{Dj(µ;X−j)}, rather than the population expected value. The

second term is due to the fact that γ is estimated, where AN is the analytical variance–
covariance matrix for γ̂. An estimator for the variance of the marginal effect analogous
to (1) may be obtained through a similar approach. More details on the estimation
process and variance calculations can be found in Basu and Rathouz (2005).

The initial values of the regression coefficients come from the estimates of regression
coefficients from a gamma GLM with log link. The initial value of the link parameter λ is
set to 0.1. For the PV structure, the initial value of θ1 comes from the shape parameter
computed by the gamma GLM. The initial value of θ2 comes from the modified Park test
(Manning and Mullahy 2001). In this test, the logarithm of the squared residuals from
the log-link GLM is regressed on the logarithm of the predicated values (µ̂) from the
GLM. The coefficient of the log(µ̂) gives the initial estimate for θ2. For the QV structure,
the squared residuals from the log-link GLM is regressed on the predicated values (µ̂)
and the squared predicted values (µ̂2) without an intercept. The coefficient of µ̂ gives
an estimate for θ1 and the coefficient of µ̂2 gives an estimate for θ2.

Parameter estimates are updated using the equality γ̂(k+1) = γ̂(k) + I(k)−1G
(k)
γ ,

where I(k) = E(−∂G
(k)
γ /∂γ). I(k) and G

(k)
γ are computed using the current value of

γ̂(k). This procedure is iterated until the maximum relative difference in parameter
estimates between two successive iterations γ(k) and γ(k+1) is less than 0.0001 (the
maximum relative difference criterion may be changed by the user).

3 The pglm and pglmpredict commands

pglm (power-GLM) implements the EEE estimator (Basu and Rathouz 2005) and esti-
mates the regression coefficients and the parameters in a flexible Box–Cox link function
and a flexible variance function simultaneously. matvsort and matewmf (Cox 2000; a
newer version of matvsort is available from the SSC,
http://fmwww.bc.edu/RePEc/bocode/m) must be installed for this command to work.
Also the algorithm shows better convergence properties if the outcome variable is scaled
by dividing by its mean.
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pglmpredict is used to obtain predictions following the pglm estimation command
and optionally to calculate the variance, standard errors, Wald test statistics, signifi-
cance levels, and pointwise confidence intervals for these predictions.

3.1 Syntax

pglm depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, family(famname)

initlambda(#) power(#) vf(q) convergence(#) cluster(varname)

level(#) iteration(#)
]

pgmlpredict
[
type

]
newvar

[
if
] [

in
] [

, predtype scale(#) se(newvar)

variance(newvar) wald(newvar) p(newvar) ci(newvar ll newvar ul)

level(#) g(stub) iterate(#) force
]

3.2 Description

pglm expects the data to be in the conventional form, as in any other regression analysis.
It requires specification of a dependent variable and at least one covariate; i.e., it does not
fit a constant-only model. The default command runs the model with both the flexible
link and variance function. It uses the PV function as default (see below). pglm always
reports robust variances since it uses IRLS (maximum quasilikelihood) optimization;
therefore, robust variances (Huber 1967; White 1980) are always necessary for obtaining
consistent estimates of the variance function. One can use any of the weight options in
Stata with pglm; however, proper treatment of survey-design effects for standard errors
(including, for example, effects of stratification) requires an svy estimator, which pglm

is not.

Unlike testnl and nlcom, the quantities generated by pglmpredict are designed to
vary over the observations in the data. The standard errors and other inference-related
quantities are based on the “partial method”, an approximation appropriate in large
samples. pglmpredict calls on Stata’s predictnl command to calculate predictions.
The predictions computed by the pglmpredict command directly apply the formulas
given in Basu and Rathouz (2005). Calculations of standard errors for the incremental
and marginal effects are illustrated in the empirical example below.

3.3 Options

Options for pglm

family(famname) specifies the variance function (V ) of a particular distribution. When
family() is specified, one of the variance function parameters becomes fixed and is
not estimated. famname is one of the following:



A. Basu 507

family(power): V = θ1µ
#, where # is any real value specified using the power(#)

option and µ = E(Y |X).

family(gaussian): V = θ1, corresponding to the Gaussian family.

family(poisson): V = θ1µ, corresponding to the Poisson family.

family(gamma): V = θ1µ
2, corresponding to the gamma family.

family(igaussian): V = θ1µ
3, corresponding to the inverse Gaussian family.

When vf() is specified, only family(poisson) is available.

initlambda(#) specifies the starting value for the link parameter. If no value is spec-
ified, log link is used as the starting point.

power(#) specifies a value for the power parameter in the variance function. If no value
is specified, this parameter is estimated from the data. This option should be used
only when family(power) is specified and vf(q) is not specified.

vf(q) requests a QV function for the model, where V = θ1µ + θ2µ
2. If this option is

not specified, the PV function is used, where V = θ1µ
θ2 and µ = E(Y |X).

convergence(#) changes the convergence criteria. The default is
convergence(0.0001), where the estimating algorithm is iterated until the maxi-
mum relative difference in parameter estimates between two successive iterations is
less than 0.0001.

cluster(varname) specifies that the observations are independent across groups (clus-
ters), but not necessarily independent within groups. varname specifies to which
group each observation belongs, e.g., cluster(personid) in data with repeated
observations on individuals.

level(#) specifies the confidence level, as a percentage, for the confidence intervals
generated by ci(). The default is level(95) or as set by set level.

iteration(#) specifies the number of iterations for the estimation algorithm. The
default is iteration(500).

Options for pglmpredict

predtype identifies the type of prediction that the newvar should store. The type is one
of the following:

xb, the default, calculates the linear prediction for each observation from the fitted
model.

mu calculates predicted outcome for each observation.

ie(varname) calculates the incremental effect for an indicator variable via method
of recycled predictions for each observation.
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me(varname) calculates the marginal effect for a continuous variable for each obser-
vation.

scale(#) multiplies predtype[i] with the value of the scale specified. The default is
scale(1).

se(newvar) adds newvar of storage type type, where for each i (observation) in the
prediction sample, newvar[i] contains the estimated standard error of predtype[i].

variance(newvar) adds newvar of storage type type, where for each i (observation) in
the prediction sample, newvar[i] contains the estimated variance of predtype[i].

wald(newvar) adds newvar of storage type type, where for each i (observation) in the
prediction sample, newvar[i] contains the Wald test statistic for the test of the
hypothesis Ho : predtype[i] = 0.

p(newvar) adds newvar of storage type type, where for each i (observation) in the
prediction sample, newvar[i] contains the significance level (p-value) of the Wald
test of the hypothesis Ho : predtype[i] = 0.

ci(newvar ll newvar ul) creates variables containing the limits for 95% confidence in-
tervals for the predicted values. newvar ll contains the lower limit and newvar ul

contains the upper limit.

level(#) specifies the confidence level, as a percentage, for the confidence intervals
generated by ci(). The default is level(95) or as set by set level.

g(stub) specifies that new variables, stub1, stub2, . . . , stubk are to be created, where
k is the dimension of e(b). stub1 will contain the observation-specific derivatives
of predtype with respect to the first coefficient listed in e(b), stub2 will contain the
derivatives of predtype with respect to the second coefficient listed in e(b), etc. If
the derivative of predtype with respect to a particular coefficient in e(b) equals zero
for all observations in the prediction sample, the stub variable for that coefficient is
not created.

iterate(#) specifies the maximum number of iterations used to find the optimal step
size in the calculation of the numerical derivatives of predtype with respect to esti-
mated model coefficients. By default, the maximum number of iterations is 100, but
convergence is usually achieved after only a few iterations. You should rarely have
to use this option.

force forces the calculation of standard errors and other inference-related quantities
in situations where pglmpredict would otherwise refuse to do so. The calculation
of standard errors takes place by evaluating the numerical derivative of predtype

with respect to the coefficient vector e(b). If pglmpredict detects that predtype is
possibly a function of random quantities other than e(b), it will refuse to calculate
standard errors, Wald tests, p-values, etc. The force option forces the calculation
to take place anyway. If you use the force option, there is no guarantee that any
inference quantities (e.g., standard errors) will be correct or that the values can be
interpreted.
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4 Example

4.1 Data

The estimator is illustrated using a simple analysis of annual earnings from the 2000
Current Population Survey (CPS) March dataset. Interest lies in estimating the adjusted
incremental effect (IE) on earnings of women compared with men and the marginal effect
(ME) of age on earnings. We do not incorporate additional features of the labor market,
such as school tuition, nonpecuniary costs of schooling, income taxes, and an endogenous
length of working life in the model. We ignore these features mainly for the sake of
simplicity in illustrating the performance of this estimator. We restrict our analysis
to full-time working adults who are 18–64 years old, are not self-employed, and have
positive earnings. We adjust for education categories (hischool, somcoll, college,
hiedu), age centered at 40 years (age), age-squared (age2), racial categories (black,
other), marital status (married, nvmarried), and indicator for women (female). Less
than high school education, whites, and other marital status are used as reference
categories. The outcome variable is personal annual earnings (pearnval). We use
the CPS March Supplement weights (marsupwt) to do a weighted analysis. I start by
scaling the outcome variable by its mean.

. global incvar "pearnval"

. quietly summarize $incvar, meanonly

. global meany = r(mean)

. generate y = $incvar/$meany

(Continued on next page)
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4.2 Analysis

. pglm y hischool somcoll college hiedu age age2 black other female married
> nvmarried [pw=marsupwt]
Iter: 1 Max % Diff: 5.1278375 Rel Diff: 94.872162

(output omitted )
Iter: 10 Max % Diff: .00005663 Rel Diff: .00013594

Extended GEE with Power Variance Function No of obs = 45209
Optimization: Fisher’s Scoring Residual df = 45194

[pweight] marsupwt

Variance: (theta1*mu^theta2)
Link: (mu^lambda - 1)/lambda
Std Errors: Robust

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
hischool .3515186 .01375 25.56 0.000 .3245691 .3784681
somcoll .5382999 .0155596 34.60 0.000 .5078035 .5687962
college .7950556 .0145366 54.69 0.000 .7665644 .8235469

hiedu 1.10507 .0176625 62.57 0.000 1.070452 1.139688
age .0147786 .0004029 36.68 0.000 .0139889 .0155682

age2 -.0008238 .0000336 -24.49 0.000 -.0008897 -.0007578
black -.0789464 .0116374 -6.78 0.000 -.1017554 -.0561374
other -.0376681 .018954 -1.99 0.047 -.0748174 -.0005188

females -.3676611 .0072936 -50.41 0.000 -.3819563 -.3533659
married .0906575 .0100474 9.02 0.000 .070965 .1103501

nvmarried -.0295077 .0129753 -2.27 0.023 -.0549389 -.0040766
_cons -.4057019 .0156529 -25.92 0.000 -.436381 -.3750228

lambda
_cons -.1199986 .0540904 -2.22 0.027 -.2260139 -.0139833

theta1
_cons .4280466 .0116302 36.80 0.000 .4052518 .4508414

theta2
_cons 1.857664 .1989125 9.34 0.000 1.467803 2.247525

The link parameter is estimated to be λ̂ = −0.12 (95% CI: −0.23, −0.01), indicating
that the optimal link for these data is neither identity (as in OLS) nor log (as in log-
OLS and gamma with log link) but more likely an inverse 10th root link. This result
shows the importance of using the Box–Cox link transform. The estimated PV model
parameters indicate that the variance is a quadratic function of the mean (θ̂1 = 0.43,

95% CI: 0.41, 0.45, and θ̂2 = 1.86, 95% CI: 1.47, 2.25), which suggests that the variance
function of (Y |X) is close to that of a gamma distribution.

4.3 Postestimation results

To estimate IE on annual earnings of being a woman rather than a man, we use the
pglmpredict command as follows:
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. pglmpredict iefemale, ie(females) var(varfem) scale($meany)

. summarize iefemale varfem

Variable Obs Mean Std. Dev. Min Max

iefemale 45209 -12658.96 5588.459 -28689.61 -2996.324
varfem 45209 231885.9 514959.9 6594.954 3007460

The IE is estimated to be −$12, 659, indicating that the adjusted annual earnings
for women are on average $12,659 less than that of men. The variable varfem gives the
variance of the IE for each observation, conditional on the values of other characteristics
for that observation. However, to obtain the variance of the overall IE, we must also
include the part that arises out of the uncertainty in Xs. An estimate for this part is
given by the variance of the mean IE, i.e., (5588.4592/45209) (Basu and Rathouz 2005).
Therefore, following (1),

Var(IE) = (5588.4592/45209) + 231885.9 ≈ 232577

and the standard error for IE =
√

232577 ≈ 482. One can also use bootstrap methods
to estimate this variance.

One could also have estimated the marginal effects of age on adjusted earnings using
the pglmpredict, me(age) command, had age entered the specification only as a main
effect. However, since age has a quadratic specification in the model, the ME is given
by ∂µ/∂age = µ(1−λ) · (βage + 2 · age · βage2), and we rely on predictnl to estimate
this ME.

. global lm=e(lambda)

. predictnl dmuage = ((predict(xb)*$lm + 1)^((1-$lm)/$lm)) *
> (_b[y:age]+2*_b[y:age2]*age)*$meany, var(vardmu)

. summarize dmuage vardmu

Variable Obs Mean Std. Dev. Min Max

dmuage 45209 430.4602 567.3527 -1909.251 2166.114
vardmu 45209 779.9581 969.4231 36.6932 7753.351

The output indicates that in this simple analysis, ceteris paribus, earnings change
by $430 on average for each one-year increase in age. The standard error of this ME is
calculated using a formula analogous to (1) and is 28.0.

The value of this ME can vary with the base age. One can therefore estimate the
ME conditional on a base age and its 95% confidence interval (based to the estimated
standard error for the ME) and plot the effects across age (figure 1). The ME of age
at a specific base age is estimated after averaging over the empirical distribution of the
remaining covariates in the model, i.e., EXage

(∂µ(X)/∂age|age = a). Figure 1 shows
that an increase in age results in increases in earnings up to about age 47, after which
an increase in age results in decreases in earnings.
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Figure 1: Plot of marginal effect of age and 95% confidence interval on earnings.

4.4 Goodness of fit

It is always useful to carefully study whether any estimator can provide a good fit for
the data. There are two simple goodness-of-fit tests that I will illustrate here. One can
also run more complex tests of fit.

1. The mean residuals across deciles of the corresponding linear predictor η̂ = xT β̂.
By looking at the pattern in the residuals as a function of η̂, we can determine
whether there is a systematic pattern of bias in the forecasts. A formal version
of this test is provided by a variant of test of goodness of fit proposed by Hosmer
and Lemeshow (2000), using an F test that the mean residuals across all 10 of the
deciles are not significantly different from zero. If the residual pattern is U-shaped,
there is evidence for a more nonlinear response than was assumed.

2. We present the Pearson correlation between the raw-scale (y-scale) residual and
µ̂. If this statistic is significantly different from zero, the model provides a biased
prediction of E(Y |X).

. predict xb, xb

. pglmpredict mu, mu scale($meany)

. generate res = $incvar-mu

. summarize res

Variable Obs Mean Std. Dev. Min Max

res 45209 -1.137649 25347.73 -84020.66 337028.3
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. pwcorr res mu, sig

res mu

res 1.0000

mu -0.0008 1.0000
0.8614

. xtile xbtile=xb, nq(10)

. quietly tabulate xbtile, generate(xbt)

. regress res xbt1-xbt10, noconstant robust

Linear regression Number of obs = 45209
F( 10, 45199) = 1.79
Prob > F = 0.0559
R-squared = 0.0003
Root MSE = 25346

Robust
res Coef. Std. Err. t P>|t| [95% Conf. Interval]

xbt1 -130.9101 166.8919 -0.78 0.433 -458.021 196.2008
xbt2 -177.1738 188.63 -0.94 0.348 -546.8917 192.5441
xbt3 485.7159 263.5742 1.84 0.065 -30.89386 1002.326
xbt4 -257.1916 252.9759 -1.02 0.309 -753.0286 238.6454
xbt5 -249.918 276.4238 -0.90 0.366 -791.7132 291.8771
xbt6 567.8008 306.2321 1.85 0.064 -32.41916 1168.021
xbt7 589.9669 344.8832 1.71 0.087 -86.00981 1265.944
xbt8 -872.2802 413.2617 -2.11 0.035 -1682.28 -62.28058
xbt9 -242.8651 512.2215 -0.47 0.635 -1246.828 761.0974
xbt10 284.3003 715.8617 0.40 0.691 -1118.8 1687.401

. test xbt1 xbt2 xbt3 xbt4 xbt5 xbt6 xbt7 xbt8 xbt9 xbt10

(output omitted )

F( 10, 45199) = 1.79
Prob > F = 0.0559

The EEE model seems to fit the data well. It passes both the Hosmer–Lemeshow
and the Pearson’s correlation tests at the 5% level and shows no systematic patterns in
the residuals across the deciles of the linear predictor.

4.5 Comparison with traditional GLM

We compare our results with those given by the traditional glm command in Stata,
where we use the optimal values for the link and the variance functions for this data.
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. glm y hischool somcoll college hiedu age age2 black other female married
> nvmarried [pw=marsupwt], link(power $lm) family(gamma) robust irls

Iteration 1: deviance = 3.49e+07
Iteration 2: deviance = 3.43e+07
Iteration 3: deviance = 3.43e+07
Iteration 4: deviance = 3.43e+07
Iteration 5: deviance = 3.43e+07
Iteration 6: deviance = 3.43e+07
Iteration 7: deviance = 3.43e+07

Generalized linear models No. of obs = 45209
Optimization : MQL Fisher scoring Residual df = 45197

(IRLS EIM) Scale parameter = 1
Deviance = 34299298.8 (1/df) Deviance = 758.8844
Pearson = 40058395.16 (1/df) Pearson = 886.3065

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = u^(-.1199986189117248) [Power]

BIC = 3.38e+07

Semi-Robust
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

hischool -.041239 .001776 -23.22 0.000 -.0447199 -.0377582
somcoll -.0643973 .0019252 -33.45 0.000 -.0681706 -.060624
college -.0961145 .0018093 -53.12 0.000 -.0996607 -.0925683

hiedu -.1323003 .0021448 -61.69 0.000 -.1365039 -.1280966
age -.001768 .000045 -39.26 0.000 -.0018562 -.0016797

age2 .0001046 3.70e-06 28.28 0.000 .0000973 .0001118
black .0131015 .00139 9.43 0.000 .0103771 .0158259
other .0053822 .0022476 2.39 0.017 .000977 .0097873

females .0433806 .0008674 50.01 0.000 .0416804 .0450807
married -.0111553 .0011778 -9.47 0.000 -.0134637 -.0088469

nvmarried .003831 .0015362 2.49 0.013 .0008201 .0068418
_cons 1.045521 .0018573 562.91 0.000 1.041881 1.049162

. predictnl iefemglm = ((predict(xb) - _b[female]*female + _b[female])^(1/$lm)
> - (predict(xb) - _b[female]*female)^(1/$lm))*$meany, var(varfemglm) force

. sum iefemglm varfemglm

Variable Obs Mean Std. Dev. Min Max

iefemglm 45209 -12760.9 5708.93 -29075.93 -2875.237
varfemglm 45209 114235.9 116623.9 5883.997 841335.7

The regression coefficients obtained from running this model are not comparable to those
obtained from the pglm command because pglm implements the model (µλ − 1)/λ =
XT β, whereas the power link option in glm implements the model µλ = XT β′. Clearly,
β′ 6= β. Therefore, comparison between pglm and glm estimators is made based on the
estimates of IEs and MEs. glm with the power-link function estimates the IEs and MEs
to be −12760.9 (SE = 339) and 434.8 (SE = 27.5), respectively, similar to what pglm

estimated.
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5 Conclusions

I have illustrated the use of the pglm command that simultaneously solves the EEE

estimator for parameters in the link and variance functions along with those of the
linear predictor in a GLM (Basu and Rathouz 2005). Our method addresses difficulties in
choosing the correct link and variance functions in these models. The method decouples
the scale of estimation for the mean model, determined by the link function, from the
scale of interest for the scientifically relevant effects. Regardless of what link function
is used, MEs and IEs on any scale can be obtained.

A formal test of choosing between scales of estimation can be based on the 95%
confidence interval for the link parameter λ. In my example, the 95% confidence interval
for λ identifies that the traditional scales of estimation (additive in OLS or proportional
in log-OLS or gamma with log link) are incorrect. Thus this test may directly allow
researchers to eliminate alternative competing estimators.

On a practical level, the pglm estimator works best in analyses with larger sam-
ple sizes (say, N > 5, 000), which are common in health economics and health policy
applications.

I hope that this methodology and the pglm command will be increasingly used in
the health economics and other areas of research that are plagued by data characteris-
tics that makes a priori choices of link functions and of estimators with distributional
assumptions difficult.
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