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Abstract. We present an extension of Sasieni, Royston, and Cox’s bivariate
smoother running to the multivariable context. The software aims to provide a
picture of the relation between a response variable and each of several continu-
ous predictors simultaneously. This may be a valuable tool in exploratory data
analysis, before constructing a more formal multiple regression model.

Keywords: gr0017, mrunning, running, scatterplot smoothing, multivariable re-
gression analysis, running line

1 Introduction

The Stata program running performs scatterplot smoothing by running lines or run-
ning means (Sasieni 1995; Sasieni and Royston 1998; Sasieni, Royston, and Cox 2005).
See Hastie and Tibshirani (1990, 15–16, 29–31) for a discussion of the theory behind
bivariate nearest-neighbor smoothers, which are the building blocks used in the present
work. In this article, we will extend running to the context of multivariable smooth-
ing. Obtaining a picture of the relation between a response variable and each of several
continuous predictors simultaneously may be a valuable tool in exploratory data analy-
sis, particularly when the aim is to arrive at a parametric final model. The scatterplot
smooth is “nonparametric” and as implemented here does not require the user to choose
tuning parameters in order to get a reasonable representation of what may be a complex
multivariate relationship.

The present implementation of multivariable scatterplot smoothing is in an ado-file
called mrunning. Estimation of the smooth for each predictor is done by backfitting.
Since each smooth is locally linear, the backfitting algorithm is guaranteed to converge
(Breiman and Friedman 1985).

c© 2005 StataCorp LP gr0017



406 A multivariable scatterplot smoother

2 Syntax

mrunning is a regression-like command with the following syntax:

mrunning yvar xvarlist
[
if

] [
in

] [
weight

] [
, adjust(varlist) ci

combine(combine options) cycles(#) draw(numlist) generate(stub)

gense(sestub) nograph knn(varlist:#
[
, varlist:# . . .

]
) log mean

omit(numlist) predict(newvar) nopts repeat(varlist:#
[
, varlist:# . . .

]
)

replace scatter(scatter options) span(varlist:#
[
, varlist:# . . .

]
)

line options
]

Only aweights are allowed.

2.1 Options

adjust(varlist) adjusts linearly for varlist. In practice, this option should be used
for binary predictors and continuous predictors for which a linear relationship is
required.

ci produces a pointwise confidence interval for the smoothed values of yvar. The width
is determined by the current value of the macro $S level. ci is not available with
repeat().

combine(combine options) specifies any of the options allowed by the graph combine
command; see [G] graph combine. Useful examples are combine(ycommon) and
combine(saving(graphname)).

cycles(#) sets the number of cycles. The default is cycles(3).

draw(numlist) specifies that smooths for a subset of the variables in xvarlist be plotted.
The elements of numlist are indexes determined by the order of the variables in
xvarlist. For example, mrunning y x1 x2 x3, draw(2 3) would plot smooths only
for variables x2 and x3. By default, all variables in xvarlist are plotted. draw() takes
precedence over omit() in the sense that variables included (by index) in numlist
are plotted, even if they are excluded by omit(). See also omit().

generate(stub) specifies that fitted values for each member of xvarlist be saved in new
variables with names beginning with stub.

gense(sestub) specifies that standard errors of smooths for each member of xvarlist be
saved to new variables whose names begin with sestub.

nograph suppresses the graph.

knn(varlist:#
[
, varlist:# . . .

]
) controls the number k of nearest neighbors used on

each side of the smoothed point. Different numbers of nearest neighbors may be
specified for each varlist. The greater the value of k, the greater is the degree of
smoothing.
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log displays the squared correlation coefficient between yvar and the overall fitted
values at each cycle for monitoring convergence. This option is provided mainly for
pedagogic interest.

mean specifies running-mean least-squares smoothing; the default is running-line.

omit(numlist) specifies that smooths for a subset of the variables in xvarlist not be
plotted. The elements of numlist are indexes determined by the order of the variables
in varlist. For example, mrunning y x1 x2 x3, omit(3) would plot smooths only
for variables x1 and x2. By default, no variables in xvarlist are omitted. draw()
takes precedence over omit(). See also draw().

predict(newvar) specifies that the predicted values be saved in new variable newvar.

nopts suppresses the points in the plots. Only the lines representing the smooths (and
where applicable, their confidence intervals) are drawn.

repeat(varlist:#
[
, varlist:# . . .

]
) sets the number of smoothing passes for each

member of each varlist. The default is 1. Standard errors of the smooth (see ci
and gense() options) are not available for variables with repeat()> 1.

replace allows variables specified by any of the generate(), gense(), and predict()
options to be replaced if they already exist.

scatter(scatter options) specifies any of the options allowed by the scatter command;
see [G] graph twoway scatter. These should be specified to control the rendering
of the data points. The default includes msymbol(oh), or msymbol(p) with over 299
observations.

span(varlist:#
[
, varlist:# . . .

]
) sets the span for each member of each varlist. The

span or proportion of the data is used to determine the symmetric nearest neighbors.
If span() is specified and n is the number of observations, knn() is defined to be
(n × span()− 1)/2. You cannot specify both span() and knn().

line options are any of the options allowed by the line command; see [G] graph
twoway line. These should be specified to control the rendering of the smoothed
lines or the overall graph.

3 Example

We will use as an example the diabetes data analyzed in some detail by Hastie and
Tibshirani (1990). Figure 1 shows a scatterplot matrix of cpep (the log C-peptide
concentration in log pmol/ml), age (the age of the patient), and base (minus the base
deficit). There are 43 observations.
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Figure 1: Scatterplot matrix for the diabetes data.

A bivariate relationship between cpep and each of the two predictors is apparent.
To get an impression of the multivariable relationship, we use mrunning, requesting
pointwise confidence intervals and the overall predictions of cpep to be stored in a new
variable called xb:

. mrunning cpep age base, ci predict(xb)

43 observations, R-sq = 0.5160
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Figure 2: Multivariable running-line smooth for the diabetes data, with pointwise 95%
confidence intervals.
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We now see that there appears to be an increasing, nonlinear relationship between
cpep and age (adjusting for base) and a decreasing, nonlinear relationship between cpep
and base (adjusting for age). The multiple squared correlation coefficient between cpep
and the overall predicted values, equal to the sum of the two smooths, is 0.516. The
relationship between cpep and the overall predicted values xb is shown in figure 3. There
is plenty of uncertainty but no obvious lack of fit.

3
4

5
6

7
cp

ep

3.5 4 4.5 5 5.5
Predicted values of cpep

Figure 3: Relation between cpep and its predictor from smooths on age and base.

Convergence of the backfitting algorithm is rapid in this example. The values of
R2 for the first 8 cycles are 0.508067, 0.515340, 0.516031, 0.516138, 0.516159, 0.516162,
0.516163, and 0.516163. There is no further change in the sixth decimal place of R2

with larger numbers of cycles.

Figure 4 shows the impact of increasing the smoothing by using the repeat(2) op-
tion. We cannot now obtain pointwise confidence intervals since these are not supported
by running with repeat(2).

(Continued on next page)
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Figure 4: Multivariable running-line smooths with the repeat(2) option.

The lines are noticeably smoother, although the “message” is much the same. The
R2 has increased modestly from 0.516 to 0.544.

4 Technical notes

Suppose that there are p ≥ 1 predictors x1, . . . , xp. mrunning estimates the smooths
f1 (x1) , . . . , fp (xp) by using a backfitting algorithm and a running-line smoother S (y|x)
for each predictor, as follows. Suppose that there are n observations

(y1, x11, . . . , x1p) , . . . , (yn, xn1, . . . , xnp):

1. Initialize: α = y = n−1
∑n

i=1 yi; estimate f1 (x1) , . . . , fp (xp) by multiple linear
regression; and center each smooth to have mean zero.

2. Cycle: j = 1, . . . , p, 1, . . . , p, . . . such that, for a typical observation,

fj (xj) = S

⎧⎨
⎩y − α −

∑
l=1,...,p;l �=j

fl (xl)

∣∣∣∣∣∣ xj

⎫⎬
⎭

3. Continue for cycles() rounds.

The running-line smoother S (y|x) is provided by running (Sasieni, Royston, and
Cox 2005). Details of the algorithm are given by Sasieni (1995). No convergence crite-
rion is applied to the backfitting procedure. In practice, three cycles are usually more
than sufficient to get results adequate for exploratory work. When the predictors are
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highly correlated, it may be useful to increase the number of cycles; in case of doubt, the
log option may be used together with nograph to monitor convergence of the explained
variation statistic, R2.

If adjustment is requested (the adjust() option), it is applied at the end of each
backfitting round by multiple linear regression of the partial residuals

yi − α −
p∑

l=1

fl (xil)

on the adjustment variables.

The smooths fj (xj) are finally adjusted to have mean α, i.e.,

n−1
n∑

i=1

fj (xij) = α

The overall predictor, as given by the predict() option, is defined as

ŷi = α +
p∑

l=1

{
fl (xil) − α

}

The points in the plots provided by mrunning for a given xj are

yi −
∑
l �=j

{
fl (xil) − α

}
that is, the partial residuals for the jth predictor plus α. These are plotted together
with fj (xij) against xij .

Note that mrunning estimates standard errors for each smooth of partial residuals on
a given xj . These SEs do not allow for correlation with other variables and are therefore
underestimated; nevertheless, they are useful for exploratory work. If more accurate
SEs are needed, we recommend the use of the bootstrap in conjunction with mrunning
to compute them.
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