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Speaking Stata: Density probability plots

Nicholas J. Cox
Durham University, UK
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Abstract. Density probability plots show two guesses at the density function of a
continuous variable, given a data sample. The first guess is the density function of
a specified distribution (e.g., normal, exponential, gamma, etc.) with appropriate
parameter values plugged in. The second guess is the same density function evalu-
ated at quantiles corresponding to plotting positions associated with the sample’s
order statistics. If the specified distribution fits well, the two guesses will be close.
Such plots, suggested by Jones and Daly in 1995, are explained and discussed with
examples from simulated and real data. Comparisons are made with histograms,
kernel density estimation, and quantile–quantile plots.

Keywords: gr0012, density probability plots, distributions, histograms, kernel den-
sity estimation, quantile–quantile plots, statistical graphics

1 Introduction: how do methods become standard?

Many more methods are invented for analyzing data than ever become part of anybody’s
standard toolkit. What selection processes determine which methods become popular?

Optimists suppose that all really good ideas will sooner or later become noticed and
accepted as sound and useful. Indeed, a good idea may be reinvented several times over:
smart people will follow the same logical paths, albeit at different times and in varying
circumstances. If Gauss had never got around to publishing least-squares, Legendre
did anyway. For optimists, the selection of good methods is virtually Darwinian, but
without the messy details of sex and death.

Pessimists suppose that the conservatism inherent in many aspects of teaching and
research means that few data analysts look far beyond what they had learned in gradu-
ate school or what their peer group currently favors. Quite simply, many people are just
too busy to get around to much extra reading about possible new methods. Alterna-
tively, many disciplines show extraordinary willingness to experiment with esoteric new
techniques, particularly this season’s hottest (or coolest) modeling approaches. At the
same time, they show extraordinary inertia over more mundane details of data analysis,
especially descriptive or presentational methods.

Historians tell us that the details of selection have often been curious and protracted.
Broadly speaking, their stories imply that the optimists and pessimists are both largely
correct. Every really good idea in statistical science experienced a glorious take-off when
it became widely appreciated. But in retrospect, we can also identify failed precursors,
similar or even identical, that did not really get off the ground. The bootstrap, which in
a strong sense sprang from the head of Bradley Efron (1979), was anticipated by quite a
few other ideas (Hall 2003). The box plot, which is often attributed to John W. Tukey
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260 Speaking Stata

(1972, 1977), has a longer history stretching over at least a few decades (e.g., Crowe
1933).

Prosaically, even good simple ideas may need a distinct push to get them moving.
The push sometimes requires a lot of energy: every field has its enthusiasts who tirelessly
promote a method until people start to take notice. Kenneth E. Iverson (1920–2004)
was the principal architect of APL and J and a major influence on many mathematical
and statistical programming languages, including Stata. He was well advised by the
Harvard computer pioneer Howard H. Aiken (1900–1973): “Don’t worry about people
stealing your ideas. If they’re any good, you’ll have to ram them down their throats”
(Falkoff and Iverson 1981, 682).

The push is sometimes levered by a clever sales pitch, even down to the marketing
details of a good name for the method. “Bootstrap” and “box plot” are cases in point,
each hinting strongly at something simple and practical, but interestingly different from
what you may know about already. Who can summon up much enthusiasm for learning
about dispersion diagrams, the term under which climatologists and geographers used
precursors of the box plot? The very name sounds dull and dreary.

Appositely for this journal, the push is sometimes eased by the existence of accessible
software. Some discussions of software for data analysis seem based on the premise that
trapped inside the body of every data analyst there is a programmer longing to get out.
It is perhaps closer to the truth to say that most data analysts would much prefer that
someone else did the programming, and for many good reasons.

This fairly simple analysis of a general issue provides context for one of my recurrent
themes: methods that somehow or other lurk beyond the bounds of what is standard,
perhaps for no good reason except the lack of a suitable push. In the next few columns
I will look at some personal favorites, writing about them and their Stata implementa-
tions.

2 Empirical and theoretical densities

We start with density probability plots, a graphical method for examining how well an
empirically derived density function fits a theoretical density function for a specified
probability distribution. Here we are focusing on variables measured on scales that are
at least approximately continuous. The terminology of density probability plots may
suggest to you that, by accident or perversity, a nonstandard name is being used for
what will turn out to be a standard kind of graph, but these plots are not standard at
all. They appear to have been used very little in the decade since they were invented
(Jones and Daly 1995). We will look first at existing methods for the overall problem.
Then we will see better where density probability plots fit into the toolkit.



N. J. Cox 261

2.1 Histograms and kernel estimates

Suppose that we wish to compare the observed distribution of a variable Y with a
specified distribution X with density function f(x). To the density function, there
correspond a distribution function P = F (x) and a quantile function X = Q(p). The
distribution function and the quantile function are inverses of each other.

The particular density function f(x|parameters) most pertinent to comparison with
data will be computed, given values for its parameters, either estimates from data or
values chosen for some other good reason. For example, the parameters of a normal
(Gaussian) distribution would usually be the mean and the standard deviation. We
might estimate the mean and standard deviation, or we might just want to compare a
distribution with a standard normal with mean 0 and standard deviation 1. As good
courses and texts explain, such density functions are often superimposed on histograms
or compared with density estimates produced using a kernel method. Such comparison
amounts to comparing a density function fitted or estimated globally (say, a normal
with particular mean and standard deviation) with a density function fitted or estimated
locally (say, densities estimated for particular bins or by a moving kernel).

Spelling out the logic, which is simple and usually informal, there are three key
ideas:

1. If the distribution model is a good fit, global and local density estimates will be
close, but not otherwise.

2. Assessing what is acceptably close may pose a difficult judgment call, but assessing
which of two or more candidate distributions is closer to a representation of sample
data is often much easier. That is, it will often be easier to say whether a dataset
is closer to a normal or to a gamma or a lognormal than it is to say whether a
dataset is close enough to a normal to be declared as such.

3. The procedure is often useful for indicating how a model fails to fit, for example,
in one or both tails or because of outliers. In particular, this is often clearer from a
graph than as a by-product of any formalized or automated attempt to attack the
problem as one of measuring degree of fit or one of testing a specific hypothesis.

As a matter of history, over most of the last century or so, histograms have been far
more commonly used than kernel estimates. This is not really because kernel estimates
are a more recent idea. Both ideas can be traced to the 19th century, kernel estimation
to at least as far as C. S. Peirce in 1873 (Stigler 1978). The main inhibition has been
that, until very recently, histograms were much easier to produce.

These procedures will be familiar to most readers, but let us remind ourselves how
to do it in Stata. Manual references are [R] histogram, [G] twoway histogram,
[R] kdensity, and [G] twoway kdensity. We will start with problems in which we think
we know the answer, taking samples of random numbers from normal and exponential
distributions. For reproducibility, set the seed before selecting samples:
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. set seed 20

. set obs 500

. gen normal_sample = invnormal(uniform())

. label var normal_sample "normal sample"

. gen exp_sample = -ln(uniform())

. label var exp_sample "exponential sample"

Note that I used the Stata 9 function name invnormal() rather than the name
used in previous versions of Stata, invnorm(). invnorm() continues to work in Stata 9.
Readers still using earlier versions will need to use invnorm() to replicate this example.
Focusing on the sample from the normal, we get the graphs combined in figure 1.

. histogram normal_sample, color(none) start(-4) w(0.2)
> plot(function normal = normalden(x,0,1), ra(-4 4))

. kdensity normal_sample, biweight w(0.5) n(500)
> plot(function normal = normalden(x,0,1), ra(-4 4))
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Figure 1: Histogram and kernel estimates of density of a sample of 500 values from a
standard normal distribution, shown superimposed

Such an example highlights various familiar points. First, both histograms and
kernel estimation require choices, respectively of bin origin and bin width, and of kernel
type and kernel width. In particular, if we smooth too much, we throw away detail that
might be informative, while if we smooth too little, we might be distracted by detail
that is not informative. The choice is often awkward, even with much experience and
a well-behaved dataset. Second, we are reminded that even with a moderate sample
size—and in this case what should be an excellent fit—empirical distributions can show
irregularities that may or may not be diagnostic of some underlying problem.
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2.2 Quantile–quantile plots

A common answer to the first point, and to some extent even of the second point, is
to think in terms of not densities but quantiles and to produce a probability (meaning,
quantile–quantile) plot of observed quantiles versus expected quantiles. The Stata com-
mand qnorm does this for the Gaussian. See [R] diagnostic plots. With our sample,
this yields figure 2.

. qnorm normal_sample, ms(oh)
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Figure 2: Quantile–normal plot of a sample of 500 values from a standard normal
distribution

In this case, other names used are normal quantile plot and probit plot. qnorm is
not exactly what we most need here, as it always uses the mean and standard deviation
of the data to fit a normal, rather than externally specified parameters (here mean 0
and standard deviation 1), but that is in practice just a very fine distinction.

Many experienced data analysts would regard the quantile–quantile plot as optimal
for this problem. There are almost no awkward choices to be made. The main, and
relatively minor, issue is which probability levels or plotting positions are used to eval-
uate expected quantiles; that is, what p to use in invnormal(p). In addition, plotting
observed and expected quantiles on a scatter plot reduces the problem of comparison
to one of assessing how far points cluster near the line of equality. This is easier than
comparing a curve with a curve. The value of linear reference patterns was emphasized
in a previous column (Cox 2004b).

The great merits of quantile–quantile plots are not in dispute here. They are excel-
lent for assessing fit graphically, the task for which they were designed. However, they
leave the common desire for a visualization of densities unanswered. This then is the
setting for introducing density probability plots.
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3 Density probability plots

The density function can also be computed via the quantile function as f(Q(P )). Parzen
(1979) called this the density-quantile function. (See Parzen [2004] for an overview of
his work on quantiles.) For example, if P were 0.5, then f(Q(0.5)) would be the density
at the median. In practice, P is calculated as the plotting positions pi attached to values
y(i) of a sample of size n, which have rank i; that is, the y(i) are the order statistics
y(1) ≤ · · · ≤ y(n).

Focusing now on that detail, one simple rule uses pi = (i− 0.5)/n. Most other rules
follow one of a family (i − a)/(n − 2a + 1) indexed by a. Although there is literature
agonizing about the choice of a, it makes little difference in practice. I tend to use a = 0.5
so that pi = (i−0.5)/n. This can be explained simply as splitting the difference between
i/n, which can render the maximum unplottable, as it corresponds to plotting position
1, and (i− 1)/n, which can create a similar problem with the minimum, corresponding
to plotting position 0.

For our normal example, denote by φ() and Φ(), as usual, the theoretical density
function and distribution function. In Stata 9, normalden() is the name for the function
previously called normden(). The old name continues to work and should be employed
by readers still using older versions.

We can thus compute

1. global estimates of the density if normal, given a specified mean and standard
deviation, namely, φ{(X − mean)/sd}. In Stata terms, this is
normalden(x,mean,sd), and

2. local estimates of the density, namely, φ{Φ−1(pi)}. In Stata terms, this is
normalden(invnormal(p)).

As with a quantile–quantile plot, there is only one key graphical decision, the choice
of plotting positions. As with previously existing methods, the logic is that if the
distribution model is a good fit, global and local density estimates will be close, but not
otherwise. The match between the curves allows graphical assessment of goodness of fit
and identifying location and scale differences, skewness, tail weight, tied values, gaps,
outliers, and so forth.

Such density probability plots were suggested by Jones and Daly (1995). See also
Jones (2004). They are best seen as special-purpose plots, like normal quantile plots
and their kin, rather than general-purpose plots, like histograms or dot plots. In a pro-
gram, each distribution fitted (gamma, lognormal, whatever) needs specific code for its
quantile and density functions. A Stata implementation is given in the dpplot program,
published with this column. Fitting a normal is the default. Other distributions that
may be fitted include the beta, exponential, gamma, Gumbel, lognormal, and Weibull:
some of these require programs to be downloaded from SSC or else a program to be
written by the user if parameters are to be estimated from the data, as will usually be
desired. In addition, Stata users with some programming expertise should be able to
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modify existing programs to fit any favorite distribution that is not supported and also
to write extra programs compatible with dpplot to carry out the necessary calculations.

For our normal problem, the minimum necessary is to specify the parameter values
of interest:

. dpplot normal_sample, param(0 1) ms(oh)
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Figure 3: Density probability plot of a sample of 500 values from a standard normal
distribution showing fit to that standard normal

Figure 3 gives another graphical take on the problem. The fit would usually be
declared good, but it takes some experience, or some theory, to know that the slight
irregularities in the tails are not enough to worry about.

Turning to the exponential sample, the essential logic is identical. We need to plug
in a value for the mean, the single parameter, to compute

1. global estimates of the density if exponential, namely, (1/mean) exp(−X/mean).
In Stata terms, this is (1/mean) * exp(-X/mean), and

2. local estimates of the density. The quantile function is

X = −mean ln(1 − P )

and the density function, as above, is

(1/mean) exp(−X/mean)
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Telescoping the two, this is

(1/mean) exp
[

− {−mean ln(1 − P )}/mean
]

which reduces easily to (1 − P )/mean.

Our mean is tacitly 1, so this is all done for us by one command, yielding figure 4.

. dpplot exp_sample, dist(exp) param(1) ms(oh)
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Figure 4: Density probability plot of a sample of 500 values from an exponential distri-
bution with mean 1 showing fit to that distribution.

In this case, the local estimates droop somewhat below the theoretical curve. The
fact that the sample mean is rather lower than 1 at 0.942 is pertinent here. Every now
and then, our random sample will not match the ideal well, “just by chance”.

4 An example with real data

Let us look at an example with real data, on 158 glacial cirques from the English Lake
District (Evans and Cox 1995). These were examined in a previous column (Cox 2004a).
Glacial cirques are hollows excavated by glaciers that are open downstream, bounded
upstream by the crest of a steep slope (wall), and arcuate in plan around a more gently
sloping floor. More informally, they are sometimes described as “armchair-shaped”.
Glacial cirques are common in mountain areas that have or have had glaciers present.
Three among many possible measurements of their size are length, width, and wall
height. As a first stab at fitting specific distributions, we consider three two-parameter
distributions, namely,
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1. The gamma distribution is parameterized using a scale parameter β and a shape
parameter α so that the density function is

1

βαΓ(α)
xα−1 exp

(−x

β

)

Here Γ(u) is the gamma function
∫

∞

0
tu−1 exp(−t) dt.

2. The lognormal distribution is parameterized using a location parameter, the mean
of the logs µ, and a scale parameter, the standard deviation of the logs σ, so that
the density function is

1

Xσ
√

2π
exp

{

− (ln X − µ)2/2σ2
}

3. The Weibull distribution is parameterized using a scale parameter β and a shape
parameter γ so that the density function is

γ

β

x

β

γ−1
exp

{

− (x/β)γ
}

Note that these parameterizations all differ from those employed by streg. See
[ST] streg. In each case, the distribution was fitted using maximum likelihood.
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Figure 5: Density probability plots showing fits of cirque length data to gamma, log-
normal, and Weibull distributions
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Figure 6: Quantile–quantile plots showing fits of cirque length data to gamma, lognor-
mal, and Weibull distributions
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Figure 7: Density probability plots showing fits of cirque width data to gamma, lognor-
mal, and Weibull distributions
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Figure 8: Quantile–quantile plots showing fits of cirque width data to gamma, lognor-
mal, and Weibull distributions
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Figure 9: Density probability plots showing fits of cirque wall height data to gamma,
lognormal, and Weibull distributions
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Figure 10: Quantile–quantile plots showing fits of cirque wall height data to gamma,
lognormal, and Weibull distributions

Figures 5 through 10 show the results of fitting these distributions to the three size
variables, using both density probability plots and quantile–quantile plots. The Weibull
is a poor fit in every case, so we will say no more about it. In the fight between the
gamma and the lognormal, the latter seems to have the edge for length (figures 5 and
6) and the former for width (figures 7 and 8) and wall height (figures 9 and 10). Three
moderate outliers for wall height are enigmatic, however they are viewed.

This is not a complete story. Many would feel it worth exploring three-parameter
distributions bringing in nonzero thresholds. Cirques cannot be arbitrarily small (i.e.,
arbitrarily close to zero in size), as the glaciers that form them cannot be: tiny snow
patches do not become glaciers without growing first. But the main message here is one
of method, suggesting that density probability plots can nicely complement quantile–
quantile plots.

5 The modality of the distribution fitted is always shown

Many users of density probability plots are surprised by one of their features. A little
thought shows that this feature is an inevitable consequence of what is being requested,
but it is worth explanation.

Suppose that we do something rather silly: we plot the exponential sample to see
how far it is normal. To mix silliness and sense, we will use the theoretical principle
that the mean and standard deviation should both be 1:
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. dpplot exp_sample, param(1 1) ms(oh)

0

.1

.2

.3

.4

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 2 4 6 8 10
exponential sample

mu 1 sigma 1

normal

Figure 11: Density probability plot of a sample of 500 values from an exponential
distribution with mean 1 showing fit to a normal distribution with mean 1 and standard
deviation 1

The plot in figure 11 shows that the fit is poor, but that should be a foregone
conclusion. The surprise may be that the empirical or local density estimate is strongly
unimodal with definite tails on both left and right. It does not look Gaussian, but even
less does it look exponential. How does that shape arise?

The key here is that what you are seeing is the exponential sample trying its very
hardest to look as normal (Gaussian!) as possible. That is, you are seeing a normal
density, but continuously transformed. When data points are closer together, or further
apart, than they would be if the data were really normal, then the normal is also
squeezed or stretched accordingly. But those deformations affect horizontal position
only, and the density ordinates are exactly as calculated by plugging into normalden().
The modality remains that of the normal distribution being fitted.

More generally with density probability plots, results may be difficult to decipher if
observed and reference distributions differ in modality or other aspects of gross shape.
So if the density function of the distribution being fitted is monotone decreasing or
unimodal with two tails, then so too must be f(Q(P )), whatever the shape of f(Y ).

The practical implication is that when the fit between empirical and theoretical
densities is really poor, a density probability plot may well be obscure on quite why and
how the fit is poor. The last example was silly on purpose, but there is little to stop
even experienced data analysts doing silly things by accident. In particular, density
probability plots are not especially suitable for very naive users.
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6 Virtues and vices

Extending the discussion in Jones and Daly (1995), the advantages of these plots include

• Ease of interpretation. Some people find them easier to interpret than quantile–
quantile plots.

• Fewer awkward choices. No choices of binning or origin (cf. histograms, dot plots,
etc.) or of kernel or of degree of smoothing (cf. density estimation) are required.

• Flexibility with regard to sample size. They work well for a wide range of sample
sizes. Nevertheless, just as with all other methods, a sample of at least moderate
size is preferable (say, ≥ 25).

• Bounded support is clear. If X has bounded support in one or both directions,
then this should be clear.

The disadvantages include

• Modality may not match. Results may be difficult to decipher if observed and
reference distributions differ in modality.

• Tails may be cryptic. It may be difficult to discern subtle differences in one or
both tails of the observed and reference distributions. On the other hand, tails
are not always crucial, and it is arguable that quantile–quantile plots may have
the opposite weakness of overemphasizing tails.

• Comparison of curves. Comparison is of a curve with a curve: some people argue
that graphical references should, where possible, be linear (and ideally horizontal).
On the other hand, dpplot has a generate() option to save its results and a diff

option to show the difference between the two guesses at the density function.

• Not extensible. There is no simple extension to comparison of two samples with
each other.

7 Conclusions

Density probability plots use sample data to show how close a data sample is to a
specified distribution. They portray two guesses at the density function, one produced
globally, usually by estimating the parameters of the distribution, and one produced
locally by evaluating the density-quantile function at the data points. Although pro-
posed a decade ago, they appear to have been used very little, and this column has
provided further publicity, a pointer to a Stata implementation, and a discussion of
their advantages and limitations. In particular, they avoid the choices of bin or kernel
width imposed by histograms or kernel density estimation, and they usefully comple-
ment quantile–quantile plots in conveying what distribution is being fitted, as well as
how well that distribution fits.
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