

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2005)
5, Number 2, pp. 239–247

Using the file command to produce formatted

output for other applications

Emma Slaymaker
Centre for Population Studies,

London School of Hygiene and Tropical Medicine,
49-51 Bedford Square, London, WC1B 3DP UK

emma.slaymaker@lshtm.ac.uk

Abstract. The file command provides a way to produce tables for use in other
application software. It can be especially useful for combining descriptive results
(such as means and percentages) and results from significance tests. Extracting
and manipulating the results directly from Stata matrices gives more control over
arrangement, while other Stata functions may be used to control numeric formats.
This tutorial includes examples based on survey data of both plain text and HTML

output.

Keywords: dm0015, file, presentation of results, tables, HTML, spreadsheets, word
processors, browsers

1 Introduction

The file command can be used to write text files; see [P] file. These can contain
nothing but data or other ordinary text, or they can include mark-up or code for other
applications to use. For example, it is easy within Stata to produce a text file or an
HTML file describing a web page, which can be opened in other applications (for example,
a text editor or a browser). There are advantages to this approach over log files or copy
and paste: results from different calculations can be combined and arranged to suit,
and the output of many similar tables can be automated to produce a series of results
in a format (e.g., tab-delimited) easily read by other programs.

2 Example 1

Using the NHANES2 survey data, imagine trying to create a table giving the means
of several variables for two groups of respondents, those with normal and those with
high blood pressure. Given that variables of interest are age, lead, tcresult, and
tgresult and that the blood pressure categories are identified by highbp, Stata com-
mands (Stata 8) for this are

. webuse nhanes2, clear

. svyset [pw=finalwgt], psu(psu) strata(strata)
pweight is finalwgt
strata is strata
psu is psu

c© 2005 StataCorp LP dm0015

240 Using the file command to produce formatted output

. svymean age lead tcresult tgresult, by(highbp)

Survey mean estimation

pweight: finalwgt Number of obs(*) = 10351
Strata: strata Number of strata = 31
PSU: psu Number of PSUs = 62

Population size = 1.172e+08

Mean Subpop. Estimate Std. Err. [95% Conf. Interval] Deff

age
highbp==0 41.03829 .3014329 40.42351 41.65306 3.583525
highbp==1 52.5146 .44877 51.59932 53.42987 1.295673

lead
highbp==0 14.21601 .2729028 13.65942 14.7726 8.34335
highbp==1 15.49412 .3404777 14.79971 16.18853 1.811026

tcresult
highbp==0 210.4118 1.144654 208.0773 212.7463 5.352918
highbp==1 235.7946 2.226881 231.2528 240.3363 2.202582

tgresult
highbp==0 133.7581 2.365556 128.9335 138.5827 3.247626
highbp==1 183.3632 7.574167 167.9156 198.8109 1.446885

(*) Some variables contain missing values.

The output from this command is not convenient for final presentation. It would
be preferable to have the means for each blood pressure category given side by side for
easy comparison. The labeling of the results could also be improved. Using file, it is
possible to produce a text file containing the results, as set out in table 1.

Table 1: Layout for results in example 1

Characteristic Mean among respondents Mean among respondents
with normal blood pressure with high blood pressure

First characteristic Mean value 1 Mean value 2

Second characteristic

etc.

Stata stores the means calculated by the svymean command in a matrix called
e(est). A list of all the stored results is obtained with the ereturn command (see
[P] ereturn). The following command lists the matrix on screen:

E. Slaymaker 241

. matrix list e(est)

e(est)[1,8]
age: age: lead: lead: tcresult: tcresult: tgresult:

0 1 0 1 0 1 0
r1 41.038287 52.514597 14.216012 15.494117 210.41181 235.79456 133.75813

tgresult:
1

r1 183.36324

This matrix can be manipulated. The syntax becomes easier if a copy of this matrix
is created first, which also makes it straightforward to extract matrix elements.

Capture these results in a new matrix:

. matrix define myresults = e(est)

Get the value in the first row and second column of the matrix:

. display myresults[1,2]
52.514597

Using file, it is possible to create a tab-delimited text file that contains these
results, arranged in any order. The first step is to tell Stata where it should put the
results: it needs a name (strictly, a handle) by which to refer to the file. Here we use a
temporary name so that there is no conflict with any name already in use.

Make a temporary filename for Stata to use:

tempname meansfile

Open a file, referred to by this temporary name, and call this file example1.txt:

file open ‘meansfile’ using "example1.txt", write replace

svymean age lead tcresult tgresult, by(highbp)

matrix define myresults = e(est)

local myvarnames = e(varlist)

We now need to know how many means were calculated, which can be read off from
the size of the matrix. Stata stores the results from svymean in a matrix with only one
row, so we need to find the number of columns.

Make a new local macro that contains the number of columns in the matrix, and
show this on screen:

local matrixcols = colsof(myresults)
disp "Matrix has " "‘matrixcols’" " columns"

The first column of the table will contain a description of the variable; here we use
the variable label. If the variable does not have a label, this will leave a blank in the
table. It would be possible to add code that would use the variable name if the variable
is not labeled; however, as variable names are rarely suitable for final presentation, it is
better to ensure beforehand that all the variables are labeled.

242 Using the file command to produce formatted output

The next stage requires a loop. The first part of the loop gets the variable name from
another piece of information stored by Stata, e(varlist). Having selected a variable
name, we use a local macro to hold the text of the variable label, which can then be
inserted into the final table.

The second part of the loop picks out the relevant results from the matrix of means.
In this example, there are two categories for the by() variable, normal and high blood
pressure. We therefore extract two means for each line of the table. To facilitate this,
the loop starts with a value of 1 for j and increments by 2 each time. Each run of the
loop finds the values in the matrix at positions [1, j] and [1, j + 1]. These values are
then added into the text file after the description of the variable.

Create a local macro to determine the position in e(varlist) from which to extract
the variable name:

local i = 1

Go through the matrix, two columns at a time:

forvalues j = 1(2)‘matrixcols’{

Get the variable names one at a time:

local myvar: word ‘i’ of ‘myvarnames’
disp "The current variable is " "‘myvar’"

Get the variable label to use instead of the name in the results table:

local name: variable label ‘myvar’

Increment local macro ‘i’ so that on the next loop the next variable name is selected:

local i = ‘i’ + 1

Pick out pairs of values for normal BP and high BP:

local mean_in_lowbp = myresults[1,‘j’]
local mean_in_highbp = myresults[1,‘j’+1]

Write these results to the file:

file write ‘meansfile’ ("‘name’") _tab (‘mean_in_lowbp’) _tab (‘mean_in_highbp’) _n
}

The last instruction adds the extracted information into the text file (which Stata
refers to as ‘meansfile’). The content is enclosed in parentheses and separated by tab
characters.

• tab tells Stata to put a tab character in the file.

• n tells Stata to go to a new line.

E. Slaymaker 243

• The text from the label of the variable being used is put into the file using the
macroname ‘name’. Anything that Stata should evaluate before putting into the
file must be included within parentheses.

• Text can be included in the file between double quotes. In this example, the name
of the local macro that holds the variable label text is placed between double
quotes.

• The means are contained in local macros mean in lowbp and mean in highbp.

The curly bracket closes the loop so that this set of instructions is repeated for each
variable. After the loop, all that remains is to close the file.

file close ‘meansfile’

This produces a table with columns separated by tab characters and similar to
table 2.

Table 2: Content of text file generated by example 1

age in years 41.038287 52.514597

lead (mcg/dL) 14.216012 15.494117

serum cholesterol (mg/dL) 210.41181 235.79456

serum triglycerides (mg/dL) 133.75813 183.36324

3 Example 2

Additional text can be added to the file: in this example, a caption for the table and a
header row. Formats can be applied to the results. Mean estimates are rounded to two
decimal places using the round() function. We also include p-values for the difference
between the means in each group by first using the test command and then putting
the resulting p-value into a local macro.

The format extended macro function may be used to present the p-value to four
decimal places. Using format merely alters the appearance of the number; Stata allows
enough space for the unformatted number when writing to file. Stata therefore writes
blank spaces before or, depending on the choice of format, after the number, which is
undesirable for the means, as the table columns would then not align properly. However,
p-values are a special case; rounding would render 0.000 as 0, which is also unsuitable.
Thus for p-values, format is more useful. Using a left-justified format ensures that there
is a 0 before the decimal point and that any surplus spaces come after the number.

(Continued on next page)

244 Using the file command to produce formatted output

tempname meansfile
file open ‘meansfile’ using "d:\emma\stata\example2.txt", write replace
file write ‘meansfile’ "Table 3. Selected background characteristics of "/*

*/ "NHANES2 respondents with normal and with high blood pressure" _n

file write ‘meansfile’ ("Characteristic") _tab ("Normal BP") _tab ("High BP") /*
*/ _tab ("p-value") _n _n

svymean age lead tcresult tgresult, by(highbp) complete
matrix define myresults = e(est)
local myvarnames = e(varlist)
local matrixcols = colsof(myresults)
disp "‘matrixcols’"
local i=1
forvalues j = 1(2)‘matrixcols’{

local myvar: word ‘i’ of ‘myvarnames’
disp "‘myvar’"
local name: variable label ‘myvar’
local i = ‘i’ + 1

Round the results to two decimal places:

local mean_in_lowbp = round(myresults[1,‘j’],0.01)
local mean_in_highbp = round(myresults[1,‘j’+1],0.01)

Use test to get the p-value for the significance of the difference:

cap test [‘myvar’]0 = [‘myvar’]1

Create a local macro equal to the first four decimal places of the p-value and with a
leading 0:

local pvalue : display %-9.4f r(p)

file write ‘meansfile’ ("‘name’") _tab (‘mean_in_lowbp’) _tab /*
*/ (‘mean_in_highbp’) _tab ("‘pvalue’") _n

}
file close ‘meansfile’

Again, the resulting table can be opened using a spreadsheet or word processor. If
you want to edit in, for example, Microsoft Word, you can take advantage of built-in
features for managing tables to produce one similar to table 3.

Table 3: Selected background characteristics of NHANES2 respondents with normal and
with high blood pressure

Characteristic Normal BP High BP p-value

age in years 41.1 52.4 0.0000
lead (mcg/dL) 14.16 15.5 0.0007
serum cholesterol (mg/dL) 208.56 239.91 0.0000
serum triglycerides (mg/dL) 131.61 202.86 0.0000

E. Slaymaker 245

4 Example 3

It is possible to add HTML tags to a file and make a web page. Let us expand the previous
example to include additional variables and output in HTML. The estimation commands
are unchanged, but more information is now written to the file, which has the extension
.htm. Some extra commands put the essential HTML mark-up at the beginning and end
of the file. In the middle of the file, where the results table is written, there are no tabs
to separate the columns, but instead the HTML tags (<tr>, <td>, etc.) are written into
the file. A screenshot of the resulting HTML document is shown in table 4.

tempname meansfile
file open ‘meansfile’ using "d:\emma\stata\example3.htm", write replace

Start the HTML document:

file write ‘meansfile’ "<HTML><HEAD></HEAD><BODY>" _n

Write a caption for the table:

file write ‘meansfile’ "<p>Table 4.Selected background characteristics" /*
*/ "of NHANES2 respondents with normal and with high blood pressure</p>"

Add a horizontal line at the top of the table:

file write ‘meansfile’ ‘"<hr width="70%" align="left">"’

Write the header row for the table:

file write ‘meansfile’ ‘"<table width="70%"><tr><td>Characteristic</td>"’ /*
*/ ‘"<td>Normal BP</td><td>High BP</td><td>p-value</td></tr>"’ _n

Add a horizontal line under the header row:

file write ‘meansfile’ ‘"<tr><td colspan="4"><hr width="100%" align="left">"’ /*
*/ ‘"</td></tr>"’

svymean age lead tcresult tgresult hgb hct tibc iron,by(highbp) complete

This is exactly the same as before:

matrix define myresults = e(est)
local myvarnames = e(varlist)
local matrixcols = colsof(myresults)
disp "‘matrixcols’"
local i = 1
forvalues j = 1(2)‘matrixcols’{

local mean_in_lowbp = round(myresults[1,‘j’],0.01)
local mean_in_highbp = round(myresults[1,‘j’+1],0.01)
local myvar: word ‘i’ of ‘myvarnames’
disp "‘myvar’"
local name: variable label ‘myvar’
cap test [‘myvar’]0 = [‘myvar’]1
local pvalue : display %-9.4f r(p)

246 Using the file command to produce formatted output

Write these results to the HTML file:

file write ‘meansfile’ "<tr><td>" ("‘name’") "</td><td>" (‘mean_in_lowbp’)/*
*/ "</td><td>" (‘mean_in_highbp’) "</td><td>" ("‘pvalue’") "</td></tr>" _n

local i = ‘i’ + 1
}

Finish the table, and end the HTML document:

file write ‘meansfile’ "</table></BODY></HTML>"
file write ‘meansfile’ ‘"<hr width="70%" align="left">"’
file close ‘meansfile’

Table 4: Selected background characteristics of NHANES2 respondents with normal and
high blood pressure

5 Summary

Output of results using file is a versatile way to produce tables for use in other ap-
plication software. It can be especially useful for combining descriptive results (such as
means and percents) and results from significance tests. Extracting and manipulating
the results directly from Stata matrices gives more control over arrangement, and other
Stata functions may be used to control numeric formats. If file is used to create a text
file, the more superficial formatting, such as rules and spacing, can easily be applied
using a word processor or spreadsheet. If the results are output with additional code or
mark-up (e.g., HTML), it is possible to produce a finished table directly from Stata.

E. Slaymaker 247

About the Author

Emma Slaymaker is a Research Fellow in the Centre for Population Studies, London School
of Hygiene and Tropical Medicine, UK. Research interests include the analysis of population
surveys to estimate the prevalence of sexual behaviors that place individuals at risk of sexually
transmitted infections and the application of new methods to improve these estimates.

