%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

THE STATA JOURNAL

Editor

H. Joseph Newton

Department of Statistics

Texas A & M University

College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Associate Editors
Christopher Baum

Boston College
Rino Bellocco

Karolinska Institutet
David Clayton

Cambridge Inst. for Medical Research
Mario A. Cleves

Univ. of Arkansas for Medical Sciences
William D. Dupont

Vanderbilt University
Charles Franklin

University of Wisconsin, Madison
Joanne M. Garrett

University of North Carolina
Allan Gregory

Queen’s University
James Hardin

University of South Carolina
Ben Jann

ETH Zurich, Switzerland
Stephen Jenkins

University of Essex
Ulrich Kohler

WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stata Press Production Manager

Editor

Nicholas J. Cox

Geography Department
Durham University

South Road

Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Stanley Lemeshow
Ohio State University

J. Scott Long

Indiana University
Thomas Lumley

University of Washington, Seattle
Roger Newson

King’s College, London

Marcello Pagano

Harvard School of Public Health
Sophia Rabe-Hesketh

University of California, Berkeley
J. Patrick Royston

MRC Clinical Trials Unit, London
Philip Ryan

University of Adelaide
Mark E. Schaffer

Heriot-Watt University, Edinburgh
Jeroen Weesie

Utrecht University
Nicholas J. G. Winter

Cornell University

Jeffrey Wooldridge
Michigan State University

Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and
help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and
help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,
as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.
This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web
sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting
files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,
or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,
incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote
free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered
trademark of StataCorp LP.

The Stata Journal (2005)
5, Number 3, pp. 413-420

Depending on conditions: a tutorial on the
cond() function

David Kantor Nicholas J. Cox
kantor.d@att.net Durham University, UK
n.j.cox@durham.ac.uk

Abstract. This is a tutorial on the cond() function, giving explanations and
examples and assessing its advantages and limitations.

Keywords: pr0016, cond(), functions, if command, if qualifier, generate, replace

1 Introduction

Stata functions, like functions in any similar language, fall on a continuum, from those
you know you want to those you do not know you need. If you want a logarithm,
a square root, or some probability function, the only small difficulty is likely to be
checking the exact syntax Stata uses: Is Log() equivalent to 1n() or 1og10()? How do
I get tail probabilities for a Gaussian? What is more problematic is finding out about
functions that might be useful and should thus be added to your personal toolkit. The
help files and the manual entry [D] functions are admirably terse and precise but lack
detailed examples making clear how functions can be exploited in practice. In several
cases, the issue is not so much understanding the definition, but more appreciating how
a particular function might be helpful in the future.

The function cond () is a case in point. The online help gives its formal definition.
Here only the simpler of the two forms allowed is examined. In this tutorial, we will not
ever get to the more complicated form, as we can do plenty without it.

cond(z, a, b) returns a if x evaluates to true (not 0) and b if = evaluates to false (0).

In abstraction, the idea is that of producing different results—a or b—depending
on whether a specified condition—z—is true or false. The results can be both numeric
or both string, and—depending on context—variables or single values. As with many
formal definitions, this may not impart a strong sense of precisely how useful cond ()
could be. The purpose of this tutorial is to provide such a sense. On the way, we will
make comparisons with how else various problems might be solved.

2 Simple examples

Let us make that definition concrete immediately with some simple examples.

1. If a and b are numeric variables, cond(a > b, a, b) returns the larger of a and
b. Given a little knowledge of Stata’s functions, your reaction is likely to be that

© 2005 StataCorp LP pr0016

414

The

A tutorial on the cond() function

max (a,b) will do exactly the same. But you are not quite right. If one of a or b is
missing, let us say b, then max(a,b) returns a, but cond(a > b, a, b) returns
missing. Either might be precisely what you want.

. With the same variables, cond(a >= 42, 42, a) returns the smaller of 42 and a.

This time there is no trap: min(a,42) will do that job, too, regardless of missing
values.

. With a again numeric, and a not missing, cond(a >= 0, a, 0) and cond(a <

0, -a, 0) return the positive and negative parts of a, that is, a; and a_ such
that a = a; — a_. This too you could achieve via max(a,0) and -min(a,0).

. With probabilities p and a desire to calculate entropy, defined as the sum of terms

—pln p, you need to tell Stata to respect the convention that —01n0 is evaluated
as 0. This could be done as cond(p == 0, 0, -p * 1ln(p)) to override Stata’s
understandable belief that 1n(0) is indeterminate and so must be reckoned as
missing.

. With a and b now string variables, cond(a < b, a, b) returns whichever of the

strings is earlier in alphanumeric sort order. You cannot do that so easily with
other functions.

The sales pitch

advantages of cond() include

Conciseness. cond() allows the use of one line for what might otherwise take two

(or more, as we shall see later). Consider how to do (5) to produce a new string
variable using the if qualifier. We need two commands, one for each if condition.
The first must be a generate command, and the second must be a replace
command:

a if a<b
b if a >= b

generate first
replace first

That is more long-winded—and a little more error-prone, as the case of the two
strings being identical must be included. If you were to omit the case of a equal
to b, the corresponding observations would end up with missing values (empty
strings) in the new variable first. You may or may not feel more comfortable
with this solution than with

generate first = cond(a < b, a, b)

We should perhaps stress that assignment using a generate command for one
subset followed by replace commands for other subsets is inevitably much more
general than a call to cond(). generate and replace can involve calls to other
functions, and a replace statement can revisit observations modified earlier.

D. Kantor and N. J. Cox 415

Either way, and in other situations, there is an overarching question: when you
revisit your own code, or when someone else has to maintain, modify, and debug
your code, which version would be preferred?

Admittedly, cond() is not always more concise than alternatives, as is shown by
(2) and (3).

Generality. Other functions tend to do precisely one kind of thing, but cond() has
some generality. Note, in particular, how cond() can produce string results, as
well as numeric. A general tool that you can use in different problems should
appeal as well as specific tools more restricted in application.

Control. You are in charge and get to say precisely what the results are. This is usually
attractive, and particularly so when a standard function is not what you want, or
even not quite what you want. (4) and (5) are simple examples.

That is the sales pitch. Let us push it harder by giving several more examples.

4 Do-it-yourself categorization

A common application of cond() is categorization of a variable into a fixed number of
categories, based on your own class definitions.

Suppose that with the auto data, you decide to categorize weight into three classes:
low, medium, and high. A glance at the data suggests divisions at 2,500 pounds and
4,000 pounds. Three or indeed more classes is no problem with cond (), as the trick is
to nest function calls. The expression to feed to a generate command could be

cond(weight < 2500, 1,
cond(weight < 4000, 2,
cond(weight < ., 3,

B3))

This is far from the only way to nest calls to cond (), but it is simple once understood
and widely applicable. We have laid the code out in one way that shows the structure
more clearly than a more compressed display. There are others, but some tidy layout
is strongly recommended.

As in elementary algebra, and in other situations in Stata, putting down a left
parenthesis is a promise that you will put down a matching right parenthesis later. If you
break your promise, Stata will complain. To make sure you have balanced parentheses
in such expressions, exploit the pertinent function in a decent text editor. In the Stata
do-file editor, it is Balance, Ctrl-B; in Vim, it is the % key; and so forth. If your text
editor has no facility to find and show the matching parenthesis, it is not decent. You
need something better.

In practice this kind of layout would mean, especially if the code appeared in a do-file
or program, either using semicolons as line delimiters or commenting out end-of-lines:

416 A tutorial on the cond() function

#delimit ;

cond(weight < 2500, 1,
cond(weight < 4000, 2,
cond(weight < ., 3,

#delimit cr
or

cond(weight < 2500, 1, ///
cond(weight < 4000, 2, ///
cond(weight < ., 3, ///
.11
)))

A

Some favor one style; some favor the other. But experience does teach, sometimes
bitterly, that identifying a neat layout that works for you and then following it is much
better technique than jamming all the code into the smallest possible space.

A detail here worth flagging is that we took care of missing values explicitly. There
are other ways to do that, but a little thought on how missing values are handled can
save much puzzlement later. But that is true more generally.

There are, not surprisingly, other ways of carrying out multiple categorization. If
your subdivision is into regular intervals, floor () or ceil() provides a more systematic
approach (Cox 2003). Other customized approaches are possible through the recode ()
and irecode() functions and the cut () function of egen.

A solution using cond() has some simple advantages. Complete control can be
maintained over what is done. A program or log file with the categorization code is
pretty well self-documenting so that, in particular, equalities and inequalities are plain
for all to see. Using any of the other functions means that you may have to look up
the documentation to see what happens if values equal cutpoints (are values mapped
upwards or downwards?), what happens in end classes, and what happens to missing
values.

5 cond() in terms of if and else conditions

The main idea of this kind of example, using a series of nested calls to cond (), can be
spelled out in another way with an unStataish pseudocode, closer to some programming
languages. The result is

IF weight < 2500 THEN 1
ELSE IF weight < 4000 THEN 2
ELSE IF weight < . THEN 3
ELSE .

The effect is thus one of a cascade: at each step, a subset of cases is peeled off and
dealt with (and note that once dealt with, those cases are not revisited within the same

D. Kantor and N. J. Cox 417

command). Anything that falls through all the tests gets caught at the end. In this
case, observations that fail all the tests including weight < . evidently are missing on
weight. The last branch insists that missing values of weight are mapped to missing
in whatever is produced by this code fragment.

5.1 A digression on the if command
We should note in passing that code such as

if weight < 2500 {

}
else if weight < 4000 {

}
else if weight < . {

is legal in Stata, but almost never will it be what you want whenever your conditions
involve variables. Stata’s if command, in short, is quite different from Stata’s if
qualifier. Code like those statements will get interpreted as referring to the very first
observation in the current sort order, that is, as if you had written

if weight[1] < 2500

and so forth. Not realizing this will produce, almost always, a puzzling bug. On the
other hand, if you really do want testing in terms of the first observation, then it is
better style to make that explicit, as even experienced Stata users can be puzzled by
such code. If you want testing in terms of any other observation, say the last, then you
really must make that explicit.

To put it another way, Stata’s if command does not support vectorized calculations
according to which observations yield true and which yield false. It supports only
branching according to single values, or more precisely expressions yielding single values,
evaluated as true or false. Other software does support vectorized calculations with their
equivalent of the if command, which naturally creates expectations when their users
first make the transition to Stata. Right or wrong, this lack of support does provide an
extra rationale for cond ().

6 Leap years

How do you determine if a year is a leap year using Stata syntax? You know that 2004
was a leap year, and 2008 will be one, but how would you handle leap years generally?
The rules in the Gregorian calendar for a year to be a leap year are

YES if year divisible by 4

(but NO if year divisible by 100
(but YES if year divisible by 400))
and NO otherwise.

418 A tutorial on the cond() function

Note the nesting of rules, as shown by our parentheses. If a leap year is a first-
order correction, the third rule is an example of a third-order correction. Scientists and
engineers often use such ideas, but they seem in shorter supply in the everyday world.

You will be familiar with the divisibility-by-4 rule. The other rules are occasionally
forgotten, although the recent millennium year 2000 provided an example. For example,
Excel has 1900 as a leap year; it is documented that this was to provide compatibility
with Lotus 1-2-3.

In Stata, suppose that year is a variable. You could cheat by exploiting the fact
that Stata’s programmers have solved this problem already, and for completeness we
will mention some such solutions, but we should look at ways of doing it from first
principles.

An indicator containing 1 for leap year and 0 otherwise is given by
(mod(year,4) == 0 & mod(year,100) != 0) | mod(year,400) ==

as mod () provides the remainder left over from division. You will expect a solution with
cond (), and it shows once more how cond () expressions can be nested:

cond (mod (year,400) == 0, 1,

cond (mod (year,100) == 0, O,

cond (mod (year,4) =0, 1,
0)))

Note that we have to do it backwards: starting with
cond(mod(year, 4) == 0), 1,

would not allow us to peel off the observations for which mod (year,100) == 0: all those
are already dealt with by mod(year, 4) == 0.

Note that if (for example) mod(year,400) is equal to 0, then its logical negation
will have value 1 and so evaluate as true. Thus we can abbreviate to

cond(!mod(year,400), 1,

cond(!mod(year,100), O,

cond(!mod(year,4) , 1,
0)))

with the price, for some readers, of making the code more cryptic. ! is now the approved
official Stata way of indicating logical negation, but using the tilde remains perfectly
legal if that is more to your taste.

Note, however, that missing values of year would fall through this set of calls with
the result that the years would be declared nonleap years. This is more likely correct
than not, but not necessarily what you would want. Trapping with an overall if year
< . is the safest recommendation.

This is another example in which laying out code carefully helps understanding.
Stata is indifferent to layout, so long as your code is legal, so this is entirely a matter
of human communication. However, one of these humans could easily be yourself at

D. Kantor and N. J. Cox 419

various different times. Although neither is explicit here, use of semicolons as delimiters
or of commenting out end-of-lines would again be a good idea.

6.1 How to do it with date functions

How to cheat? Given daily dates, a feature of a leap year is clearly that there is a
February 29, so

mdy(2,29,year) < .
or
mdy(2,29,year) != .

is true. That is, mdy (2,29, year) is missing if year is not a leap year but not otherwise;
in the latter case, it is less than missing. You could also do that as

'mi (mdy (2,29,year))

Similarly, there are 366 days in a leap year, so
doy(mdy(12,31,year)) == 366

is true whenever year is a leap year. What works with variables will also work with
individual years, such as mdy(2,29,2008) < . or doy(mdy(12,31,2008)) == 366.

7 Duplicate dyads

In our initial set of examples, where did (5) come from? It grew out of a problem
on Statalist. A user had interaction data of some kind for pairs of objects: people in
some fields talk of ‘dyads’. The rules of the game meant that an interaction between an
object with name a and one with name b is equivalent to one the other way round. In
short, the relation is symmetric. Thus an observation with values "a" and "b" on two
variables is considered as equivalent to another with values "b" and "a". duplicates
(see [D] duplicates) and other ways of dealing with duplicates would have a hard time
dealing with this.

One solution is to sort each pair of values observation-wise:

gen first = cond(a < b, a, b)
gen second = cond(a < b, b, a)

and then look at duplicates, or groups, in terms of first and second. In this way, an
awkward problem is rendered trivial by exploiting two Stata facts: support for string
results from cond () and the fact that inequalities make sense for strings.

A more neurotic solution would check for the use of upper and lower case or of
leading and trailing spaces in strings, and for equalities (a equal to b), whether or not
acceptable, but such points are secondary to the theme here.

420 A tutorial on the cond() function

8 The other side

Earlier you had the sales pitch for cond(). To be fair, we should underline what else
should have been said in broad terms.

Alternatives. There are often different ways to say things, some involving cond () and
others avoiding it. Stata is not a minimalist language dedicated to the idea that
there is only one way to say something, and it allows different solutions to the
same problem and a variety of styles. Although the multiplicity of functions can
be confusing to beginners, it is ultimately a source of strength.

Readability. This is the bigger issue. cond() can feature in very complicated expres-
sions, which has given it a reputation for difficulty. Supporters of cond() argue
that complicated problems tend to require complicated solutions and urge that
much depends on layout and learning to read examples. Detractors of cond()
tend to avoid it. It is often true that a generate statement followed by one or
more replaces is easier to read, to understand, to debug, and to maintain, and
such code avoids lots of irritating parentheses.

Without dogmatically insisting on cond() whenever possible, we remain very posi-
tive about its merits.

9 Conclusion

cond () is versatile and not as tricky as you might fear from some of the more extreme
examples of its use. Consider adding it to your Stata repertoire.

10 References

Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3(4):
446-447.

About the Authors

David Kantor worked for some years as a data analyst at the Institute for Policy Studies at
Johns Hopkins University with a team that researched the effects of housing policy. He is now
an independent worker. He has placed several of his Stata programs in the public domain,
contributed code to the official Stata command cf, and made many postings to Statalist.

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also co-authored fifteen
commands in official Stata. He was an author of several inserts in the Stata Technical Bulletin
and is an Editor of the Stata Journal.

