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Stings in the tails: Detecting and dealing with
censored data
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Abstract. Variables often show evidence of clustering at extreme values and of
graininess, that is, of a limited number of distinct values. Scores on two subscales
of a quality-of-life measure, traditionally analyzed with OLS regression or ANOVA

models, provide examples. Ignoring or failing to detect such features of the data
will result in poor estimates of effect size.
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1 Spotting the problem

1.1 Diagnostic plots

The SF-36 is probably the most widely used measure of patient health status in the
world, having been translated into more than 40 languages. It has a number of subscales
that reflect different aspects of well-being and function. It is frequently analyzed using
ordinary least squares (OLS) models, such as t-tests, regressions, and analysis of variance.

The data used in this paper were collected as part of a study of quality of life in
people with chronic lung disease. The investigators measured severity of disease in
two ways: disease severity, which is based on clinical assessment by the doctor, and
symptom severity, which reflects each person’s rating of their difficulties in breathing.
The question is simple: does your quality of life depend on how unwell the doctor
thinks you are or on how unwell you feel, or both? For simplicity, the clinical severity
and symptom severity ratings are reduced here to binary variables, reflecting presence
or absence of severe disease and severe symptoms, respectively.

A little regression is tempting. Here is one using disease severity and symptom
severity to predict pain scores, one of the quality-of-life subscales.

. regress sfpain symptom_severity disease_severity

Source SS df MS Number of obs = 139
F( 2, 136) = 2.97

Model 5775.08058 2 2887.54029 Prob > F = 0.0546
Residual 132197.078 136 972.037336 R-squared = 0.0419

Adj R-squared = 0.0278
Total 137972.158 138 999.798248 Root MSE = 31.178

c© 2005 StataCorp LP st0090



396 Censored data

sfpain Coef. Std. Err. t P>|t| [95% Conf. Interval]

symptom_se~y 14.17748 5.967738 2.38 0.019 2.375918 25.97905
disease_se~y -4.380711 5.496686 -0.80 0.427 -15.25074 6.48932

_cons 65.45231 5.302044 12.34 0.000 54.9672 75.93743

Mean pain scores are 14 points higher in those with severe symptoms (95% confidence
interval 2.4 to 26.0) in patients who have the same clinical severity of disease. In
patients who have the same symptom severity, pain scores are a little lower (4.4 points)
in those with severe disease, as diagnosed by their doctor, but the 95% confidence
interval overlaps zero (−15.3 to 6.5). Essentially, for two people with the same disease
severity, as rated by their doctor, the person with the more severe rating of their own
symptoms will have a significantly higher pain score. But for two people with the same
severity of symptoms, the difference between severe disease and less severe disease has
no appreciable impact on pain scores. This conclusion is simple and quick but wrong.

Why do I say so? Graphing the distribution of pain scores shows an odd picture.
Figure 1 shows two quantile–normal plots for the subscales obtained with qnorm. I use
an aspect ratio of 1 in diagnostic plots. The square shape makes it easier to assess how
and where the data deviate from the line of perfect agreement, which is the reference
line on the graph.

. qnorm sfpain, aspect(1) saving(qnorm1, replace)

. qnorm sfsocial, aspect(1) saving(qnorm2, replace)

. graph combine "qnorm1.gph" "qnorm2.gph"
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Figure 1: Test ceiling problems are shown by quantile–normal plots for pain and social-
function problems
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The pain scores, on the left, show a cluster of patients who score top marks. In
fact, 46% of the patients scored 100. This is known as a test ceiling problem. The pain
scale is unable to distinguish between people with high levels of pain, and they are all
scored as 100. A more-nuanced pain scale would be able to distinguish between these
people by including more items that differentiated severe pain from very severe pain.
The scores of 0 also provoke doubt. Are those people utterly pain-free, or does the scale
just not capture variation at that end either?

In comparison, note that the social-function subscale, on the right, has clear evidence
of people piling up against both the top and the bottom of the distribution. It certainly
fails to capture variation at either extreme of the range.

In the case of the pain scores, the ceiling effect will tend to understate the pain
levels in groups who experience more pain since more of these people will be “off the
scale”. Figure 2 is a dot plot of the pain scores of the two symptom severity groups.
The medians are shown as lines of plus symbols.

. dotplot sfpain, by(symptom_severity) median center bounded nogroup aspect(1)
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Figure 2: Pain scores by symptom severity level

1.2 Censored data

The patients with severe symptoms have scores that pile up against the scale’s maximum
value, to the extent that the median coincides with the highest value. (The medians
are shown as grey lines, and it took me a moment to locate the median of the severe
group, too.)
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What can we do at this point? We could compare the pain scores of the two groups
of patients using a Wilcoxon–Mann–Whitney test, but I am always reluctant to aban-
don regression models. They have two important advantages over the nonparametric
approach. First, a regression model can assess how far quality of life is influenced by
disease severity, symptom severity, or both, which is the important question. Second,
differences between groups can be expressed in real-life units. This is not much of an
advantage here because quality of life is measured on an arbitrary 100-point scale, but
similar distributions can be observed in a number of other areas of research. In many
of these, expressing effect sizes in real-life units is a great advantage.

Censored data arise in quite a number of settings:

• Tests cannot read beyond a certain range. In biological assays, there are upper
and lower limits of detection. I have frequently discovered these in data analysis.
In some cases, the researchers were unaware of the limits. Just because researchers
do not tell you about limitations of measurement, it does not mean that they do
not exist.

• Limits can be problematic for other reasons. Microbe counts also suffer from
censoring. The number of colonies on a plate can become uncountably big, whereas
no colonies forming on a plate does not mean that the water the sample came from
is sterile. It just means that the 100 milliliters in the sample bottle did not produce
any colonies.

• Floor and ceiling problems are also evident in some psychological and educational
tests, including examinations. This happens when a test is too hard or too easy
so that many people score zero or full marks. In percent terms, these marks
should not be treated as real 0s or 100s. Rather, each such person’s true score lay
outside the score range of the test. In the present case, the measures of pain and
social adjustment seem unable to capture the full range of patient experiences.
Admittedly, as a group they are diverse and quite ill.

• Values may not be known precisely but may be known to fall into a particular
range. This often happens when researchers ask sensitive questions about age or
income, say, by asking respondents to tick which category they belong. This case
may seem different, but it is equivalent. In the case of a floor or ceiling problem,
the true score is known to be in the interval bounded on one side by the lowest or
highest score on the test and on the other by a value that may be either definable
in theory (microbe counts cannot be negative) or not (we have no way of knowing
the maximum pain a person can experience if we measure it on the scale used with
the patients).

• Finally, survival data are frequently censored. A person can be under observation
for only a part of the time course being modeled. The most common case is that
a person has been followed for a known period and has still not experienced the
event of interest. Such data are known as right-censored. But people can also
enter the study after the beginning of the process being studied. Since analysis of
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failure-time data is a subject that has a Stata manual to itself, I simply mention
it here for completeness.

What can be done to model censored data? One of the most useful commands is
intreg.

2 Setting up data for intreg

2.1 What intreg expects

Alone among Stata’s regression procedures, intreg needs two variables to represent the
values of the response variable. Together they represent the range in which the value
falls. In our case, we know that pain scores represented by 100 are actually anywhere
between 100 and plus infinity, while values of 0 could really be either 0 or negative.

The two variables will represent the lower and upper points of the interval in which
we know the measurement lies. In our case, we cannot define a maximum or minimum
value beyond which pain simply cannot go. Where this is the case, we give the variable
a missing value to indicate that the interval boundary is unknown. (In fact, it means
that the interval is unbounded.)

. gen l_sfpain = sfpain if sfpain > 0 & !missing(sfpain)

. gen u_sfpain = sfpain if sfpain < 100 & !missing(sfpain)

These two variables define the upper and lower boundaries of each pain score. For
scores that fall within the range of the test, the score is considered as a point value: I
will return to that assumption later. Then the lower boundary, the variable l sfpain,
will be missing when the pain score is 0. The variable u sfpain will be missing when
the pain score is 100.

Note that Stata considers that a numeric missing value is greater than any other
numeric value, so I have had to ensure that both the upper and lower boundaries are
missing in cases where the pain score is missing. Stata will only treat data as missing
in intreg if both upper and lower boundary variables contain missing values.

2.2 Getting results

Now we can run intreg as a normal regression command. Note that in place of the
single-response variable, intreg needs two.
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. intreg l_sfpain u_sfpain symptom_severity disease_severity

(output omitted )

Interval regression Number of obs = 139
LR chi2(2) = 6.61

Log likelihood = -434.77732 Prob > chi2 = 0.0367

Coef. Std. Err. z P>|z| [95% Conf. Interval]

symptom_se~y 27.52809 11.01611 2.50 0.012 5.936912 49.11927
disease_se~y -8.903424 10.24419 -0.87 0.385 -28.98166 11.17482

_cons 75.6211 9.658709 7.83 0.000 56.69037 94.55182

/lnsigma 3.975445 .094836 41.92 0.000 3.78957 4.16132

sigma 53.27382 5.052276 44.23736 64.15616

Observation summary: 4 left-censored observations
71 uncensored observations
64 right-censored observations
0 interval observations

Of the 139 patients, 64 had pain scores at the top of the scale, while only 4 had
scores at the bottom. The analysis comes to the same substantive conclusion as the
original regression, but the effect sizes are now quite different. The original difference in
quality-of-life scores between those with severe and those with mild or moderate disease
was 14 points. It doubles in size when we account for censoring. While the analysis has
not changed our conclusions, the original regression understated the difference between
the two groups. This can be very important in another area in which I do a lot of work:
analyzing bacteria counts in water.

3 Grainy data

Another look at the quantile–normal plot for social functioning shows not only strong
evidence of floor and ceiling effects, but also a very stepped appearance. Variables
assuming a limited number of discrete values are sometimes called ‘grainy’. A tabulation
makes the problem clear:

. tab sfsocial

SF Social Freq. Percent Cum.

0 10 7.19 7.19
12.5 3 2.16 9.35

25 7 5.04 14.39
37.5 9 6.47 20.86

50 14 10.07 30.94
62.5 12 8.63 39.57

75 14 10.07 49.64
87.5 11 7.91 57.55
100 59 42.45 100.00

Total 139 100.00
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It seems that social function was originally measured as scores from 0 to 8, which
were multiplied by 12.5 to scale them to percents. Arguably, the scores should be treated
as intervals rather than as point values.

. gen l_sfsocial=sfsocial-6.25 if sfsocial > 0 & !missing(sfsocial)
(10 missing values generated)

. gen u_sfsocial=sfsocial+6.25 if sfsocial < 100
(59 missing values generated)

. list sfsocial l_sfsocial u_sfsocial in 1/10, clean

sfsocial l_sfso~l u_sfso~l
1. 62.5 56.25 68.75
2. 0 . 6.25
3. 50 43.75 56.25
4. 62.5 56.25 68.75
5. 50 43.75 56.25
6. 37.5 31.25 43.75
7. 87.5 81.25 93.75
8. 100 93.75 .
9. 25 18.75 31.25
10. 0 . 6.25

The original values are first, followed by the upper and lower boundary values.
Values of 0 are now treated as having an upper boundary of 6.25 (halfway to the next
possible score) and an unknown lower value, while values of 100 are treated as bounded
by 93.75 below and an unknown value above. All other values have upper and lower
bounds that differ by 6.25 from the original score.

What effect does this have on descriptive statistics?

. summarize sfsocial

Variable Obs Mean Std. Dev. Min Max

sfsocial 139 71.31295 32.4656 0 100

. intreg l_sfsocial u_sfsocial

(output omitted )

Interval regression Number of obs = 139
LR chi2(0) = 0.00

Log likelihood = -256.75801 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 83.55192 5.04277 16.57 0.000 73.66827 93.43556

/lnsigma 3.944525 .0967705 40.76 0.000 3.754858 4.134191

sigma 51.65178 4.998368 42.72815 62.43907

Observation summary: 10 left-censored observations
0 uncensored observations

59 right-censored observations
70 interval observations

Note that I ran a regression without any predictors. Actually, the intercept is a
predictor but not a variable. Hence when there are no predictors, the intercept is a



402 Censored data

constant minimizing the sum of squared prediction errors, namely the mean. (The
constant that minimizes the sum of absolute errors is the median, which is thus the
basis for quantile regression.) So any OLS regression run without predictor variables
will have a constant term that is the mean of the data. For example,

. regress sfsocial

Source SS df MS Number of obs = 139
F( 0, 138) = 0.00

Model 0 0 . Prob > F = .
Residual 145454.137 138 1054.01548 R-squared = 0.0000

Adj R-squared = 0.0000
Total 145454.137 138 1054.01548 Root MSE = 32.466

sfsocial Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 71.31295 2.753697 25.90 0.000 65.86806 76.75784

The coefficient is exactly what we got for the mean using summarize but much lower
than the value we get from the interval regression model.

As you might expect, the use of interval regression has the same effect it had for pain
scores: the difference between the two patient groups defined by symptom severity gets
bigger compared with an OLS regression. We might be pleased that interval regression
was unmasking a difference which had been attenuated by the failure of the measuring
scale to capture the full extent of variation in the predicted variable. But is this just
wishful thinking?

4 Assumptions and checking conclusions

4.1 Assumptions

Interval regression assumes that the data come from a normal distribution and that
the behavior of the data in the tails can be inferred from its behavior in its observable
range. In many cases, this is a fairly reasonable assumption. However, there may be
other reasons why you might have a cluster of data at the minimum or maximum value,
and it is worth thinking about these.

There will be clusters of zeros in a number of cases in which interval regression is
not appropriate because the zeros represent real zeros, rather than the lower limit of
detection. Common cases include zero-inflated count data, such as the number of times
a person has visited the doctor in the past year. Some people just do not visit the
doctor; of those who do, not everyone visits in any given year. Furthermore, visits
have to occur in multiples of one, so the error structure of the data will be far from
normal. This is a case for zero-inflated models for binomial or Poisson data (see the
zip command).

Another case is where the data reflect a two-stage process. For example, water
may become contaminated; if it does, it will have a microbe count. The factors that
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determine whether it becomes contaminated may not be the factors that determine the
extent of the contamination. This may be a case for Heckman models, which are also
well beyond the scope of this article.

More importantly, the observable range of the data may not fall into a normal dis-
tribution. This is certainly the case with microbe counts, but these can be (and usually
are) transformed using logarithms before analysis, as there are good biological reasons
for measuring concentrations on a log scale. In the case of nonnormal distributions,
there is often a scientific rationale for an appropriate transformation. Indeed, when
there is not, the analyst can be on shaky ground.

4.2 Checking assumptions

I always run ordered logit regression models in parallel with interval regression models.
The coefficients will differ, naturally, but I like to see that the substantive conclusions
are the same.

. ologit sfpain symptom_severity disease_severity

(output omitted )

Ordered logistic regression Number of obs = 139
LR chi2(2) = 5.71
Prob > chi2 = 0.0575

Log likelihood = -297.68788 Pseudo R2 = 0.0095

sfpain Coef. Std. Err. z P>|z| [95% Conf. Interval]

symptom_se~y .7958587 .3479314 2.29 0.022 .1139256 1.477792
disease_se~y -.2789116 .3230477 -0.86 0.388 -.9120735 .3542504

(output omitted )

This model gives a similar result to the interval regression: the person’s experience
of their symptoms is what affects their experience of pain, not the doctor’s rating of
disease severity. Note that although the coefficients themselves have no immediate
interpretation in ordered logistic regression, the signs are interpretable and agree with
the interval regression results.

I could have done the analysis using ordered logistic regression, but I would have lost
information about the size of the effects. In this case, it would not have been critical,
but there are many cases in which the effect size and its confidence interval are very
important pieces of information. In such cases, interval regression gives the analyst a
way to estimate them.

5 Conclusion

• Never take data on trust: the observed values are not observed until you look
at them. The SF-36 scales that provided the data used in this paper have been
analyzed for years using standard OLS models. On inspection, they reveal distri-
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butional properties conveniently ignored by generations of researchers. Of course,
a number of papers have pointed out the problem, but these have been ignored
until recently.

• The usual way of analyzing data can as easily be wrong as right. The argument
that ‘everyone else uses ANOVA’ is informative but not decisive.

• When data cluster at one or both extremes, suspect censoring.

• When data take on a restricted number of values, consider using interval regres-
sion.

• There is a strong assumption of underlying normality in interval regression. When-
ever data are counts, zero-inflated models for counted data may be more appro-
priate.

• It is worth the effort of trying to build a regression model rather than running
for nonparametric tests at the first hint of trouble. Regression models allow ad-
justment for confounding factors and, with a little extra effort, allow estimation
of effect sizes and their confidence intervals.

• It is good practice to run a model with less restrictive assumptions to make sure
that the substantive conclusions of a model are supported. Ordered logistic re-
gression can help to validate interval regression models, just as robust regression
can be used to validate OLS regression.

• Finally, remember that you can use interval regression without any predictor vari-
ables to estimate the mean of the data and its confidence interval, just as you can
run ordinary regression to estimate the mean of uncensored data. (See Conroy
[2002] for more examples of this.)
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