

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors
Christopher Baum

Boston College
Rino Bellocco

Karolinska Institutet
David Clayton

Cambridge Inst. for Medical Research
Mario A. Cleves

Univ. of Arkansas for Medical Sciences
William D. Dupont

Vanderbilt University
Charles Franklin

University of Wisconsin, Madison
Joanne M. Garrett

University of North Carolina
Allan Gregory

Queen’s University
James Hardin

University of South Carolina
Ben Jann

ETH Zurich, Switzerland
Stephen Jenkins

University of Essex
Ulrich Kohler

WZB, Berlin
Jens Lauritsen

Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2005)
5, Number 3, pp. 421–441

Mata matters: Translating Fortran∗

William Gould
StataCorp

Abstract. Mata is Stata’s matrix language. In the Mata matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. In this column, we demonstrate how
Fortran programs can be translated and incorporated into Stata.

Keywords: pr0017, Mata, Fortran

In this column, we are going to translate a program from Fortran to Mata. There is
a large legacy of Fortran routines for performing statistics, and much of it is available
over the web. It is usually easier to translate such programs into Mata rather than to
compile them and write the necessary interface functions to include them as a Stata
plugin.

For instance, Fortran algorithm AS 89 (Best and Roberts 1975) is frequently used to
calculate the upper-tail probabilities of Spearman’s rank-order correlation coefficient.
This routine, known as AS 89—AS because it came from the journal Applied Statistics
published by the Royal Statistical Society—is readily available over the web. The copy
below was obtained from Statlib (http://lib.stat.cmu.edu), a library of statistical soft-
ware, data, and information maintained at Carnegie–Mellon University. AS 89 can be
found at http://lib.stat.cmu.edu/apstat/89:

double precision function prho(n, is, ifault)
c
c Algorithm AS 89 Appl. Statist. (1975) Vol.24, No. 3, P377.
c
c To evaluate the probability of obtaining a value greater than or
c equal to is, where is=(n**3-n)*(1-r)/6, r=Spearman’s rho and n
c must be greater than 1
c
c Auxiliary function required: ALNORM = algorithm AS66
c

dimension l(6)
double precision zero, one, two, b, x, y, z, u, six,
$ c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
data zero, one, two, six /0.0d0, 1.0d0, 2.0d0, 6.0d0/
data c1, c2, c3, c4, c5, c6,
$ c7, c8, c9, c10, c11, c12/
$ 0.2274d0, 0.2531d0, 0.1745d0, 0.0758d0, 0.1033d0, 0.3932d0,
$ 0.0879d0, 0.0151d0, 0.0072d0, 0.0831d0, 0.0131d0, 0.00046d0/

∗Fortran in mixed case is now the official name for what was born as FORTRAN in uppercase. Bo
Einarsson reports at http://www.nsc.liu.se/ boein/f77to90/a7.html that the first Fortran to be spelled
in mixed case was Fortran 90.

c© 2005 StataCorp LP pr0017

422 Mata matters: Translating Fortran

c
c Test admissibility of arguments and initialize
c

prho = one
ifault = 1
if (n .le. 1) return
ifault = 0
if (is .le. 0) return
prho = zero
if (is .gt. n * (n * n -1) / 3) return
js = is
if (js .ne. 2 * (js / 2)) js = js + 1
if (n .gt. 6) goto 6

c
c Exact evaluation of probability
c

nfac = 1
do 1 i = 1, n

nfac = nfac * i
l(i) = i

1 continue
prho = one / dble(nfac)
if (js .eq. n * (n * n -1) / 3) return
ifr = 0
do 5 m = 1,nfac

ise = 0
do 2 i = 1, n

ise = ise + (i - l[i]) ** 2
2 continue

if (js .le. ise) ifr = ifr + 1
n1 = n

3 mt = l(1)
nn = n1 - 1
do 4 i = 1, nn

l(i) = l(i + 1)
4 continue

l(n1) = mt
if (l(n1) .ne. n1 .or. n1 .eq. 2) goto 5
n1 = n1 - 1
if (m .ne. nfac) goto 3

5 continue
prho = dble(ifr) / dble(nfac)
return

c
c Evaluation by Edgeworth series expansion
c

6 b = one / dble(n)
x = (six * (dble(js) - one) * b / (one / (b * b) -one) -
$ one) * sqrt(one / b - one)
y = x * x
u = x * b * (c1 + b * (c2 + c3 * b) + y * (-c4
$ + b * (c5 + c6 * b) - y * b * (c7 + c8 * b
$ - y * (c9 - c10 * b + y * b * (c11 - c12 * y)))))

W. Gould 423

c
c Call to algorithm AS 66
c

prho = u / exp(y / two) + alnorm(x, .true.)
if (prho .lt. zero) prho = zero
if (prho .gt. one) prho = one
return
end

An index of other popular routines can be found at http://lib.stat.cmu.edu/apstat.

Step 1: Copy the file

Downloading the above routine resulted in file prho.f appearing on my disk. I then
copied file prho.f to prho.do, giving me two copies. My plan will be to convert the
Fortran code in file prho.do to Mata, and I will keep the original untouched in case I
need to review it.

Step 2: Review the copy

At this stage, we do not need to understand the logic of AS 89 and, as a matter of fact,
we will never need to understand it. The translation we will perform will be mechanistic,
requiring us to understand that original Fortran line

ise = ise + (i - l(i)) ** 2

means to add a value to ise, which value is the square of (i-l(i))—meaning i minus
the ith value of vector l—but why the original authors choose to increment ise in this
way we will never need to understand.

Look through the source code to see if you spot anything you mechanically do not
understand or if there are any other oddities.

I looked through and did not see anything I did not understand, but I did spot one
thing. Near the end are lines that read

c
c Call to algorithm AS 66
c

prho = u / exp(y / two) + alnorm(x, .true.)

alnorm() is not a built-in, standard Fortran function. alnorm() is, in fact, another AS

routine, so either I am going to have to obtain and to translate it, too, or I am going
to have to find out what it does and substitute another, already existing Mata function
for it.

424 Mata matters: Translating Fortran

Back to the web site I went. I found the code for AS 66 and the top read,

c This file includes the Applied Statistics algorithm AS 66 for calculating
c the tail area under the normal curve, and two alternative routines which
c give higher accuracy. The latter have been contributed by Alan Miller of
c CSIRO Division of Mathematics & Statistics, Clayton, Victoria. Notice
c that each function or routine has different call arguments.
c
c

double precision function alnorm(x,upper)
c
c Algorithm AS66 Applied Statistics (1973) vol22 no.3
c
c Evaluates the tail area of the standardised normal curve
c from x to infinity if upper is .true. or
c from minus infinity to x if upper is .false.

The call to alnorm() that appears in AS 89 reads alnorm(x, .true.). From the
documentation of alnorm(), we now know that it calculates the normal curve from x
to infinity. The Mata function to calculate normal areas is normal(x), and it calculates
the area from −∞ to x. We will want 1 − normal(x) or, better, normal(-x), because
that avoids the subtraction, so it will be more accurate. Thus I made a note to myself
that later I would translate

alnorm(x, .true.) ⇐⇒ normal(-x)

Looking through the program again, I also noted the line

data zero, one, two, six /0.0d0, 1.0d0, 2.0d0, 6.0d0/

That is AS style; rather than using constants 0, 1, 2, and 6 in the program, they used
zero, one, two, and six. In Mata, there is no reason to do this and adding the extra
variables just makes the code more difficult to read. So using my editor, I ran through
file prho.do and changed zero to 0, one to 1, and so on, and finally I deleted the line

data zero, one, two, six /0.0d0, 1.0d0, 2.0d0, 6.0d0/

There was another data line below that,

data c1, c2, c3, c4, c5, c6,
$ c7, c8, c9, c10, c11, c12/
$ 0.2274d0, 0.2531d0, 0.1745d0, 0.0758d0, 0.1033d0, 0.3932d0,
$ 0.0879d0, 0.0151d0, 0.0072d0, 0.0831d0, 0.0131d0, 0.00046d0/

but that one I left because I did not think the resulting code would be more readable if
I substituted numbers for the variables. I knew that later I could translate the line to
read

c1 = .2274
c2 = .2531
...
c12 = .00046

W. Gould 425

Step 3: Translate

Step 3.1 The opening

The most difficult portion of a Fortran program to translate is the opening

double precision function prho(n, is, ifault)
(comments omitted)
dimension l(6)
double precision zero, one, two, b, x, y, z, u, six,
$ c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12

This becomes

real scalar prho(real scalar n, real scalar is, real scalar ifault)
{

real scalar prho
real vector l
real scalar b, x, y, z, u
real scalar c1, c2, c3, c4, c5, c6, c7, c8, c9, c10,

c11, c12

l = J(1, 6, .)

The first thing to notice is that I added

real scalar prho

even though nothing similar appeared in the original Fortran code. I did that because I
know something about Fortran. Fortran functions return the value that happens to be
in a variable of the same name as the function. That variable is undeclared in Fortran.

The other declarations are translated to real scalar if they are scalars or to real
vector if they are vectors or to real matrix if they are matrices. In the case of vectors
and matrices, you do not specify the extent of their dimensions in Mata. If, in Fortran,
mymat is declared to be 3 × 2, you just translate that as real matrix mymat. Then
later, after all the declarations, you fill in mymat with a 3×2 matrix, the values of which
do not matter. The easy way to do that is via Mata’s J() function, such as mymat =
J(3,2,.).

In AS 89, l was declared to be a vector of length 6: dimension l(6). In translation,
that resulted in the declaration real vector l and then, after all the declarations, I
added the line,

l = J(1, 6, .)

I filled l in with missing values, but that was irrelevant. I could just as well have coded

l = J(1, 6, 0)

Step 3.2: Initializations

Fortran programs can include statements of the form

426 Mata matters: Translating Fortran

data c1, c2, c3, c4, c5, c6,
$ c7, c8, c9, c10, c11, c12/
$ 0.2274d0, 0.2531d0, 0.1745d0, 0.0758d0, 0.1033d0, 0.3932d0,
$ 0.0879d0, 0.0151d0, 0.0072d0, 0.0831d0, 0.0131d0, 0.00046d0/

which preloads c1, c2, . . . , with the specified values. Mata has no equivalent. AS 89
has that line. Translate this as

c1 = 0.2274d0
c2 = 0.2531d0
c3 = 0.1745d0
c4 = 0.0758d0
c5 = 0.1033d0
c6 = 0.3932d0
c7 = 0.0879d0
c8 = 0.0151d0
c9 = 0.0072d0
c10 = 0.0831d0
c11 = 0.0131d0
c12 = 0.00046d0

The line for c1 could just as well read

c1 = 0.2274e0

or

c1 = 0.2274

Mata understands Fortran’s d0 suffix, so you do not have to change or remove it.

Step 3.3: The body

The first lines of the body of our Fortran program read

c
c Test admissibility of arguments and initialize
c

prho = one
ifault = 1
if (n .le. 1) return
ifault = 0
if (is .le. 0) return
prho = zero
if (is .gt. n * (n * n -1) / 3) return
js = is
if (js .ne. 2 * (js / 2)) js = js + 1
if (n .gt. 6) goto 6

W. Gould 427

and these become

//
// Test admissibility of arguments and initialize
//

my_is = trunc(is)
prho = 1
ifault = 1
if (n < 1) return(prho)
ifault = 0
if (my_is <= 0) return(prho)
prho = 0
if (my_is > n * (n * n -1) / 3) return(prho)
js = my_is
if (js != 2 * (js / 2)) js = js + 1
if (n > 6) goto L6

First, I changed all the Fortran RETURNs to return(prho). As previously mentioned,
Fortran functions return the value that is in the variable of the same name. Mata
requires that you specify the value to be returned. I was momentarily tempted to make
a more thorough translation

//
// Test admissibility of arguments and initialize
//

my_is = trunc(is)
ifault = 1
if (n < 1) return(1)
ifault = 0
if (my_is <= 0) return(1)
if (my_is > n * (n * n -1) / 3) return(0)
js = my_is
if (js != 2 * (js / 2)) js = js + 1
if (n > 6) goto L6

but I decided against that. In the above, I got rid of prho and made the return() lines
clearly specify exactly what was being returned. The code looks better and is easier to
understand, but if I am going to make such a thorough translation, I am going to need
to be cautious. At some later point in the code, it might be assumed the variable prho
contains 1, or contains 0, and I may not notice that hidden assumption. It is safer to
translate line by line, so we will return to the original translation:

//
// Test admissibility of arguments and initialize
//

my_is = trunc(is)
prho = 1
ifault = 1
if (n < 1) return(prho)
ifault = 0
if (my_is <= 0) return(prho)
prho = 0
if (my_is > n * (n * n -1) / 3) return(prho)
js = my_is
if (js != 2 * (js / 2)) js = js + 1
if (n > 6) goto L6

428 Mata matters: Translating Fortran

There is one more translation I made that is deserving of comment. I added the line

my_is = trunc(is)

at the top of the block, and then, throughout all the rest of the Fortran code, I changed
is to my is. It turned out that there were only three such places, and all are in the
above block.

Fortran variables that begin with the letters i through n are assumed to be integers
if they are not explicitly declared otherwise. Thus, variable is is a Fortran INTEGER
variable. In our translation, however, variable is is a real scalar because Mata does not
have an integer type. Variable is will be an integer if the caller happens to pass an
integer value, but otherwise, it is unconstrained.

My solution to this was to create a new variable my is and to guarantee that it is
an integer. I did not really need a new variable; I could have just added

is = trunc(is)

Doing that, however, is not recommended because that would change the caller’s value
of the argument as well.

Presumably, I should do the same thing with variable n, but I decided that it was
unlikely the caller (who will be me) will call the program with a noninteger number of
observations, and so ignored the issue.

The opening block is now translated; let’s translate the next block

c
c Exact evaluation of probability
c

nfac = 1
do 1 i = 1, n

nfac = nfac * i
l(i) = i

1 continue

This becomes

nfac = 1
for (i=1; i<=n; i++) {

nfac = nfac * i
l[i] = i

}

although it just as well could have become

nfac = 1
for (i=1; i<=n; i++) {

nfac = nfac * i
l[i] = i

L1: } (notice the tag L1)

The 1 continue statement in the original Fortran source was included only to close the
DO loop. I looked ahead and verified that there was no GOTO 1 in the rest of the Fortran

W. Gould 429

program, so I do not need to label the line, although I could have and it would not have
mattered. We will talk a little more about labels later.

Do loops are always translated the same way:

DO # var = a, b
...

CONTINUE

translate as

for (var=a; var<=b; var++) {
...

}

I also had to remember to change the subscripting parentheses in the Fortran line

l(i) = i

to square brackets, which Mata requires:

l[i] = i

The next bit of Fortran code reads

prho = one / dble(nfac)
if (js .eq. n * (n * n -1) / 3) return
ifr = 0
do 5 m = 1,nfac

ise = 0
do 2 i = 1, n

ise = ise + (i - l(i)) ** 2
2 continue

if (js .le. ise) ifr = ifr + 1
n1 = n

3 mt = l(1)
nn = n1 - 1
do 4 i = 1, nn

l(i) = l(i + 1)
4 continue

l(n1) = mt
if (l(n1) .ne. n1 .or. n1 .eq. 2) goto 5
n1 = n1 - 1
if (m .ne. nfac) goto 3

5 continue
prho = dble(ifr) / dble(nfac)
return

(Continued on next page)

430 Mata matters: Translating Fortran

and this becomes

prho = 1 / nfac
if (js == n * (n * n -1) / 3) return(prho)
ifr = 0
for (m=1; m<=nfac; m++) {

ise = 0
for (i=1; i<=n; i++) {

ise = ise + (i - l[i]) ^ 2
}
if (js <= ise) ifr = ifr + 1
n1 = n

L3: mt = l[1]
nn = n1 - 1
for (i=1; i<=nn; i++) {

l[i] = l[i + 1]
}
l[n1] = mt
if (l[n1] != n1 | n1 == 2) goto L5
n1 = n1 - 1
if (m != nfac) goto L3

L5:
}
prho = ifr / nfac
return(prho)

Note that in translating the next-to-last line,

prho = dble(ifr) / dble(nfac)

I omitted Fortran’s DBLE() function:

prho = ifr / nfac

DBLE() is unnecessary in Mata because all variables are double. On the other hand, if
you ever see a Fortran statement, such as

K = N / 2

remember to translate it as

k = trunc(n/2)

Mata’s trunc() function is equivalent to how Fortran does integer arithmetic.

The block of code we just translated had many line numbers, such as

3 mt = l(1)

and

if (m .ne. nfac) goto 3

which translated as

L3: mt = l[1]

W. Gould 431

and

if (m != nfac) goto L3

Line numbers in Fortran are just that, numbers. Line numbers in Mata must begin
with a letter or underscore and need not be numeric at all. When translating Fortran
line numbers, I add an uppercase L to the original number.

The final block of Fortran code reads

c
c Evaluation by Edgeworth series expansion
c

6 b = one / dble(n)
x = (six * (dble(js) - one) * b / (one / (b * b) -one) -
$ one) * sqrt(one / b - one)
y = x * x
u = x * b * (c1 + b * (c2 + c3 * b) + y * (-c4
$ + b * (c5 + c6 * b) - y * b * (c7 + c8 * b
$ - y * (c9 - c10 * b + y * b * (c11 - c12 * y)))))

c
c Call to algorithm AS 66
c

prho = u / exp(y / two) + alnorm(x, .true.)
if (prho .lt. zero) prho = zero
if (prho .gt. one) prho = one
return
end

and this becomes

//
// Evaluation by Edgeworth series expansion
//

L6: b = 1 / n
x = (6 * (js - 1) * b / (1 / (b * b) -1) - 1) * sqrt(1 / b - 1)
y = x * x
u = x * b * (c1 + b * (c2 + c3 * b) + y * (-c4

+ b * (c5 + c6 * b) - y * b * (c7 + c8 * b
- y * (c9 - c10 * b + y * b * (c11 - c12 * y)))))

prho = u / exp(y / 2) + normal(-x)
if (prho < 0) prho = 0
if (prho > 1) prho = 1
return(prho)

}

The last bit of translation was pretty simple. Notice, however, the original line

u = x * b * (c1 + b * (c2 + c3 * b) + y * (-c4
$ + b * (c5 + c6 * b) - y * b * (c7 + c8 * b
$ - y * (c9 - c10 * b + y * b * (c11 - c12 * y)))))

which became

u = x * b * (c1 + b * (c2 + c3 * b) + y * (-c4
+ b * (c5 + c6 * b) - y * b * (c7 + c8 * b
- y * (c9 - c10 * b + y * b * (c11 - c12 * y)))))

432 Mata matters: Translating Fortran

In Fortran, a character in column 6 indicates a continuation line. The authors of AS 89
used $. In Mata, a line may continue across physical lines, and there is nothing special
you need to do except to ensure that wherever the line is broken, it is obvious that it is
incomplete. It was obvious in this case because of the pending close parentheses.

At this point, we have the following completed program

real scalar prho(real scalar n, real scalar is, real scalar ifault)
{

real scalar prho
real vector l
real scalar b, x, y, z, u
real scalar c1, c2, c3, c4, c5, c6, c7, c8, c9, c10,

c11, c12

l = J(1, 6, .)

c1 = 0.2274d0
c2 = 0.2531d0
c3 = 0.1745d0
c4 = 0.0758d0
c5 = 0.1033d0
c6 = 0.3932d0
c7 = 0.0879d0
c8 = 0.0151d0
c9 = 0.0072d0
c10 = 0.0831d0
c11 = 0.0131d0
c12 = 0.00046d0

//
// Test admissibility of arguments and initialize
//

my_is = trunc(is)
prho = 1
ifault = 1
if (n < 1) return(prho)
ifault = 0
if (my_is <= 0) return(prho)
prho = 0
if (my_is > n * (n * n -1) / 3) return(prho)
js = my_is
if (js != 2 * (js / 2)) js = js + 1
if (n > 6) goto L6

nfac = 1
for (i=1; i<=n; i++) {

nfac = nfac * i
l[i] = i

}

W. Gould 433

prho = 1 / nfac
if (js == n * (n * n -1) / 3) return(prho)
ifr = 0
for (m=1; m<=nfac; m++) {

ise = 0
for (i=1; i<=n; i++) {

ise = ise + (i - l[i]) ^ 2
}
if (js <= ise) ifr = ifr + 1
n1 = n

L3: mt = l[1]
nn = n1 - 1
for (i=1; i<=nn; i++) {

l[i] = l[i + 1]
}
l[n1] = mt
if (l[n1] != n1 | n1 == 2) goto L5
n1 = n1 - 1
if (m != nfac) goto L3

L5:
}
prho = ifr / nfac
return(prho)

//
// Evaluation by Edgeworth series expansion
//

L6: b = 1 / n
x = (6 * (js - 1) * b / (1 / (b * b) -1) - 1) * sqrt(1 / b - 1)
y = x * x
u = x * b * (c1 + b * (c2 + c3 * b) + y * (-c4

+ b * (c5 + c6 * b) - y * b * (c7 + c8 * b
- y * (c9 - c10 * b + y * b * (c11 - c12 * y)))))

prho = u / exp(y / 2) + normal(-x)
if (prho < 0) prho = 0
if (prho > 1) prho = 1
return(prho)

}

I have neatly indented the translation to reveal nesting level, but that was not necessary.

Step 4. First compilations

We now modify the prho.do file so that Stata can execute it:

top: prho.do
clear
mata:

real scalar prho(real scalar n, real scalar is, real scalar ifault)
{

(rest of program appears here)
}
end

end: prho.do

434 Mata matters: Translating Fortran

I do not yet bother adding lines to the do-file to test the program. Just passing the
program though Mata will cause Mata to compile it, and in the process, I expect the
compiler to reveal problems I will need to solve first.

The result of executing the do-file is

. do prho
(output omitted)

note: variable z unused
(output omitted)

end of do-file

Mata noted that a variable in our program was unused. What that means is that
we declared the variable early in our program, in particular in the line

real scalar b, x, y, z, u

and, after that, we never used z again. Mata does not consider that an error, but it
considers the fact worthy of mention.

I went back to the original, untranslated, untouched Fortran code in file prho.f,
and I discovered that, indeed, variable z was declared but never used by the original
authors. I removed z from the declaration line in the translation,

real scalar b, x, y, u

and ran the do-file again. That got rid of the warning message.

Then I went back to the prho.do file and added a line mata set matastrict on:

top: prho.do
clear
mata:

mata set matastrict on (new)

real scalar prho(real scalar n, real scalar is, real scalar ifault)
{

(rest of program appears here)
}
end

end: prho.do

mata set matastrict on makes Mata far more demanding in terms of program
construction. I am looking for translation errors and using the compiler to help me. I
ran the do-file again, and this time, I got lots of error messages:

W. Gould 435

. do prho
(output omitted)

variable my_is undeclared
variable js undeclared
variable nfac undeclared
variable i undeclared
variable ifr undeclared
variable m undeclared
variable ise undeclared
variable n1 undeclared
variable mt undeclared
variable nn undeclared
r(3000);

end of do-file
r(3000);

I was not much concerned because I know that Fortran programmers often leave vari-
ables undeclared. They are especially likely to do this with integer variables, such as i,
j, . . . , n. My concern is that I mistyped a variable and this inadvertently introduced
a new one. To guard against that, I will attempt to explain to myself each of these
undeclared variables.

Variable my is is the new variable I introduced, and I should have declared it as a
real scalar.

To check the remaining variables, I verified that each appeared in the Fortran stored
in file prho.f. Each was. I then added the line

real scalar my_is, js, nfac, i, ifr, m, ise, n1, mt, nn

to the other declarations in the translation. This time, when I ran file prho.do, there
were no errors, even with matastrict set on.

Step 5. First executions

Function prho(n, is, ifault), to paraphrase the comment at the top of the original
Fortran code, returns the probability of obtaining a value greater than or equal to is,
where is = (n3 − n)(1 − r)/6 and where r is Spearman’s rho and n the number of
observations. Said differently, it returns P (Is ≥ is | ρs = 0).

I want to use prho() to calculate the significance of r, that is, the probability of
observing a correlation more extreme than r, which is to say,

p = P (Rs ≤ −abs(r) | ρs = 0) + P (Rs ≥ abs(r) | ρs = 0)

The probability of Rs ≤ −abs(r) is prho(n, (n3 − n)(1 + abs(r))/6, ifault).

The probability of Rs ≥ abs(r) is 1 − prho(n, (n3 − n)(1 − abs(r))/6, ifault).

The term ifault in prho() is how AS routines flag errors. If all goes well, ifault is
returned containing 0. If there are problems, ifault is set to 1.

436 Mata matters: Translating Fortran

Thus before trying prho(), I will write another function called sigrho():

real scalar sigrho(real scalar n, real scalar r)
{

real scalar res1, res2, ifault

res1 = prho(n, (n^3-n)*(1+abs(r))/6, ifault)
if (ifault) return(.)
res2 = 1 - prho(n, (n^3-n)*(1-abs(r))/6, ifault)
if (ifault) return(.)
return(res1+res2)

}

My prho.do file now looks like this:

top: prho.do
clear
mata:

mata set matastrict on

real scalar prho(real scalar n, real scalar is, real scalar ifault)
{

(rest of program appears here)
}

real scalar sigrho(real scalar n, real scalar r)
{

(rest of program appears here)
}
end

end: prho.do

It does not matter that I put sigrho() last; I could have put it first.

Now I can try my program:

. spearman weight rep78

Number of obs = 69
Spearman’s rho = -0.4138

Test of Ho: weight and rep78 are independent
Prob > |t| = 0.0004

. mata: sigrho(69, -.4138)
.0004569269

The significance reported by Stata’s spearman command is based on an approxima-
tion formula. The significance calculated by sigrho() is exact.

Step 6. Packaging

Really, I am done. I have translated the Fortran program, and it appears to work. If I
just needed a few results from it, I would stop.

W. Gould 437

It would be more useful in the future, however, if I had a new command, say,
spearman2, that followed the syntax of spearman and also reported the results of exact
calculation. That would not be a difficult Stata program to write, because I could use
existing Stata command spearman to calculate rho and then use my new Mata function
sigrho() to calculate its significance:

program spearman2
version 9

syntax varlist(min=2 max=2) [if] [in]
spearman ‘varlist’ ‘if’ ‘in’
mata: my_sigrho(‘r(N)’, ‘r(rho)’)
display as txt " New test = " as res %12.4f r(p2)

end

In the above Stata program, I assume that new function my sigrho() is virtually iden-
tical to sigrho(), except that it returns the result in r(p2), where my Stata program
can easily access it.

Mata function my sigrho() is easy to write,

void my_sigrho(real scalar n, real scalar r)
{

st_numscalar("r(p2)", sigrho(n, r))
}

Finally, I can put all of this together as an ado-file:

top: spearman2.ado
*! version 1.0.0 16aug2005
program spearman2

version 9

syntax varlist(min=2 max=2) [if] [in]
spearman ‘varlist’ ‘if’ ‘in’
mata: my_sigrho(‘r(N)’, ‘r(rho)’)
display as txt " New test = " as res %12.4f r(p2)

end

version 9
mata:
mata set matastrict on

void my_sigrho(real scalar n, real scalar r)
{

st_numscalar("r(p2)", sigrho(n, r))
}

real scalar prho(real scalar n, real scalar is, real scalar ifault)
{

(rest of program appears here)
}

real scalar sigrho(real scalar n, real scalar r)
{

(rest of program appears here)
}

end
end: spearman2.ado

438 Mata matters: Translating Fortran

With this new ado-file, I can type

. sysuse auto, clear
(1978 Automobile Data)

. spearman2 weight rep78

Number of obs = 69
Spearman’s rho = -0.4138

Test of Ho: weight and rep78 are independent
Prob > |t| = 0.0004

New test = 0.0005

Final result

File spearman2.ado reads

top: spearman2.ado
*! version 1.0.0 16aug2005
program spearman2

version 9

syntax varlist(min=2 max=2) [if] [in]

spearman ‘varlist’ ‘if’ ‘in’
mata: my_sigrho(‘r(N)’, ‘r(rho)’)
display as txt " New test = " as res %12.4f r(p2)

end

version 9
mata:
mata set matastrict on

void my_sigrho(real scalar n, real scalar r)
{

st_numscalar("r(p2)", sigrho(n, r))
}

real scalar prho(real scalar n, real scalar is, real scalar ifault)
{

real scalar prho
real vector l
real scalar b, x, y, u
real scalar c1, c2, c3, c4, c5, c6, c7, c8, c9, c10,

c11, c12
real scalar my_is, js, nfac, i, ifr, m, ise, n1, mt, nn

l = J(1, 6, .)

c1 = 0.2274d0
c2 = 0.2531d0
c3 = 0.1745d0
c4 = 0.0758d0
c5 = 0.1033d0
c6 = 0.3932d0
c7 = 0.0879d0
c8 = 0.0151d0
c9 = 0.0072d0
c10 = 0.0831d0
c11 = 0.0131d0
c12 = 0.00046d0

W. Gould 439

//
// Test admissibility of arguments and initialize
//

my_is = trunc(is)
prho = 1
ifault = 1
if (n < 1) return(prho)
ifault = 0
if (my_is <= 0) return(prho)
prho = 0
if (my_is > n * (n * n -1) / 3) return(prho)
js = my_is
if (js != 2 * (js / 2)) js = js + 1
if (n > 6) goto L6

nfac = 1
for (i=1; i<=n; i++) {

nfac = nfac * i
l[i] = i

}

prho = 1 / nfac
if (js == n * (n * n -1) / 3) return(prho)
ifr = 0
for (m=1; m<=nfac; m++) {

ise = 0
for (i=1; i<=n; i++) {

ise = ise + (i - l[i]) ^ 2
}
if (js <= ise) ifr = ifr + 1
n1 = n

L3: mt = l[1]
nn = n1 - 1
for (i=1; i<=nn; i++) {

l[i] = l[i + 1]
}
l[n1] = mt
if (l[n1] != n1 | n1 == 2) goto L5
n1 = n1 - 1
if (m != nfac) goto L3

L5:
}
prho = ifr / nfac
return(prho)

//
// Evaluation by Edgeworth series expansion
//

L6: b = 1 / n
x = (6 * (js - 1) * b / (1 / (b * b) -1) - 1) * sqrt(1 / b - 1)
y = x * x
u = x * b * (c1 + b * (c2 + c3 * b) + y * (-c4

+ b * (c5 + c6 * b) - y * b * (c7 + c8 * b
- y * (c9 - c10 * b + y * b * (c11 - c12 * y)))))

prho = u / exp(y / 2) + normal(-x)
if (prho < 0) prho = 0
if (prho > 1) prho = 1
return(prho)

}

440 Mata matters: Translating Fortran

real scalar sigrho(real scalar n, real scalar r)
{

real scalar res1, res2, ifault

res1 = prho(n, (n^3-n)*(1+abs(r))/6, ifault)
if (ifault) return(.)
res2 = 1 - prho(n, (n^3-n)*(1-abs(r))/6, ifault)
if (ifault) return(.)
return(res1+res2)

}

end
end: spearman2.ado

Statistical commentary

spearman2—AS 89—performs an exact calculation only when n ≤ 6. For n > 6, it uses
an approximation formula. I ran simulations under the null hypothesis ρs = 0 to check
coverage for 5% hypotheses tests:

n replications seed fraction
50 10,000 651201 .0490
7 10,000 109399 .0499
6 10,000 487388 .0583
5 10,000 297777 .0166
4 10,000 121987 .0808
3 10,000 893351 .0000

The last column reports the fraction of tests for which spearman2 returned r(p2) ≤ .05.
Coverage is correct when fraction is .05. The simulations were performed by the do-file

top: simul.do
clear
program mysim
args n
drop _all
set obs ‘n’
gen u1 = uniform()
gen u2 = uniform()
spearman2 u1 u2
end

set seed 893351
simulate r(p2), reps(10000) nodots: mysim 6
count if _sim_1<=.05
count if _sim_1<.

end: simul.do

where the number following set seed and the number following mysim on the simulate
command were substituted from the table above.

W. Gould 441

1 References
Best, D. J. and D. E. Roberts. 1975. Algorithm AS 89: The upper tail probabilities of

Spearman’s rho. Applied Statistics 24(3): 377–379.

About the Author

William Gould is President of StataCorp, chief developer of Stata, and principal architect of
Mata.

