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Abstract. This article describes the user-written program margeff, which enables
the fast estimation of (average) marginal effects. Besides describing the program,
this article offers a new discussion of some problems that are related to computation
of marginal effects. I will argue that (1) marginal effects computed at means are not
good approximations of average marginal effects, computed as means of marginal
effects evaluated at each observations, if some of the parameter estimates are
large; (2) both average marginal effects and marginal effects computed at means
might produce wrong estimates for dummies that are part of a set of indicator
variables indicating different categories of a single underlying variable; and (3) the
use of marginal effects computed at means is preferred if some of the regressors
are mathematical transformations of other regressors.

Keywords: st0086, margeff, mfx, average marginal effects, marginal effects at the
mean, dummy variables, squared variables

1 Introduction

This article describes the user-written program margeff, which enables the fast estima-
tion of (average) marginal effects. There are several reasons for using margeff instead
of mfx or other user-written postestimation commands, such as the spost package.
First, to my best knowledge, margeff is the first command that can estimate average
marginal effects after a broad range of regression models. margeff can be viewed as a
significant extension of Jonah B. Gelbach’s margfx, which estimates average marginal
effects after probit and logit models. Nevertheless, margeff can also estimate marginal
effects at means. Second, margeff is fast and reliable because it calculates marginal
effects analytically rather than numerically. Third, users might find margeff easier to
use and its output easier to read. margeff presents the results as if marginal effects
were real estimation results. For example, after multiple-outcome regression models,
such as multinomial and ordered regression models, all possible outcomes are displayed.

Besides describing the program, this article offers a new discussion of some problems
that are related to computation of marginal effects. There are two methods of estimating
marginal effects. One method is the computation of the average of discrete or partial
changes over all observations, yielding average marginal effects (hereafter abbreviated
as AME). The other method is the computation of marginal effects at fixed values of
the independent variables. The most-often used values are sample means. This method
yields marginal effects at the mean (hereafter abbreviated as MEM). In the literature,
there is not much discussion of which of these two methods should be used, and the
discussion does not seem to be conclusive. The main argument in favor of AME is based

c© 2005 StataCorp LP st0086



310 Estimation of marginal effects using margeff

on a demand for realism: the sample means used during the calculation of MEM might
refer to either nonexistent or inherently nonsensical observations, a problem typically
encountered when there are dummies among the regressors (see, for example, Long
1997, 74). Greene also notes that current practice favors the use of AME. Ironically, the
supply side does not seem to respond to this demand; most statistical software, such as
Stata (and Limdep), estimates MEM. This adjustment problem can be rationalized on
the grounds that MEM is a good (asymptotically valid) approximation of AME (Greene
1997, 876).

In my opinion, AME is more appropriate for providing a realistic interpretation of
estimation results. Nevertheless, I feel that there is room for more discussion of how to
estimate marginal effects. In this article, I will argue that MEM is not a good approxima-
tion of AME if some of the parameter estimates are large. Then I will turn to the issue of
how to calculate marginal effects for dummy variables. The point I wish to make is that
the main issue is not whether MEMs for dummy variables are unrealistic or nonsensical;
rather, the main issue is that routine estimation of either AMEs or MEMs might lead to
incorrect estimates for dummies that are part of a set of indicator variables indicating
different categories of a single underlying variable. Finally, I will argue that the use of
MEM is preferred if some of the regressors are mathematical transformations of other
regressors.

The paper is organized as follows. Section 2 is devoted to the discussion of obtaining
correct marginal effects. The section begins with an examination of the conditions under
which AME should be used instead of MEM. I begin this section by showing that under
some conditions MEM cannot be considered as a good approximation of AME. Then I
discuss two practical issues of obtaining correct marginal effects for (i) dummy variables
that indicate different categories of a single variable and (ii) continuous variables that
are mathematical transformations of each other. I will argue that mfx does not offer
an easy solution to both of these practical problems. Section 3 describes the margeff
command. Section 4 contains examples mainly illustrating the problems examined in
section 2. Section 5 gives some concluding notes.

2 Average marginal effect or marginal effect at the mean?

2.1 Definition of AME and MEM

Consider the single-equation regression model

E(y) = F (βx)

where βx denotes the linear combination of parameters and variables and F (·) is the
cumulative distribution function that maps the values of βx to the [ 0,1 ] interval.

Following the standard interpretation of linear statistical models, marginal effects
should measure the change in the expected value of y as one independent variable
increases by unity while all other variables are kept constant. Then the AME of the ith
explanatory variable is
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AMEi =
1
n

n∑
k=1

{
F (βxk + βi) − F (βxk)

}
(1)

and the MEM is

MEMi = F (βx + βi) − F (βx) (2)

For continuous variables, (1) and (2) are rarely applied. Instead, researchers estimate
the effect of an infinitely small change. Let f(·) be the derivative of F (·) with respect to
βx. Consider a continuous variable xi. The AME of the ith continuous variable, AMEi

is given by

AMEi = βi
1
n

n∑
k=1

f(βxk) (3)

where βxk denotes the value of the linear combination of parameters and variables
for the kth observation. Let x be a vector containing the means of the explanatory
variables. The MEM for xi is defined as

MEMi = βif(βx) (4)

There are also separate formulas to estimate marginal effects for dummy variables.
The well-known formula for AME is

AMEi =
1
n

n∑
k=1

{
F (βxk| xk

i = 1) − F (βxk| xk
i = 0)

}
(5)

In a similar fashion, one can define the MEM for dummy variables as

MEMi = F (βx| x = 1) − F (βx| x = 0) (6)

This definition is meaningful since it avoids the problem of setting dummy variables to
means.

The remainder of this section provides a new discussion of the issue of obtaining
correct marginal effects. In subsection 2.2, I show the conditions under which MEM

cannot be considered as a good approximation of AME. Then I discuss two practical
issues of obtaining correct marginal effects. In subsection 2.3, I show how to obtain
correct marginal effects for dummy variables that indicate different categories of a single
variable. Finally, subsection 2.4 argues that MEM should be used instead of AME if
the model includes continuous variables that are mathematical transformations of each
other. I will also argue that mfx does not offer an easy solution to the latter two
problems.
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2.2 MEM and AME: similarities and differences

In this subsection, I show the conditions under which MEM cannot be considered as a
good approximation of AME. Although it was argued that MEM is a good approximation
of AME (Greene 1997, 876), there is some evidence that MEMs and AMEs can be different,
even in considerably large samples (Bockarjova and Hazans 2000).

Our exposition will focus on marginal effects for continuous variables. Using (3) and
(4), the difference between the AME and the MEM can be written as

AMEi − MEMi = βi
1
n

n∑
k=1

{
f(βxk) − f(βx)

}
(7)

Using a second-order Taylor series expansion around x, f(βxk) − f(βx) can be
approximated as

f(βxk) − f(βx) f ′(βx)(βxk − βx) +
1
2
f ′′(βx)(βxk − βx)2 (8)

where f ′(·) and f ′′(·) are the first and second derivatives of f(·) with respect to βx.
Substituting (8) into (7) yields

AMEi − MEMi ≈ βi
1
n

n∑
k=1

{f ′(βx)(βxk − βx) +
1
2
f ′′(βx)(βxk − βx)2

}
(9)

Note that the difference between AME and MEM does not depend on the first term
of the Taylor expansion because the sample sum of (xk

i − xi) is zero. Thus the absolute
difference between AME and MEM reduces to

AMEi − MEMi ≈ 1
2
βif

′′(βx)Var(βx) (10)

where Var(βx) denotes the sample variance of the linear prediction. The relative dif-
ference between AME and MEM is

AMEi − MEMi

MEMi
≈ 1

2
f ′′(βx)
f(βx)

Var(βx) (11)

In other words, the relative difference between AME and MEM is proportional to the
value of the second derivative of the density function evaluated at the sample means
and the sample variance of the linear prediction.

A similar result holds for dummy variables. For notational simplicity, write the
above regression model as
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E(y) = F (δD + γz)

where D is dummy variable and z is a vector of other regressors. Using two second-order
Taylor series expansions around γz + δ and γz, the difference between (5) and (6) can
be written as

AMED − MEMD ≈ 1
2
�F ′′(γz, δ)Var(γz) (12)

where

�F ′′(γz, δ) = F ′′(γz + δ) − F ′′(γz)

Equations (10)–(12) have several important implications. First, we already noted
that the difference between AME and MEM does not depend on the first term of the
Taylor expansion because the sample sum of (xk

i −xi) is zero. However, if the marginal
effect were evaluated at another vector ξ, which would contain any statistics of the
corresponding explanatory variables or a vector containing any constants, the sample
sum of (xk

i − ξi) would not be zero. Therefore, the marginal effects computed at means
are the best approximation of average marginal effects among those approximations
that evaluate marginal effects at fixed values.

Second, MEM might both underestimate and overestimate AME, depending solely on
the sign of the second derivative of the density function. Consider, for example, the
probit model. Let Φ(x) and ϕ(x) denote the cumulative distribution function and the
density function of the standard normal distribution. The second derivative of ϕ(x) is
(x2 − 1)ϕ(x). The latter expression is zero if x = −1 or x = 1. Since Φ(−1) ≈ 0.16
and Φ(1) ≈ 0.84, the second derivative of ϕ(x) is negative if the predicted probability
evaluated at the sample means lies between 0.16 and 0.84. Hence, MEM overestimates
AME if the predicted probability evaluated at the sample means lies between 0.16 and
0.84. If, however, the predicted probability evaluated at the sample means is larger
than 0.84 or smaller than 0.16, MEM underestimates AME. Note also that the difference
between MEM and AME depends on the value of the second derivative. Consider again
the probit model. If the predicted probability evaluated at the sample means is around
0.5, the second derivative of the density function is around 0.4, and thus the difference
between AME and MEM might be quite large. The difference between AME and MEM

can be neglected if the predicted probability evaluated at the sample means is close to
either 0.16 or 0.84.

Third, the difference between AME and MEM increases with the variance of the linear
prediction. The variance of the linear prediction reflects the heterogeneity of individual
marginal effects. The variance of the linear prediction is large if the parameter estimates
are large. This implies that, keeping all other factors constant, the difference between
AME and MEM is large when the parameter estimates are large, as well.
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To illustrate the argument, consider the Program Effectiveness data listed in ta-
ble 19.1 in Greene (1997). The data can be downloaded from the URL

http://pages.stern.nyu.edu/˜wgreene/Text/econometricanalysis.htm. The model to be
fitted is a probit model of grade on gpa, tuce, and psi. The parameter estimates are
not shown here because they are the same as those reported by Greene in table 19.2. Af-
ter fitting the probit model, I estimated both MEM and AME. The respective estimation
results are as follows:

. mfx compute

Marginal effects after probit
y = Pr(grade) (predict)

= .26580809

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

gpa .5333471 .23246 2.29 0.022 .077726 .988968 3.11719
tuce .0169697 .02712 0.63 0.531 -.036184 .070123 21.9375
psi* .464426 .17028 2.73 0.006 .130682 .79817 .4375

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. margeff

Average marginal effects on Prob(grade==1) after probit

grade Coef. Std. Err. z P>|z| [95% Conf. Interval]

gpa .3607863 .1129461 3.19 0.001 .1394161 .5821565
tuce .0114793 .0184085 0.62 0.533 -.0246007 .0475592
psi .3737518 .1399912 2.67 0.008 .0993741 .6481295

There is a substantial difference in MEM and AME for two variables, gpa and psi.
The relative difference between AME and MEM, as measured by the left-hand side of (11),
is about −32 percent for gpa and about −20 percent for psi. Researchers guessing the
AMEs on the basis of MEMs would considerably overestimate the AMEs.

Why do MEMs overestimate AMEs? Equation (11) implies that MEM is larger than
AME if the value of the third derivative of the cumulative probability function evaluated
at the means of independent variables is negative. Let z be the sample mean of the
linear prediction after the probit model. The second derivative of the standard normal
density function ϕ(z) is (z2 − 1)ϕ(z). Thus the right-hand side of (11) simplifies to
0.5(z2 − 1)Var(z). This expression can be evaluated as follows:

. predict xb, xb

. summarize xb

. display (r(mean)^2-1)*r(Var)/2

The result is −0.4. On the basis of (11), the relative error is expected to be −0.4 for
all variables. The observed relative errors are about −0.32 for gpa and tuce and −0.20
for psi. The observed relative errors are not identical to the expected relative errors.
However, the expected value is relatively close to the observed value if we consider
the continuous variables gpa and tuce. The large discrepancy between observed and
expected values for the dummy variable psi is probably due to the fact that (11) is only
approximately valid for dummy variables.
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2.3 Dummy variables

In this subsection, I discuss the issue of how to obtain correct marginal effects for dummy
variables. The point I wish to make is that the main issue is not whether MEMs for
dummy variables are unrealistic or nonsensical; rather, the main issue is that routine
estimation of either AMEs or MEMs might produce wrong estimates for dummy variables
that indicate different categories of a single underlying variable. Sets of dummies are
typically included if the explanatory variables include categorical variables having more
than two categories. Stata users typically create sets of dummies using the xi command
or the xi: prefix command.

It is generally viewed to be problematic to evaluate marginal effects at means of
dummy variables since means of dummies refer to nonexisting observations. Note that
the problem of nonsensical observations is not related to the estimation of marginal ef-
fects for dummy variables. In the previous section, we have seen that, even for dummy
variables, MEMs are good approximations of AMEs, provided that the sample variance of
the linear prediction and the second derivative of the cumulative distribution function
evaluated at the linear prediction are both small. The argument that MEMs assume
nonexisting data points can be rejected on the grounds that MEMs is a good approxi-
mation of the realistic AMEs, as long as these two conditions hold. Rather, the problem
of nonsensical observations arises in the context of estimating marginal effects for con-
tinuous variables. The argument is that (4) cannot be used in the presence of dummy
variables because the evaluation of f(βx) would assume nonexistent and even nonsen-
sical observations.

Assume for the moment that the demand for realism is compelling. Fortunately,
realistic marginal effects can easily be computed. The demand for realism dictates
that one should evaluate the density function so that the dummy in question is set
either to zero or one. But this implies that one computes two separate quantities. This
method is not attractive since if there are K dummies, one should calculate 2K different
marginal effects. This difficulty can be avoided if one computes a weighted average of
the “realistic” marginal effects. In our simple model, the MEM of the continuous variable
z is

MEMz = pβzf(γz + δ) + (1 − p)βzf(γz) (13)

where p denotes the sample mean of D. To summarize, the claim that MEM is inappro-
priate in the presence of dummies boils down to the estimation of (13).

However, one can still insist on the computation of MEM in the presence of dummy
variables on the basis that evaluating marginal effects at means of dummy variables
might be a good approximation of meaningful average marginal effects. To see this,
consider the simple regression model

E(y) = F (δD + γz)
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where D is a dummy variable and z is a continuous variable. First, note that (4),
the formula for computing the MEM of the continuous variables, implies that the MEM

of the continuous variable is γf(γz + δp). Since f(γz + δp) can be approximated as
f(γz) + δpf ′(γz), (4) can be rewritten as

MEMz ≈ βzf(γz) + βzδpf ′(γz) (14)

The same formula can be obtained if one approximates f(γz +δ) as f(γz)+δf ′(γz),
and substitutes this approximation into (13)! This means that (13) is equivalent to (4),
meaning that the usual formula of MEM for continuous variables can be used, even if
there are dummies among the regressors. This result holds if the error terms of the
first-order Taylor series expansions are approximately the same. Again the argument
that MEMs assume nonexisting data points can be rejected on the grounds that MEMs
are a good approximation of the realistic AMEs, as long as the neglected terms in the
Taylor expansion are approximately the same.

Dummy variables raise a more fundamental problem if the regression model includes
several dummies that indicate different categories of a single underlying variable. One
implicit assumption behind the computation of marginal effects is that (5) or (6) should
be applied to the full estimation sample. This implicit assumption might be labeled the
“assumption of unrestricted computations”. This assumption, however, leads to incor-
rect marginal effects if the computations involve a set of dummies indicating different
categories of a single underlying variable.

To illustrate the problem, consider a 3×2 table, where the probabilities of success in
the successive rows are 0.2, 0.5, and 0.8. This table can be generated using the following
command:

. tabi 80 20 50 50 20 80, replace

Let the first category of the row variable be the reference row. Obviously, the effect
of the second category of the row variable is 0.3 since the difference in probabilities of
successes between the second and the first rows is 0.3. By the same token, the effect of
the third category of the row variable is 0.6.

Surprisingly, marginal effects different from the expected ones are obtained if one
uses the mfx compute command:
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. quietly replace col = col-1

. quietly xi: logit col i.row [fw=pop]

. mfx compute

Marginal effects after logit
y = Pr(col) (predict)

= .5

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

_Irow_2* .3294081 .06965 4.73 0.000 .192896 .465921 .333333
_Irow_3* .5798346 .05297 10.95 0.000 .476022 .683647 .333333

(*) dy/dx is for discrete change of dummy variable from 0 to 1

What went wrong? Let x2, x3, . . . , xK denote the dummy variables that indicate the
second, third, . . . , Kth categories of the underlying variable x. The first category of x is
thus the reference category. Let x−k denote the vector of these dummies except xk. The
assumption of unrestricted computations is unrealistic for the following reason. Imagine
that you wish to compute the average marginal effects of x2, x3, . . . , xK dummies using
(5). Intuitively, the marginal effect of the kth dummy should reflect the difference in
the expected value of the outcome under study between the kth category of x and the
reference category. Thus the computations must be restricted to observations belonging
to the first and the kth categories of x. This restriction is met if the computations
are restricted to the observations where the equality x−k = 0 holds. Since (5) does not
incorporate this restriction, the marginal effects obtained take into account observations
that are irrelevant in obtaining the true marginal effects. As a consequence, unrestricted
marginal effects obtained using (5) might be incorrect.

Restricted calculations can be carried out with mfx, but the workaround is tedious.
The appropriate restrictions can be added using either the if condition or the at()
option. The use of the if condition seems more convenient. In our example, one should
first issue the following two commands:

. mfx compute if row==2

Marginal effects after logit
y = Pr(col) (predict)

= .5

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

_Irow_2* .3 .06403 4.69 0.000 .174501 .425499 1
_Irow_3* .4411765 .04357 10.13 0.000 .355778 .526575 0

(*) dy/dx is for discrete change of dummy variable from 0 to 1
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. mfx compute if row==3

Marginal effects after logit
y = Pr(col) (predict)

= .8

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

_Irow_2* .1411765 .0316 4.47 0.000 .079245 .203108 0
_Irow_3* .6 .05657 10.61 0.000 .489129 .710871 1

(*) dy/dx is for discrete change of dummy variable from 0 to 1

However, there is only one correct marginal effect in each of the above mfx outputs.
Thus there is an additional task of combining the correct results in a separate table. As
the number of dummies increases, this solution becomes more and more inefficient.

margeff implements a more-efficient procedure with the help of the dummies() op-
tion. One should issue only one command that produces the correct results:

. margeff, dummies(_I*)

Average marginal effects on Prob(col==1) after logit

col Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Irow_2 .3 .0689653 4.35 0.000 .1648305 .4351695
_Irow_3 .6 .0565681 10.61 0.000 .4891286 .7108714

What the dummies() option does is that it automatically assigns appropriate if
conditions to each member of a list of dummies and then uses these conditions during
the computations. For example, if margeff is told that x1, x2, and x3 indicate different
categories of a single variable, the conditions

if x2==0 & x3==0
if x1==0 & x3==0
if x1==0 & x2==0

are assigned in this order to the variables. Later, when margeff computes the marginal
effect of each dummy, these conditions are used when (5) or (6) is evaluated.

2.4 Mathematical transformations

In this subsection, I argue that MEM rather than AME offers a more convenient solution
to the problem of obtaining marginal effects if the model includes continuous variables
that are mathematically transformations of each other. The typical example is the
inclusion of age squared next to age. In such situations, researchers wish to know the
“total” marginal effect of age, that is, the sum of the direct effect of age and its indirect
effect mediated by age squared. Note that neither the marginal effect of age nor the
marginal effect of age squared is the desired total effect because marginal effects assume
the manipulation of only one variable and keeping all other variables constant. Clearly,
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the idea of total marginal effect implies the idea of manipulating all mathematically
related variables.

In principle, obtaining the total marginal effects is straightforward since direct and
indirect effects are easy to obtain, and the rule of combining them is clear. Let x be a
continuous variable and g(x) its mathematical transformation. The direct effect of x is
the effect as if x influenced only the outcome but not g(x). This direct effect is just the
marginal effect of x. The indirect effect involves the effect of g(x) on the outcome and
the effect of x on g(x), while ignoring the fact that an increase in x affects the outcome
directly. Using the chain rule, the indirect effect is the marginal effect of g(x) times the
derivative of g(x). Thus the total marginal effect of x is the sum of marginal effects of
variables, weighted by the derivatives of the variables with respect to x.

To state this result formally, let zj (j = 1, . . . , J) denote the jth mathematical
transformation of xi. The total marginal effects of xi are defined by

AME(x)TOTAL =
∑
(j)

AME
{
gj(x)

}dgj(x)
dx

(15)

and

MEM(x)TOTAL =
∑
(j)

MEM
{
gj(x)

}dgj(x)
dx

| x = x (16)

Equations (15) and (16) immediately suggest that the total marginal effect of x can
be obtained in two steps. The first step is the (separate) estimation of marginal effects
of each variable. The second step is the combination of the marginal effects using (15)
or (16).

The comparison of (15) and (16) reveals that the combination of the marginal effects
is much easier if one uses MEMs instead of AMEs. In (16), the derivative of any gj(x)
is a scalar. For example, the derivative of age squared with respect to age is 2x. If
the average age in the sample is, say, 40 years, then the total marginal effect of age is
the marginal effect of age plus 80 times the marginal effect of age squared. Estimating
MEMs makes the computation very easy. In general, if the user knows the sample
means, the computation of the total marginal effect can make use of the lincom or
nlcom commands. In this way, also the standard error for the total marginal effect can
be obtained.

Contrary to this, the computation of AMEs is a bit more complicated. In (15), the
derivative of any gj(x) is a variable. However, the total marginal effect must be a scalar.
To arrive at a scalar, one could either take the mean of each derivative or evaluate the
derivatives at means. The latter strategy shows again that computing MEMs is easier
in this situation.

Finally, note that the official mfx command does not allow for a quick combination
of marginal effects. The reason is that mfx is not an estimation command; thus Stata’s



320 Estimation of marginal effects using margeff

postestimation commands will not find the matrix of estimated marginal effects. Users
of mfx can implement this two-step procedure provided they write a small program that
begins with saving mfx results as proper estimation results and then proceeds with the
appropriate lincom command.

To enable quick access to estimated marginal effects and their standard errors,
margeff has a replace option that causes margeff to overwrite the estimation results.
The replace option turns margeff into an estimation command. This has the addi-
tional advantage that researchers can quickly generate publishable tables of marginal
effects using either the official estimates table command or the user-written com-
mands estout and outreg.

3 The margeff command

3.1 Syntax

margeff
[
compute

] [
if

] [
in

] [
, at(atlist) count nodiscrete

dummies(varlist1
[
\ varlist2 ...

]
) eform model(stata cmd) nooffset

outcome(numlist) percent replace
]

margeff replay

where atlist is

{
mean | median | zero [

varname = #
[
, varname = #

] [
. . .

] ] }
{ [

mean
] | [ median ] | [ zero ]

varname = #
[
, varname = #

] [
. . .

] }
varlist1

[
\ varlist2 ...

]
are lists of dummy variables, where all dummies of a list

indicate different categories of the same underlying categorical variable

and stata cmd is one of[
group 1:

]
probit logit logistic cloglog heckprob xtprobit[

group 2:
]

oprobit ologit gologit mlogit biprobit[
group 3:

]
poisson nbreg zip zinb

3.2 Description

margeff analytically estimates marginal effects and standard errors for marginal effects
using the delta method. The default behavior of margeff is the following:

1. margeff calculates average marginal effects, that is, changes in the quantities of in-
terest evaluated for each observations, and the reported marginal effects are sample
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averages of these changes. Note that margeff can also compute marginal effects
evaluated at sample means or at other values if the user specifies the at(atlist)
option. Calculations are restricted to the estimation sample.

2. For continuous variables, marginal effects are partial changes in the quantities
of interest. For dummy variables, marginal effects are discrete changes in the
quantities of interest as the dummy variable changes from 0 to 1. Dummies
are automatically detected. Before using margeff, please make sure that you
coded your dummy variables as 0/1 variables. Otherwise, your dummies will
be considered as being continuous variables, and you run the risk of obtaining
misleading results. Users can change this behavior by specifying the count or
nodiscrete options.

3. Quantities of interest are defined as follows:

[group 1:] the probability of positive outcome

[group 2:] the probabilities of all possible outcomes defined by the dependent
variables

[group 3:] the expected number of counts or the incidence rate

4. margeff supports only the above listed models. The model(stata cmd) option,
however, adds some flexibility. This is useful if users wish to obtain marginal
effects after the survey version of stata cmd or after their own program.

5. margeff behaves as a postestimation command (see help postest). However,
the option replace forces margeff to behave as an estimation command (see
help estcom). This enables the use of postestimation commands, such as lincom
or test after margeff.

Typed without arguments, margeff replays the results of previous margeff compu-
tations, provided the last use of margeff was combined with the replace option.

margeff replay replays the results of the previous margeff computation.

3.3 Options

at(atlist) forces margeff to estimate marginal effects at points specified in atlist instead
of estimating average marginal effects.

at(mean | median | zero [
varname = #

[
, varname = #

] [
. . .

] ]
) specifies that

the marginal effects be evaluated at means, at medians of the independent vari-
ables, or at zeros. It also allows users to specify particular values for one or more
independent variables, assuming that the rest are means, medians, or zeros.

at(
[
mean

] | [ median ] | [ zero ]
varname = #

[
, varname = #

] [
. . .

]
)

specifies that the marginal effects be evaluated at particular values for one or
more independent variables, assuming that the rest are means.
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count modifies the calculation of marginal effects for count variables, i.e., variables that
take more than two values and all of the values are integers. By default, margeff
treats count variables as continuous variables, thus marginal effects correspond to
small changes in the independent variables. If the count option is specified, the
marginal effects are changes in probabilities when the count variables increases by
unity.

nodiscrete forces margeff to treat dummy variables as if they were continuous. Recall
that if nodiscrete is not specified, the marginal effect of a dummy variable is
calculated as the discrete change in the expected value of the dependent variable as
the dummy variable changes from 0 to 1.

dummies(varlist1
[
\ varlist2

[
. . .

] ]
) modifies the calculation of marginal effects for

dummy variables. Let x be a categorical variables with K + 1(K > 1) categories.
In this case, not x but K dummies—say, D1, . . . , DK—are included in the regression
model. The estimated marginal effects for these K dummies may be misleading.
The correct result is obtained if one specifies the dummies(D*) option.

eform forces margeff to define the quantity of interest as exp(xβ), where xβ is the
linear prediction.

model(stata cmd) forces margeff to estimate marginal effects as if the preceding es-
timation command were stata cmd. stata cmd must be one of the supported com-
mands that are listed in the Syntax subsection. The model(stata cmd) is likely to
be helpful if you wish to obtain marginal effects after the survey version of a sup-
ported estimation command or you wish to fit a supported model using glm. The
estimates, however, will be meaningful only if the estimation command issued by
the user and stata cmd have the same link functions. It is the user’s responsibility
to ensure that this condition holds.

nooffset causes margeff to ignore the offset variable during the calculations.

outcome(numlist) causes margeff to display only the probability outcomes correspond-
ing to the numbers specified in numlist (see [U] 11.1.8 numlist). This option is
useful after estimation commands listed as “[group 2]” models. The correspondence
rule is the following:

1. After biprobit, numbers 1, 2, 3, and 4 refer to outcomes p00, p01, p10, and p11.

2. After oprobit, ologit, gologit, and mlogit, number # refers to the #th cat-
egory of the dependent variable. Thus number 1 always indicates the lowest
category, and if the dependent variable has, say, 5 categories, number 5 indicates
the highest category.

percent causes margeff to display the results as a percentage.

replace causes margeff to overwrite the estimation results left behind. This option is
useful if
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1. you wish to include marginal effects in publication-quality tables using either
the official estimates table command or the user-written commands outreg or
estout; or

2. your model contains a variable (such as age-squared) that is a mathematical trans-
formation of another independent variable and you wish to obtain the total effect
of that variable (age) using the lincom or the nlcom command.

3.4 Methods and Formulas

Marginal effects after single-equation models

Estimation of marginal effects after single-equation models uses (1)–(6), depending
on the type of variable and the contents of the at(atlist), count, and nodiscrete
options. If the at(atlist) option is not specified, (1), (3), and (5) are applied to count,
continuous, and dummy variables, respectively. If the at(atlist) option is specified,
(2), (4), and (6) are applied to count, continuous, and dummy variables. Note that
the count option enables the perception of count variables, and the nodiscrete option
forbids the perception of dummy variables.

Marginal effects after multiple-equation models

If multiple-equation models are encountered, the computations are a bit different. The
handling of multiple-equation models is shown here only in the context of estimating
average marginal effects. Let βh

i denote the parameter estimate of xi in equation h
(h = 1, . . . , H). The symbol βhx refers to the linear combination of the parameter
estimates and the variables in the hth equation. Similarly, βhxk denotes the value of
βhx for the kth observation in the estimation sample of size n (k = 1, . . . , n). Given
these notations, the multiple-equation models are defined as

E(y) = F (β1x, . . . , βHx)

Since partial changes are expressed by partial derivatives, the average marginal effect
of the ith continuous variable is given by

AMEi =
1
n

n∑
k=1

H∑
h=1

∂Fm(β1x, . . . , βHx)
∂β1

h

β1
h (17)

For dummy variables, the average marginal effect for the ith variable is defined as

AMEi =
1
n

n∑
k=1

{
F (β1x, . . . , βHx| xk

i = 1) − F (β1x, . . . , βHx| xk
i = 0)

}
(18)
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Finally, the formula for count variables is

AMEi =
1
n

n∑
k=1

{
F (β1x + β1

i , . . . , βHx + βH
i ) − F (β1x, . . . , βHx)

}
(19)

Standard errors for marginal effects

margeff also provides estimates for the standard errors of marginal effects. Using a
first-order Taylor-series expansion around the true values of parameters, one can show
that the covariance matrix of marginal effects, denoted by V(AME), is approximately
GV(β)GT , where G contains the derivatives of marginal effects with respect to the
parameter estimates and V(β) is the covariance matrix of parameter estimates. Af-
ter estimation, only V(β) is available. G can be constructed as follows. The partial
derivative of the ith marginal effect with respect to the jth parameter estimate is

∂AMEi

∂βh
j

=
1
n

n∑
k=1

xk
j

{�ijf(β1x, . . . , βHx) + βh
i f ′(β1x, . . . , βHx)

}
(20)

if the ith variable is continuous;

∂AMEi

∂βh
j

=
1
n

n∑
k=1

xk
j

{
f(β1x, . . . , βHx| xk

i = 1)−(1−�ij)f(β1x, . . . , βHx| xk
i = 0)

}
(21)

if the ith variable is dummy; and

∂AMEi

∂βh
j

=�ij
1
n

n∑
k=1

f(β1x + β1
i , . . . , βHx + βH

i )

+
1
n

n∑
k=1

xj

{
f(β1x + β1

i , . . . , βHx + βH
i ) − f(β1x, . . . , βHx)

}
(22)

if the ith variable is a count. In (20)–(22), �ij = 1 if i = j, and �ij = 0, otherwise.

The derivative of the density function, f ′(·) is calculated numerically. The compu-
tations use the simple formula

∂f(βx)
∂βx

=
1
nδ

n∑
k=1

f(βxk + δ) − f(βxk) (23)

where δ is automatically set to 10−6/(p95i − p5i), where p95i and p5i are the 95th and
the 5th percentiles of the variable for which the marginal effects are estimated. However,
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if the 95th and the 5th percentiles are equal, the maximum and minimum values are
used instead.

3.5 Saved results

If margeff is used without the replace option, margeff adds the following macros and
matrices to the existing estimation results:

Macros
e(margeff cmd) stata cmd
e(margeff display) display form; either asis or percent
e(margeff def) quantities of interest
e(margeff method) method of calculation; average, mean, median, or zero
e(margeff at) list of variables specified in at(atlist)
e(margeff discrete) off if the nodiscrete option was specified; otherwise, on
e(margeff count) on if the count option was specified; otherwise, off
e(margeff dvars) the list of dummy variables, independently of the treatment of dummies

during calculation
e(margeff cvars) the list of count variables, independently of the treatment of count vari-

ables during calculation

Matrices
e(margeff b) vector of estimated marginal effects
e(margeff V) covariance matrix of estimated marginal effects

If margeff is used as an estimation command—that is, the user does specify the
replace option—margeff erases all locals and matrices, and, besides the above listed
macros and matrices, returns the following macros and matrices:

Macros
e(cmd) margeff
e(depvar) name of the dependent variable

Matrices
e(b) vector of estimated marginal effects
e(V) covariance matrix of estimated marginal effects

margeff leaves the e(sample) function and all scalars unchanged.

4 Examples

4.1 Data and variables

The use of margeff will be illustrated with the help of the Scientific Productivity of
Biochemists Data (N = 915). The dataset is described in Long (1997) and can be
accessed through the URL http://www.indiana.edu/˜jslsoc/stata/socdata/couart2.dta.
Scientific productivity is measured as the number of published articles (variable art).
During the subsequent analyses, we will use a dummy variable indicating the existence
of any publication (artbin). Additionally, the square of the variable measuring the
publications of the mentor was created (ment2). Our example session starts with the
following Stata commands:
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. use http://www.indiana.edu/~jslsoc/stata/socdata/couart2.dta

. generate byte artbin = art > 0

. summarize ment

. generate ment2 = (ment-9)^2

The last two commands prepare the estimation of the total marginal effect of ment.
Note that the summarize command shows that mean productivity of mentors is about
8.767 articles. Instead of this number, the square term is centered around 9. Centering
is necessary if one wishes to obtain marginal effects after variables that are mathematical
transformations of each other.

4.2 Marginal effects after sets of dummy variables

We begin by illustrating the estimation of marginal effects after dummy variables that
indicate different categories of a common categorical variable. The dataset contains a
variable measuring the number of small children (variable kid5). One might argue that
the relationship between scientific productivity and the number of children is not linear
but piecewise. That is, productivity does not drop substantially after having the first
child, but it does drop substantially after having the second and especially the third
child. To test this idea, the following logit model is fitted.

. xi: logit artbin i.kid5 ment phd fem mar

(output omitted )

artbin Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Ikid5_1 -.3161219 .2151719 -1.47 0.142 -.7378511 .1056072
_Ikid5_2 -.5904391 .2602111 -2.27 0.023 -1.100443 -.0804348
_Ikid5_3 -.769156 .5325752 -1.44 0.149 -1.812984 .2746721

ment .0802673 .0130344 6.16 0.000 .0547203 .1058142
phd .0221113 .0795652 0.28 0.781 -.1338336 .1780562
fem -.2520657 .1592848 -1.58 0.114 -.5642582 .0601267
mar .3369237 .188536 1.79 0.074 -.0326001 .7064476

_cons .2367794 .2955546 0.80 0.423 -.342497 .8160557

The parameter estimates suggest that our hypothesis is partially correct. On the
one hand, a significant difference in productivity can be found between researchers
having no small children and researchers having two small children, but having only
one child does not affect productivity. On the other hand, evidence does not support
the idea that researchers with three children are less productive than researchers having
no small children. To improve on interpretation, average marginal effects are estimated
using margeff. Since Ikid5 1, Ikid5 2, and Ikid5 3 indicate different categories of
a single underlying variable, kid5, the dummies() option must also be specified. The
command and the output are as follows:
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. margeff, dummies(_I*)

Average marginal effects on Prob(artbin==1) after logit

artbin Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Ikid5_1 -.0629149 .0437762 -1.44 0.151 -.1487147 .0228849
_Ikid5_2 -.1224407 .0562078 -2.18 0.029 -.2326059 -.0122754
_Ikid5_3 -.164933 .1206803 -1.37 0.172 -.4014621 .071596

ment .0157561 .0024035 6.56 0.000 .0110453 .0204669
phd .0043404 .0156151 0.28 0.781 -.0262648 .0349455
fem -.0496628 .0313712 -1.58 0.113 -.1111493 .0118237
mar .067134 .0378592 1.77 0.076 -.0070687 .1413367

Thus keeping other things equal, the difference in productivity between researchers
who have no small children and researchers who have two small children is about 12
percent.

4.3 Obtaining correct marginal effects when the model includes poly-
nomial terms

The next example illustrates how to compute correct marginal effects after models that
include an independent variable, which is a mathematical transformation of another
independent variable. The typical example is the inclusion of the square of another
variable. Our aim is to access the hypothesis that the productivity of students is a non-
linearly increasing or inversely U-shaped function of the productivity of mentors. The
logic behind this reasoning is that the productivity of the mentor motivates students,
but only if the mentor does not publish too much, since increase in mentor’s produc-
tivity decreases the time spent on supervising and encouraging students. The natural
way of testing such nonlinear effects is the inclusion of the square of the variable that
measures the productivity of the mentor. To assess this hypothesis, a logit model of
artbin on ment, ment2, and other variables was fitted. The results are as follows:

. logit artbin ment ment2 phd fem kid5 mar

(output omitted )

artbin Coef. Std. Err. z P>|z| [95% Conf. Interval]

ment .0894668 .0141288 6.33 0.000 .0617748 .1171587
ment2 -.0010174 .000576 -1.77 0.077 -.0021464 .0001115

phd .0111894 .0800323 0.14 0.889 -.145671 .1680499
fem -.2524847 .159493 -1.58 0.113 -.5650852 .0601157

kid5 -.2849059 .111405 -2.56 0.011 -.5032557 -.0665562
mar .3352097 .1815673 1.85 0.065 -.0206557 .691075

_cons .2528066 .2959217 0.85 0.393 -.3271892 .8328024

The signs of the coefficients of ment and ment2 support the hypothesis that the
productivity of students depends nonlinearly on the productivity of mentors. The coef-
ficient of the squared term is not significant at the conventional 5-percent level.
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Before estimating marginal effects, it is useful to find out whether the effect is
increasing or inversely U-shaped. The effect is inversely U-shaped if the value of ment
that maximizes the linear prediction falls within the range of ment. The value of ment
that maximizes the linear prediction can be calculated as follows.

. di -_b[ment]/_b[ment2]
87.933327

This value is outside the observed range of ment (the maximum of ment is 77). Thus
the effect is not inversely U-shaped but is increasing at a decreasing rate, so the effect
of ment is always positive.

The total marginal effect of ment will be evaluated at the point where the mentor
has 9 publications. The estimation of marginal effects proceeds in first steps. First, we
compute marginal effects at fixed values:

. margeff, at(mean ment=9 ment2=0) replace

Marginal effects at means on Prob(artbin==1) after logit
Variables set to specific values: ment ment2

artbin Coef. Std. Err. z P>|z| [95% Conf. Interval]

ment .0174711 .0025626 6.82 0.000 .0124485 .0224937
ment2 -.0001987 .0001116 -1.78 0.075 -.0004174 .00002

phd .0021851 .0156281 0.14 0.889 -.0284455 .0328157
fem -.0494358 .0312446 -1.58 0.114 -.1106742 .0118025

kid5 -.0556365 .0214759 -2.59 0.010 -.0977285 -.0135444
mar .0665377 .0364026 1.83 0.068 -.00481 .1378855

The second step is the computation of the weighted sum of the marginal effects of
ment and ment2. The weights for ment and ment2 are 1 and 18, respectively. The
replace option of margeff enables easy computations, since one can use the lincom
command.

. lincom ment+2*9*ment2

( 1) ment + 18 ment2 = 0

artbin Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0138947 .0021854 6.36 0.000 .0096114 .0181781

Thus a small increase in the number of articles by the mentor increases the prob-
ability of having published articles by about 1.4 percent. Without forming the linear
combination, one would conclude that the effect size is a bit larger, 1.7 percent.

5 Concluding notes

This article describes the user-written program margeff, which enables the fast estima-
tion of (average) marginal effects. I hope I have shown that margeff is an attractive
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alternative to the official Stata command mfx. margeff is recommended to users who
(1) insist that average marginal effects are more realistic than marginal effects at the
mean; (2) often include sets of dummy variables or polynomial terms in their regression
models; (3) wish to obtain marginal effects after models having several outcomes; or
(4) wish to produce nice tables containing the marginal effects using either the official
estimates table or the user-written outreg or estout commands. Additionally, due
to the analytic computations, margeff is much faster and more reliable than mfx, which
relies on numerical derivations.

However, margeff also has limitations. Ironically, the limitations are related to the
fact that it calculates marginal effects analytically using the cumulative distribution
functions and the density functions. Unfortunately, the programming of these functions
might be challenging (at least it was for the author). The author encountered such a dif-
ficulty with clogit and nlogit. Thus there is a trade-off between computational speed
and the number of supported estimation commands. margeff aims at quick estimation
of marginal effects, but only after a limited number of regression models. Contrary to
this, mfx aims at estimating marginal effects after a broad range of regression models,
but at the price of relatively slow (numerical) calculations. margeff and mfx are thus
the opposite ends of a scale.
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