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Abstract. Density-distribution sunflower plots are used to display high-density
bivariate data. They are useful for data where a conventional scatterplot is difficult
to read due to overstriking of the plot symbol. The x–y plane is subdivided
into a lattice of small, regular, hexagonal bins. These bins are divided into low-,
medium-, and high-density groups. In low-density bins, the individual observations
are plotted as in a conventional scatterplot. Medium- and high-density bins contain
light and dark sunflowers, respectively. In a light sunflower, each petal represents
one observation. In a dark sunflower, each petal represents a specific number of
observations. The user can control the sizes and colors of the sunflowers. By
selecting appropriate colors and sizes for the light and dark sunflowers, plots can
be obtained that give both the overall sense of the data-density distribution, as
well as the number of data points in any given region.

Sunflower plots are also contrasted with contour plots of bivariate kernel-
density estimates. The appearance of these plots is markedly affected by the
choice of smoothing parameters and the spacing of points at which the probability
density function is evaluated. Sunflower plots can be helpful in guiding the se-
lection of these parameters and in distinguishing between chance and systematic
variation in the distribution of bivariate data.

Keywords: gr0016, scatterplot, sunflower plot, bivariate data, density plot, prob-
ability density function, graphical statistics

1 Introduction

The scatterplot is a powerful and ubiquitous graphic for displaying bivariate data. These
plots, however, become difficult to read when the density of points in a region becomes
high (see figure 1).

c© 2005 StataCorp LP gr0016
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Figure 1: Scatter plot of the baseline diastolic blood pressure versus body mass index
for 4,689 subjects from the Framingham Heart Study (1997). Overstriking of many
observations near the center of this graph makes it impossible to determine the density
of observations for the most common values of these two variables.

1.1 Bivariate kernel-density estimation contour plots

One approach to this problem is to directly estimate the bivariate probability density
function (pdf) from a sample {(xi, yi) : i = 1, . . . , n} using a kernel density estimator
(Wand and Jones [1995]). The shape of this pdf can then be graphed using a contour
plot. We estimate the pdf f(x, y) by f̂ (x, y; hx, hy), which is a weighted sum of the
observations near (x, y). The weights are a function of the distance between (xi, yi) and
(x, y); the bandwidths, hx and hy, which control the degree of smoothing in the x and
y direction; and the kernel, which is itself a known pdf. We evaluate f̂ (x, y; hx, hy)
at a rectangular array of evenly spaced points at Nx values of x and Ny values of y.
The appearance of the resulting contour plot is affected by hx, hy, Nx, Ny, and the
kernel. Figure 2 shows six contour plots of the data in figure 1 using different values of
these parameters and an independent standard normal kernel. Note that the shape of
these plots is dramatically affected by these parameters and that the degree of skewness
of the blood-pressure distribution is markedly affected by the smoothing parameter hy

and the grid density, which is determined by Nx and Ny. A problem with these plots
is that they are visually detached from the sample that generated them. This makes
it impossible to tell whether the complex estimated pdf in the lower-right panel results
from overfitting or if the simple estimate in the upper-right panel results from excessive
smoothing. Our intent is to produce a graphic that, like the contour plots in figure 2,
gives a sense of the underlying pdf, but which, like a scatterplot for low-density data
gives a sense of the size of the sample and of fluctuations in data density that are due
to both systematic and chance variation.
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Figure 2: Bivariate kernel-density estimation contour plots derived from the data dis-
played in figure 1. These plots are drawn with different values of the parameters hx, hy,
Nx, and Ny. Note that the appearance of these pdf estimates vary markedly with the
values of these parameters. It is difficult to tell from these graphs the extent to which
the blood-pressure data is skewed or to distinguish between true features of the under-
lying distribution and chance variation. These graphs were drawn using the R functions
bkde2D and contour from the KernSmooth and graphics packages, respectively (see
Wand and Ripley [2005] and R Development Core Team [2004]).
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1.2 Density-distribution sunflower plots

In a density-distribution sunflower plot, the x–y plane is subdivided into a lattice of
regular hexagonal bins of width w specified by the user. The user also specifies the values
of l, d, and k that affect the plot as follows. Individual observations are plotted when
there are fewer than l observations per bin as in a conventional scatterplot. Each bin
with l to d observations contains a light sunflower. Other bins contain a dark sunflower.
In a light sunflower, each petal represents one observation. In a dark sunflower, each
petal represents k observations. (A dark sunflower with p petals represents between
pk − k/2 and pk + k/2 observations.) The user can control the sizes and colors of the
sunflowers. By selecting appropriate colors and sizes for the light and dark sunflowers,
plots can be obtained that give both the overall sense of the data-density distribution,
as well as the number of data points in any given region.

Figure 3 shows such a plot of baseline diastolic blood pressure (yvar) versus body
mass index (xvar) for subjects in the Framingham Heart Study (1997) (see also Levy
[1999]). This is the same dataset displayed in figure 1. In figure 3, light sunflowers are
colored gray on a light gray background. Dark sunflowers are colored black on a dark
gray background. Each petal of the dark sunflowers represents k = 5 subjects. The
first step in producing this graph is to define a lattice of hexagonal bins for the graph.
The user specifies the bin width w in the units of the x-axis. The bin height is then
determined by the graphing software in such a way as to produce regular hexagonal
bins. The user can also specify the two thresholds, l and d. In figure 3, l = 3 and
d = 13, which are the default values for these parameters. The default petal weight, k,
is chosen so that the maximum number of dark sunflower petals equals 14. Note that the
maximum density of observations represented by dark sunflowers in this figure is about
60 subjects per bin. The user can control the colors of the dark and light sunflowers,
their background colors, the color used to depict individual data points, and the length
and thickness of the lines used for light and dark sunflowers. Although color is helpful
for these plots, black-and-white plots can also be effective, as shown in figure 3. In this
figure, the bin width w was selected to equal 0.9 kg/m2. The bin width functions as
a smoothing parameter in much the same way as hx and hy in bivariate kernel-density
estimation contour plots. Larger bin widths provide greater smoothing. In general,
we recommend using narrow bin widths, as this reveals more information about the
data sample and allows the reader to use her judgment in assessing the extent to which
variation in data density is due to chance fluctuation or to the underlying shape of
the pdf that generated the sample. For example, in figure 3, the overall shape of this
underlying distribution is clear, even though there is fluctuation in the data density of
adjacent bins that we would ascribe to chance. Even if one’s ultimate objective is to
estimate the pdf using a contour plot as in section 1.1, plotting sunflower plots can be
helpful in guiding the selection of hx, hy, Nx, and Ny.
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Figure 3: A density-distribution sunflower plot of the data from figure 1. In this exam-
ple, the x–y plane is divided into regular hexagonal bins of width 0.9 kg/m2. Individual
observations are depicted by black circles at their exact location as long as there are
fewer than 3 observations per bin. Observations in bins with higher densities are repre-
sented by light or dark sunflowers. Light sunflowers are gray with light gray backgrounds
and represent one observation for each petal. Dark sunflowers are black with dark gray
backgrounds and represent 5 observations per petal. This plot conveys the density dis-
tribution of the observations while also allowing the reader to determine the number of
observations in any region with considerable precision.

1.3 Overview of the literature

Sunflower plots were first introduced by Cleveland and McGill (1984), who suggested
plotting light sunflowers in rectangular bins. A disadvantage of these plots was that
information on the precise location of points is lost in low-density regions of the graph.
This is particularly true when the bin size is large. It can also be difficult to discern
individual petals in high-density regions. Carr et al. (1987) proposed plotting individual
points at their exact location as long as there were fewer than four observations per
bin. They also introduced hexagonal-shaped bins that permit sunflowers to be more
densely packed and that de-emphasize horizontal and vertical patterns that can be
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introduced by square bins. Scott (1988) showed that hexagonal bins produce a lower
integrated mean squared error for bivariate histograms than does any other bin shape
that can tile the plane. Carr et al. (1987) also experimented with using a hexagonal-
shaped symbol whose size increased monotonically as the number of observations in the
associated bin increased. Huang, McDonald, and Stuetzle (1997) introduced a similar
graphic called a Varebi plot. These approaches give an excellent feel for the density
distribution of the bivariate data. They do not, however, permit readers to estimate the
number of observations in a given region. In addition, these graphs are not trivial to
produce, and these authors have not provided software written in a common language
that makes them easy to draw. We introduced the density-distribution sunflower plot
(Dupont and Plummer, Jr. [2003]), which attempts to combine the best features of the
original sunflower plot and the density-distribution graphics of Carr et al. (1987) and
Huang, McDonald, and Stuetzle (1997). A program to produce these plots has been
available in Stata starting with version 8.1; see [R] sunflower.

2 Example: Comparing the distribution of diastolic blood
pressure and body mass index in men and women

It should be noted that by simply giving the command sunflower yvar xvar, we
can generate an informative sunflower graph. In this section, we illustrate how one
might generate a publication quality graphic using some of the powerful twoway op-
tions that also apply to the sunflower command. We explore the relationship be-
tween diastolic blood pressure and body mass index in men and women from the
Framingham Heart Study (1997). The dataset used in this example contains variables
dbp, bmi, and male, which give the patient’s baseline blood pressure, body mass index,
and gender, respectively (male is true for men). Figure 4 presents sunflower plots of
dbp against bmi for women and men. We could have produced this graph using the
by(male) option. We have not done this primarily because the by() option forces the
legend to be placed outside of the axes, which reduces the information content per
square centimeter of graph. Instead, we used two separate commands to produce the
top and bottom panels of figure 4, which were concatenated later.
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Figure 4: Sunflower plots for men and women from the Framingham Heart Study (1997).
Lowess regression curves for each gender are also shown. Although the regression curves
are very similar, these plots reveal that the distribution of diastolic blood pressure is
more skewed in women than in men.
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The top panel of figure 4 was generated as follows:

. set scheme sj

. sunflower dbp bmi if ~male, binwidth(.9) lflcolor(gs4) dbcolor(gs5)
> msymbol(oh) petalweight(3) ylabel(50 (20) 150, angle(0)) ytick(35 (5) 145)
> plot(lowess dbp bmi if male, bwidth(.2)
> clcolor(white) clwidth(thick) clpattern(solid)
> || lowess dbp bmi if male, bwidth(.2) clwidth(thin) clpattern(solid)
> || lowess dbp bmi if ~male, bwidth(.2) clc(white) clw(thick) clp(solid)
> || lowess dbp bmi if ~male, bwidth(.2) clwidth(thin) clpattern(dash))
> xlabel(15 50) xtick(15 53) xscale(off) ytitle(Diastolic Blood Pressure)
> title("Women", position(11) ring(0) )
> legend(position(5) ring(0) cols(1) subtitle("Lowess Regression")
> order(7 "Women" 5 "Men")) xsize(5.25) ysize(3.25)
Bin width = .9
Bin height = 4.93942
Bin aspect ratio = 4.75296
Max obs in a bin = 47
Light = 3
Dark = 13
X-center = 24.5
Y-center = 80
Petal weight = 3

flower petal No. of No. of estimated actual
type weight petals flowers obs. obs.

none 218 218
light 1 3 36 108 108
light 1 4 27 108 108
light 1 5 17 85 85
light 1 6 14 84 84
light 1 7 10 70 70
light 1 8 10 80 80
light 1 9 7 63 63
light 1 10 5 50 50
light 1 11 11 121 121
light 1 12 6 72 72
dark 3 4 3 36 39
dark 3 5 14 210 209
dark 3 6 11 198 195
dark 3 7 10 210 209
dark 3 8 12 288 295
dark 3 9 4 108 108
dark 3 10 4 120 121
dark 3 11 4 132 130
dark 3 12 1 36 36
dark 3 13 5 195 194
dark 3 16 1 48 47

2640 2642

This sunflower command produces a graph of dbp against bmi among women (pa-
tients for whom male is false). We have chosen a bin width of 0.9 kg/m2. In general, we
recommend the smallest bin width for which individual petals are readily discernable.
This is because larger bin sizes reduce the amount of information presented about the
observed data. For monochrome graphs, we recommend a lighter gray for the light
sunflowers and a darker gray for the dark sunflower backgrounds than the default val-
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ues. This is done with the lflcolor(gs4) and dbcolor(gs5) options, respectively,
and produces graphs that enhance the contrast between light and dark sunflowers. We
explicitly set the petal weight for dark sunflowers to equal three (petalweight(3)) in
the top panel in order to force these weights to be the same for men and women. The
other options used in this command are standard twoway options.

We have superimposed on this graph lowess regression curves of blood pressure
against body mass index for women and men (Cleveland [1993]). The background for
these curves varies from almost black to white. To make the curves visible regardless
of the background, we plot each curve twice with a thin black line superimposed over
a thick white line. The first three keys in the figure legend of a sunflower plot are
the plot symbol for individual observations, the light sunflower symbol, and the dark
sunflower symbol. In the upper panel, we have suppressed these keys because they are
given in the lower panel. Subsequent keys are numbered in the same order that they
are specified in the option list. Thus keys four and six are for thick white lines that
enhance the visibility of the regression lines in the center of the graph. The black solid
line for men is the fifth key, and the dashed line for women is the seventh key. The
legend() option that displays these keys is order(7 "Women" 5 "Men"). The x-axis
is suppressed in the top panel with the xscale(off) option because we will draw this
axis in the lower panel.

Figure 4 could have been generated using the graph combine command. Unfortu-
nately, it is very difficult to do this without changing the aspect ratio of at least one of
the graph panels. For this reason, we do not recommend using this command if main-
taining regular bin shapes is desired. Instead, we prefer to merge the two panels together
with a graphics editor or to import them as separate figures into a LATEX document, as
was done here. Note that in generating the top panel, we have included xlabel and
xtick options in spite of having suppressed the x-axis using the xscale(off) option.
We did this in order to ensure that x-axes of the top and bottom panels lined up cor-
rectly. We recommend that if you use the xscale(off) option in this way you also do
a test plot with the xscale(off) option removed to confirm that the x-axis is really
aligned the way you want it. (We were unable to correctly align the top and bottom
panels of this figure using the range suboption of the xscale() option.)

The output from this command gives the bin dimensions in units of the x and y
variables and other information. In this example, it specifies that the minimum number
of observations required for a light or dark sunflower is 3 and 14, respectively. One of
the bins is centered at the median values of the x and y variables, which is at 24.5 kg/m2

and 80 mm Hg, respectively. The other bin centers are a function of this location and
the bin width and height. The petal weight for dark sunflowers is three. A table listing
the number of distinct observations and the number of light and dark sunflowers with
the specified petal numbers is also given. This table can be helpful in conducting a
detailed study of the distribution of the study dataset.

The bottom panel of figure 4 was generated by the following code. The order()
suboption of the legend() option generates the key for light and dark sunflowers, respec-
tively. This plot was restricted to men by the keep if male statement. We could also
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have done this by adding an if male qualifier to the sunflower command. However,
the range of blood pressures is smaller for men than for women. Deleting the records
of women before giving the sunflower command causes the lower panel of figure 4 to
have a smaller range for the y variable.

. keep if male
(2642 observations deleted)

. sunflower dbp bmi , binwidth(.9) lflcolor(gs4) dbcolor(gs5) msymbol(oh)
> plot(lowess dbp bmi, bwidth(.2) clcolor(white) clwi(thick) clpa(solid)
> || lowess dbp bmi, bwidth(.2) clwidth(thin) clpattern(solid))
> xlabel(15 (5) 50) xtick(16 (1) 53) ytitle(Diastolic Blood Pressure)
> ylabel(50 (20) 130, angle(0)) ytick(40 (5) 140)
> title("Men", position(11) ring(0))
> legend(position(5) ring(0) cols(1) order(2 3)) xsize(5.25) ysize(3.25)

(output omitted )

Finally, the upper and lower panels of figure 4 were concatenated together using
LATEX. This could also have been done by cutting and pasting into a graphic editor,
such as PowerPoint or PhotoShop.

3 Assigning observations to bins

To draw a density-distribution sunflower plot, we first need to tile the x–y plane with
regular hexagonal bins and determine the number of observations that fall in each bin.
We do this by determining the bin width d in millimeters—that is, in units of physical
distance on the graph, as opposed to units of the x or y variables. This value is used
to produce two rectangular tilings of the plane, which we will refer to as the odd and
even tilings (see figure 5). Each tile is d mm wide and d

√
3 mm high. The odd tiles

are positioned in such a way that their corners are at the centers of even tiles and vice
versa. Points on the tile boundaries are randomly assigned to one of the adjacent tiles.
Then each point on the x–y plane lies in exactly one odd and one even rectangular tile.
It is easily shown that the plane is also tiled by regular hexagonal bins of width d whose
centers lie at the centers of the odd and even rectangular tiles and that an observation
lies in a hexagonal bin if it is also in the rectangular tile with the same center and is
closer to that tile center than it is to any other rectangular tile center. For example,
in figure 5 the observation (x, y) lies in both the odd and even rectangular tiles on the
left. It is closer to its even tile center than its odd tile center, which implies that it lies
in the even hexagonal bin on the lower left of this figure. We assign each observation to
a unique odd and even rectangular tile, determine its distance from the centers of these
two tiles, assign it to the hexagonal bin with the closest bin center, and then count the
number of observations in each hexagonal bin.



W. D. Dupont and W. D. Plummer, Jr. 381

Figure 5: To draw a density-distribution sunflower plot, we first need to determine the
number of observations in each hexagonal bin. To do this, we tile the x–y plane with
rectangular bins of width d and height d

√
3, as shown above. Two such overlapping

tilings are generated that we call odd (gray) and even (black). We determine the odd
and even bin that contains each observation and then determine which of these two
bins has the bin center that is closest to the observation. This observation lies in the
hexagonal bin of width d that is centered on this nearest rectangular bin center. For
example, the observation (x, y) in this figure lies in both the odd and even rectangular
bins on the left. It is closer to the center of the lower of these two bins, which implies
that it is in the lower-left hexagonal bin in the figure. To make the hexagonal bins
regular, distance measured in terms of the x and y variables must be converted to
physical distance on the graph (see text).

From a programmer’s viewpoint, the greatest challenge in drawing these plots is that
we want the bin shapes to be regular. The value of d is initially specified in units of
the x variable. To assign observations to correctly shaped bins, we must convert d from
units of x to millimeters and then convert this distance into units of y. This requires
determining the aspect ratio of bin heights to widths in units of y and x, which is a
complex function of the range of the x and y variables; the graph aspect ratio; and
the labels, titles, and legends, which affect the physical lengths of the x- and y-axes.
Fortunately, Stata possesses functions that allows us to map observations expressed in
terms of x and y variables into physical locations on the graph and to derive the inverse
of this mapping. This permits us to construct these graphs correctly.
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4 Using big bins

Large sunflowers are more easily seen at a distance by large audiences. Large bins also
have a smoothing effect in that they tend to average out chance variation in the sample
distribution. The disadvantages of large bins are that the subjective sense of the pdf
is reduced and information about the sample distribution is lost. The following code
generated figure 6, which uses a bin width of 2 kg/m2:

. sunflower dbp bmi, binwidth(2) dflwidth(medthick) lflcolor(gs4) dbcolor(gs5)
> xlabel(15 (5) 50) xtick(16 (1) 53) ylabel(50 (20) 150, angle(0))
> ytick(40 (5) 145) legend(position(5) ring(0) order(2 3))

(output omitted )
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Figure 6: This graph was generated from the same data as in figure 3 but uses larger bins
and thicker dark sunflower petals. This figure is easier to see at a distance. The large
bins smooth the data but reduce the amount of information displayed. The subjective
sense of the data’s pdf is reduced.

5 Discussion

The density-distribution sunflower plot combines features of the original sunflower plot
of Cleveland and McGill (1984) with the graphics proposed by Carr et al. (1987) and
Huang, McDonald, and Stuetzle (1997). It shares with these latter graphics the abil-
ity to depict individual data points in low-density regions. If the bin size is kept
small and the background colors of light and dark sunflowers are chosen carefully,
the density-distribution sunflower plot does a good job of depicting the density dis-
tribution of the bivariate data. At this task, it is comparable to the Varebi plots of
Huang, McDonald, and Stuetzle (1997) and the density plots depicted in figures 8 and
9 of Carr et al. (1987). Our graphic also uses the hexagonal bins of Carr et al. (1987).
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Like the Varebi plots, our graphic can be redrawn interactively to account for changes
in the ratio of the lengths of the x- and y-axes. An advantage of our approach is that
it provides more information on the actual distribution of the data. The reader can
determine the exact location of data points in low-density regions and the exact num-
ber of data points in bins that contain light sunflowers, and can estimate to within
k/2 observations the number of data points in bins with dark sunflowers. In contrast,
the Varebi graphs and the area density graphs of Carr et al. (1987) give only relative
changes in the density of the data. An important advantage of our approach is that
it may be easily implemented by Stata users. The density-distribution sunflower plot
could easily be extended to handle a wider range of density distributions by introducing
more than two types of sunflowers (e.g., light, darker, and darkest sunflowers). However,
most high-density datasets that we have encountered can be effectively displayed using
only light and dark sunflowers.

Bivariate kernel-density estimation contour plots can be effective for displaying es-
timates of the pdf (Wand and Jones [1995]). These estimates are strongly affected by
the choice of smoothing parameters and the grid density at which the pdf is estimated.
Sunflower plots can provide useful guidance in choosing the values of these parameters.

The density-distribution sunflower plot is analogous to the stem-and-leaf plot of
Tukey (1977). At a distance, stem-and-leaf plots look like histograms and provide a good
intuitive depiction of the distribution of a univariate dataset. However, the values of
the individual data points can be determined from the plot by examining the individual
values of the “leaves”. Similarly, the density-distribution sunflower plot can provide an
intuitive picture of the bivariate distribution of two variables. Close inspection of the
sunflowers, however, provides far more information about the actual data set than can
be obtained from the other types of bivariate density plots discussed in this paper.
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