
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors
Christopher Baum

Boston College
Rino Bellocco

Karolinska Institutet
David Clayton

Cambridge Inst. for Medical Research
Mario A. Cleves

Univ. of Arkansas for Medical Sciences
William D. Dupont

Vanderbilt University
Charles Franklin

University of Wisconsin, Madison
Joanne M. Garrett

University of North Carolina
Allan Gregory

Queen’s University
James Hardin

University of South Carolina
Ben Jann

ETH Zurich, Switzerland
Stephen Jenkins

University of Essex
Ulrich Kohler

WZB, Berlin
Jens Lauritsen

Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.



The Stata Journal (2005)
5, Number 3, pp. 385–394

A simple approach to fit the beta-binomial
model

Paulo Guimarães
Medical University of South Carolina

Abstract. In this paper, I show how to estimate the parameters of the beta-
binomial distribution and its multivariate generalization, the Dirichlet-multinomial
distribution. This approach involves no additional programming, as it relies on
an existing Stata command used for overdispersed count panel data. Including
covariates to allow for regression models based in these distributions is straight-
forward.

Keywords: st0089, overdispersion, beta binomial, Dirichlet multinomial, fixed-
effects negative binomial

1 Introduction

When fitting parametric models to count data, researchers customarily worry about the
undesirable effect of overdispersion. If present and unaccounted for, overdispersion will
lead to biased estimates of the variance–covariance matrix that will invalidate the sta-
tistical inference performed on the model. One approach to dealing with this problem is
to specify parametric models that accommodate overdispersion and that collapse to the
simpler models when overdispersion is not present. A well-known example is negative
binomial regression. Researchers routinely use this model because it allows for overdis-
persed count data, yet it collapses to Poisson regression if the data are equidispersed.
Less well known are parametric alternatives to deal with overdispersed multinomial-
distributed count data. The Dirichlet-multinomial distribution is a natural candidate
for this. Applications of this distribution are mostly restricted to binomial distributed
data, in which case the Dirichlet-multinomial distribution becomes the beta binomial.
Stata does not include routines for estimation of these latter models.

In this paper, I show how you can employ an existing Stata command used for
panel (clustered) count data, xtnbreg, to estimate the parameters of the beta-binomial
distribution as well as those of the more general Dirichlet-multinomial distribution. This
is possible because of a feature that has hitherto remained unnoticed—the conditional-
likelihood function used to estimate the parameters of the fixed-effect negative binomial
model (FENB) follows the Dirichlet-multinomial distribution. The practical implication
of this observation is that the command xtnbreg (with the fe option) can be readily
used to estimate the parameters of the Dirichlet-multinomial distribution and, more
importantly, of its univariate counterpart, the beta-binomial distribution. I illustrate the
use of xtnbreg for this purpose by replicating some of the examples that are published
in the literature. I also briefly discuss how to include covariates and how to implement
a likelihood-ratio test for overdispersion.

c© 2005 StataCorp LP st0089



386 Beta-binomial model

2 The conditional likelihood of the FENB

Using the notation presented in Methods and Formulas in [XT] xtnbreg, let yit be the
tth count observation for the ith group (cluster or individual). Let λit = exp(xitβ),
where the xit are covariates that change with observation and group and β is the vector
of parameters to be estimated. As well described in the Stata manual, the FENB is
estimated by conditional maximum likelihood. This is done by constructing for each
group the joint probability of the observed counts conditional on the sum of the counts
for that group. The contribution of each group to the conditional maximum likelihood
function is (see [XT] xtnbreg, bottom of page 148)

Γ(
∑ni

t=1 λit)Γ(
∑ni

t=1 yit + 1)
Γ(

∑ni

t=1 λit +
∑ni

t=1 yit)

ni∏
t=1

Γ(λit + yit)
Γ(λit)Γ(yit + 1)

(1)

The log-likelihood function for the FENB is obtained by taking logs of (1) and adding
across groups. The mathematical expression shown in (1) defines the multivariate
Dirichlet-multinomial (also known as compound multinomial) distribution. This distri-
bution was introduced by Mosimann (1962) and results from assuming that the cell prob-
abilities (p1, p2, . . . , pk) of a multinomial distribution with parameters (n; p1, p2, . . . , pk)
are distributed according to a multivariate beta distribution (or Dirichlet distribution)
with parameters (α1, α2, . . . , αk). It follows that

E(pj) =
αj

α1 + α2 + · · · + αk
with j = 1, 2, . . . , k (2)

The Dirichlet-multinomial distribution is given by Johnson, Kotz, and Balakrishnan
(1997, 80, equation 35.152) as

fDM (n1, n2, ..., nk) =
n!Γ(α•)

Γ(n + α•)

k∏
i=1

{
Γ(ni + αi)
ni!Γ(αi)

}
(3)

where n =
∑k

i=1 ni and α• =
∑k

i=1 αi.

Comparison of (1) and (3) makes the equivalence obvious: λit = αt and yit = nt.
While applications of the Dirichlet-multinomial distribution are less common, its uni-
variate version, the beta binomial, is more commonly known (see, for example, Agresti
[2002]). This distribution is used to model binomial overdispersed data and may be
motivated as the composition of a binomial distribution with parameters (n, pi), where
pi follows a beta distribution with parameters (a, b), with a > 0, b > 0. It follows that

E(pi) = µ =
a

a + b
, V (pi) = µ(1 − µ)ρ

where ρ = (1 + a + b)−1 is the intraclass correlation coefficient.

The beta-binomial distribution, presented in a way that highlights the relation with
the Dirichlet multinomial, is

fBB(n1, n2) =
n!Γ(a + b)

Γ(n + a + b)
Γ(a + n1)Γ(b + n2)

n1!n2!Γ(a)Γ(b)
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where n = n1 + n2 represents the total number of trials and n1 represents the total
number of successes. In practical applications, you observe information for several
samples and record the number of trials in the ith sample, ni, and the corresponding
number of successes, n1i. Interest centers in the estimation of E(pi), and consequently
of the a and b parameters. The equivalence between the likelihood function of the
FENB and that of the beta-binomial model suggests that we let a = λi1 = exp(β0 +
β1) and b = λi2 = exp(β0)—a parametrization that assures the nonnegativity of a
and b. In terms of the FENB, this amounts to introducing an indicator variable that
assumes the value 1 when t = 1 and 0 when t = 0. It is also possible to introduce
covariates that change across groups using a parametrization similar to the one proposed
by Heckman and Willis (1977). This is done by linking these covariates to one of the
parameters. For example, to introduce a covariate x1i (where i is an index for group),
you would let a = λi1 = exp(β0 + β1 + β2x1i) and thus

E(pi) =
exp(β0 + β1 + β2x1i)

exp(β0) + exp(β0 + β1 + β2x1i)
=

exp(β1 + β2x1i)
1 + exp(β1 + β2x1i)

Now the impact of the covariates on E(pi) has the same interpretation as in a conven-
tional logit model (for an additional discussion of beta-binomial regression, see Simonoff
[2003]). By the same token, it would be possible to introduce covariates in the Dirichlet-
multinomial model following a logic that mimics the one used for the conditional logit
model. Note, however, that with the proposed parametrization, the introduction of
covariates that change across groups implies that the intraclass correlation coefficient is
not constant across groups.

When overdispersion is nonexistent the Dirichlet multinomial (beta binomial) col-
lapses to the multinomial (binomial) distribution. This allows for an easy way to test
for overdispersion by means of a likelihood-ratio test comparing the log likelihoods of
both distributions.

3 Estimation of the beta binomial

3.1 The simple case

As an example of using xtnbreg for fitting the beta-binomial model, I use the data
presented in the numerical example shown in Williams (1975). The data consist of the
results of an experiment comparing the proportion of pups alive in two equal-sized sets,
each comprising 16 pregnant female rats. Pups from the same litter may be equally
affected by unobserved factors in which case the survival outcomes of the different pups
will be correlated leading to overdispersed data. The first set (the control set) was fed
a control diet during pregnancy and lactation, while the second set was treated with a
chemical. The data, reproduced from Williams, show for each litter the number of pups
that survived 4 days (x) and the number of pups that survived the 21-day lactation
period (n). The data are shown as they are in Williams (1975) in the format x/n:
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Control: 13/13, 12/12, 9/9, 9/9, 8/8, 8/8, 12/13, 11/12, 9/10, 9/10, 8/9, 11/13, 4/5,
5/7, 7/10, 7/10.

Treated: 12/12, 11/11, 10/10, 9/9, 10/11, 9/10, 9/10, 8/9, 8/9, 4/5, 7/9, 4/7, 5/10,
3/6, 3/10, 0/7.

You could fit a binomial model to each set and then test for differences between
the proportion of pups alive in both sets. However, overdispersion invalidates this
statistical comparison. To obviate this, the author proposes estimation of the beta-
binomial model and provides parameter estimates for each treatment set and also for
the entire sample. Our objective is to show how these results could be replicated using
the xtnbreg command. In order to estimate the parameters of the beta-binomial model
using xtnbreg, you need to structure the data in a particular way. A (partial) listing
of these data is shown here:

. use williams
(Data from Williams (1975) paper)

. list

class trt group y class1

1. 1 1 1 13 1
2. 2 1 1 0 0
3. 1 1 2 12 1
4. 2 1 2 0 0
5. 1 1 3 9 1
6. 2 1 3 0 0

(output omitted )
59. 1 2 30 3 1
60. 2 2 30 3 0
61. 1 2 31 3 1
62. 2 2 31 7 0
63. 1 2 32 0 1
64. 2 2 32 7 0

The variable class identifies the two possible outcomes for the pups: 1 is survived,
and 2 is died. The variable trt is 1 for control and 2 for the treated set. In addition,
group is a group identifier (litter in this case), y is the count for the number of pups for
each group in each class (number of successes and number of failures), and class1 is an
indicator variable that equals 1 for class 1 and 0 otherwise. I now fit the beta-binomial
distribution to the treatment group:

(Continued on next page)
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. keep if trt==2
(32 observations deleted)

. xtnbreg y class1, i(group) fe nolog

Conditional FE negative binomial regression Number of obs = 32
Group variable (i): group Number of groups = 16

Obs per group: min = 2
avg = 2.0
max = 2

Wald chi2(1) = 8.36
Log likelihood = -31.531689 Prob > chi2 = 0.0038

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

class1 1.046004 .3618702 2.89 0.004 .3367511 1.755256
_cons -.5815185 .4784722 -1.22 0.224 -1.519307 .3562699

Williams (1975) reports his results in terms of the expected proportion, E(pi) =
µ = a/(a + b), and a coefficient θ = 1/(a + b) that is related to the intraclass correla-
tion coefficient. Estimates for these parameters can be readily obtained by doing the
following:

. local a exp(_b[_cons]+_b[class1])

. local b exp(_b[_cons])

. nlcom mu: ‘a’/(‘a’+‘b’)

mu: exp(_b[_cons]+_b[class1])/(exp(_b[_cons]+_b[class1])+exp(_b[_cons]))

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu .7400067 .0696226 10.63 0.000 .6035489 .8764646

. nlcom theta: 1/(‘a’+‘b’)

theta: 1/(exp(_b[_cons]+_b[class1])+exp(_b[_cons]))

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

theta .4650636 .2406768 1.93 0.053 -.0066542 .9367814

The results are identical to those reported in Williams (1975) with the exception
of the standard error of θ, which is slightly larger. The value of the log likelihood is
different, but this is due to the fact that Williams (1975) did not add the constant terms
to the log likelihood.

3.2 Testing for overdispersion

As mentioned earlier, the beta-binomial model is a generalization of the binomial model
that allows for overdispersion. As the intraclass correlation coefficient tends to zero,
the beta-binomial distribution collapses to the binomial distribution. Thus a test for
overdispersion can be easily constructed by means of a likelihood-ratio test comparing
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the likelihood of the binomial distribution with that of the beta binomial. To obtain
the log likelihood of the binomial model, we use the binreg command. The following
code performs the likelihood-ratio test:

. local ll_bb=e(ll) /* log-lik from beta-binomial*/

. by group: egen totaln=sum(y)

. quietly binreg y if class==1, n(totaln) ml nolog

. local ll_bin=e(ll) /* log-lik from binomial*/

. di "Likelihood Ratio --> " 2*(‘ll_bb’-‘ll_bin’)
Likelihood Ratio --> 25.559216

The value for the likelihood-ratio test is the same as in Williams (1975). The associ-
ated p-value is close to zero, a clear indication that the data for the treatment group are
overdispersed. It should be noted that the null hypothesis for this test is in the boundary
of the parameter space, and thus the limiting distribution of the likelihood-ratio statistic
is a 50:50 mixture of a point mass at zero and a χ2

1. This means that the correct p-
value is one-half that which is obtained from the χ2

1 (see Gutierrez, Carter, and Drukker
[2001] for details).

3.3 Introduction of covariates

To test for the existence of a difference between the proportion of pups alive in the two
groups, Williams (1975) compares the log likelihood of the model fit with the entire
dataset against the sum of the log likelihoods obtained from fitting the beta binomial
to each individual group. An alternative approach to test for the difference between the
two groups is to fit a beta-binomial model to the full dataset, introducing a covariate
that measures the effect of the treatment. As discussed earlier, we link the covariate to
the a parameter of the beta-binomial distribution:

. use williams, clear
(Data from Williams (1975) paper)

. gen trt_cov=trt*(class==1)

. xtnbreg y class1 trt_cov, i(group) fe nolog

Conditional FE negative binomial regression Number of obs = 64
Group variable (i): group Number of groups = 32

Obs per group: min = 2
avg = 2.0
max = 2

Wald chi2(2) = 43.70
Log likelihood = -54.046101 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

class1 3.345722 .8159031 4.10 0.000 1.746581 4.944862
trt_cov -1.161821 .4998502 -2.32 0.020 -2.141509 -.1821328

_cons -.2026163 .4152369 -0.49 0.626 -1.016466 .6112331
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The p-value associated with the treatment covariate provides statistical evidence of
a difference between the treatments. Moreover, as in the conventional logit model, the
coefficients associated with the covariates may be interpreted as odds ratios. For the
treatment variable, we obtain an odds ratio of exp(−1.1618) = 0.3129 showing that
treated pups are 3 times as likely to die as untreated ones.

4 Estimating the parameters of the Dirichlet multinomial

Finally, I deal with the estimation of the parameters of the more general Dirichlet-
multinomial distribution. The approach is a natural generalization of the results shown
in the last section. For this example, I use the dataset shown in Mosimann (1962).
The dataset is too large to replicate here. The data in Mosimann (1962) report 73
independent counts (groups) of the frequency of occurrence of four different types of
pollen grains (pine, fir, oak, and alder). All counts have the same total number of
grains equal to 100. The author fits a multinomial distribution to the data and finds
out that the observed variance of the number of counts for each type of pollen grain
has an observed variance that is larger than that implied by the multinomial model. He
considers as an alternative fitting the Dirichlet-multinomial model. A partial listing of
the data is provided below:

. use mosimann62, clear
(Data From Mosimann (1962) paper)

. list in 1/12

class group y class1 class2 class3

1. 1 1 94 1 0 0
2. 2 1 0 0 1 0
3. 3 1 5 0 0 1
4. 4 1 1 0 0 0
5. 1 2 75 1 0 0

6. 2 2 2 0 1 0
7. 3 2 14 0 0 1
8. 4 2 9 0 0 0
9. 1 3 81 1 0 0
10. 2 3 2 0 1 0

11. 3 3 13 0 0 1
12. 4 3 4 0 0 0

The variable class identifies the four possible types of grain, group is an identifier
variable, y shows the actual counts of grains by type, and the remaining variables are
indicator variables for classes. The objective is to show how you can estimate the
parameters of the Dirichlet-multinomial distribution. This can be done by typing
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. xtnbreg y class1 class2 class3, i(group) fe nolog

Conditional FE negative binomial regression Number of obs = 292
Group variable (i): group Number of groups = 73

Obs per group: min = 4
avg = 4.0
max = 4

Wald chi2(3) = 2599.98
Log likelihood = -507.82206 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

class1 3.273218 .1028831 31.81 0.000 3.071571 3.474865
class2 -.687331 .1644047 -4.18 0.000 -1.009558 -.3651037
class3 1.000205 .1176926 8.50 0.000 .7695321 1.230878
_cons .6760107 .1855332 3.64 0.000 .3123723 1.039649

Although Mosimann (1962) does not provide estimates for the parameters of the
Dirichlet-multinomial distribution, estimates of the E(pj) (see [2]) based on these data
can be found in a recent paper by Neerchal and Morel (2005). Transforming our esti-
mates to suit the parametrization presented in that paper, we can verify that the values
are practically identical with minor differences in the estimates of the standard errors
(see table 5 in Neerchal and Morel [2005]):

. local alpha1 exp(_b[_cons]+_b[class1])

. local alpha2 exp(_b[_cons]+_b[class2])

. local alpha3 exp(_b[_cons]+_b[class3])

. local alpha4 exp(_b[_cons])

. nlcom Ep1: ‘alpha1’/(‘alpha1’+‘alpha2’+‘alpha3’+‘alpha4’)

Ep1: exp(_b[_cons]+_b[class1])/(exp(_b[_cons]+_b[class1])+exp(_b[_con
> s]+_b[class2])+exp(_b[_cons]+_b[class3])+exp(_b[_cons]))

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Ep1 .8621148 .0065331 131.96 0.000 .84931 .8749195

. nlcom Ep2: ‘alpha2’/(‘alpha1’+‘alpha2’+‘alpha3’+‘alpha4’)

Ep2: exp(_b[_cons]+_b[class2])/(exp(_b[_cons]+_b[class1])+exp(_b[_con
> s]+_b[class2])+exp(_b[_cons]+_b[class3])+exp(_b[_cons]))

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Ep2 .0164256 .0022181 7.41 0.000 .0120781 .020773

. nlcom Ep3: ‘alpha3’/(‘alpha1’+‘alpha2’+‘alpha3’+‘alpha4’)

Ep3: exp(_b[_cons]+_b[class3])/(exp(_b[_cons]+_b[class1])+exp(_b[_con
> s]+_b[class2])+exp(_b[_cons]+_b[class3])+exp(_b[_cons]))

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Ep3 .088799 .0053233 16.68 0.000 .0783656 .0992324



P. Guimarães 393

. nlcom rho: sqrt(1/(1+‘alpha1’+‘alpha2’+‘alpha3’+‘alpha4’))

rho: sqrt(1/(1+exp(_b[_cons]+_b[class1])+exp(_b[_cons]+_b[class2])+ex
> p(_b[_cons]+_b[class3])+exp(_b[_cons])))

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

rho .1278323 .0111615 11.45 0.000 .1059562 .1497084

Introducing covariates into the Dirichlet-multinomial model follows a logic similar to
that used for the beta-binomial model. On the other hand, implementing the likelihood-
ratio test for overdispersion is not as straightforward because to obtain the log likelihood
under the null hypothesis, the data will have to be rearranged to allow estimation of
the multinomial (or conditional) logit model. However, if the number of groups is not
very large, there is a simpler solution that does not require rearranging the data. One
can take advantage of the multinomial-Poisson transformation (see Guimarães [2004])
to estimate a Poisson regression and then adjust its log likelihood to obtain the one for
the multinomial model.

5 Conclusion

The Stata command xtnbreg is intended for estimation of count panel data. In this
paper, I show that this command can also be used directly to estimate the parameters
of the beta-binomial distribution, as well as those of its multivariate generalization, the
Dirichlet-multinomial distribution. I also show how to implement a likelihood-ratio test
for overdispersion as well as a way by which covariates may be added to these models.
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