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Abstract. Realizing the importance of location, economists are increasingly
adopting spatial analytical and spatial econometric perspectives to study questions
such as the geographical targeting of policy interventions, regional agglomeration
effects, the diffusion of technologies across space, or causes and consequences of
land-cover change. Explicitly accounting for location in econometric estimations
can be of great benefit for researchers working at the interface of economics or
environmental sciences and geography.

The objective of this article is to demonstrate how spatially explicit raster
data derived from standard geographical information system (GIS) software can
be used within Stata. Three programs implemented as ado-files are presented.
These import geographic raster data into Stata (ras2dta), draw systematic spatial
samples within Stata (spatsam), and export data and estimation results in a form
usable by standard GIS software (dta2ras). A numerical example is presented
to estimate the determinants of forest cover with a spatially explicit logit model,
calculate predicted probabilities, and map the predictions with GIS software.

Keywords: dm0014, ras2dta, spatsam, dta2ras, geographical information systems
(GIS), raster data, spatial modeling, spatial econometrics

1 Background

Socioeconomic data typically exist for discrete social entities, such as administrative
units or households, and are often not linked to the geographical location. Conversely,
data stemming from disciplines of natural sciences are often collected including geo-
graphical referencing, or georeferencing, which involves the assignment of coordinates
defined by a spatial reference or coordinate system to objects like points, lines, or
polygons. A common example for georeferenced data is the use of meteorological sta-
tions that measure climatic indicators like rainfall used to derive spatially continuous
rainfall surfaces from spatial interpolations of point measurements. Other examples
of geographic data relevant to a wide variety of studies in environmental sciences are
temperature, slope, elevation, and soil qualities. The integration of georeferenced so-
cioeconomic and natural science data can facilitate interdisciplinary approaches and
provide additional insights into numerous statistical applications that are influenced by
underlying spatial processes or spatial relationships.

c© 2005 StataCorp LP dm0014
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Spatial econometrics deal with the analysis of economic data that is explicitly linked
to location. The techniques of spatial econometrics account for the peculiarities intro-
duced by the spatial perspective and are justified based on two reasons: First, spatial

heterogeneity might arise due to a lack of structural stability across space, such as vary-
ing parameters or functional forms, and due to nonhomogeneity of the units of obser-
vations across space (Anselin 1988). Second, spatial autocorrelation—methodologically
similar to autocorrelation in time-series models—refers to a lack of independence among
observations. Spatial autocorrelation pertains to a coincidence of value similarity with
locational similarity (Anselin 1988). This dependence among observations and the im-
portance of relative locations is expressed by Tobler (1979) in his first law of geography,
which states that “everything is related to everything else, but near things are more
related than distant things”. Interactions among neighboring agents could, for example,
induce a correlation of the variables across space, which must be accounted for in model
estimation.

The various spatial relationships among observations can result in unreliable esti-
mates and incorrect statistical inference of the parameters (Anselin 1988). For many
social and economic processes, a better appreciation of the spatial context can poten-
tially avoid misleading inferences and improve the strength of results and their inter-
pretation. Knowledge about the location of a process and its interaction with processes
at neighboring locations can help infer the underlying reasons and logic of the process
under investigation. However, spatial analysis adds mathematical complexity due to
the necessary incorporation of two dimensions (in X- and in Y -direction).

The next section briefly introduces geographic information systems (GIS) and the
structure of raster data. Section 3 outlines the program to import raster grids into Stata.
Section 4 presents the program for systematic spatial sampling from a raster surface,
and section 5 the program to export the Stata files into a format usable by standard
GIS software. The last section presents a numerical example in which I estimate the
determinants to observe forest cover using a spatially explicit binary logit model.

2 Geographic information systems and the raster data

model

A geographic information system serves to compile, store, manipulate, analyze, and
visualize spatial data. As the two main data models in a GIS, the vector and the raster

model are distinguished. Vector data contain X- and Y -coordinates, which represent
points (single X- and Y -coordinates), lines (series of ordered points), and polygons
(closed lines with equal start and end coordinate). The raster data model is represented
as an arrangement of regularly shaped, contiguous cells in a two-dimensional matrix,
which together form a continuous data layer. A layer typically consists of square cells,
which fit together edge-to-edge. Each cell represents one location in a raster surface and
contains integer or floating-point numbers indicating the characteristic of that location.
A dataset usually contains various layers (or bands), which are stacked on top of each
other and cover the geographical area of interest. A common application of multiple-
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layer data are multispectral satellite images where various bands cover a certain spectral
range of reflected electromagnetic energy. Raster data has the advantage of conceptual
simplicity, compact data storage, and well-established algorithms for processing and
analyzing. A main disadvantage is that it artificially imposes grid cell borders on con-
tinuous phenomena, which is often better represented in the vector model.

The structure of a raster data model is sketched in figure 1. Figure 1 (a) shows data
in a 5×5 matrix of square cells with discrete observations ranging from one to five. The
corresponding map in figure 1 (b) on the right side can be exported from common GIS

software packages in ASCII data format.

(a) (b)

Figure 1: Raster data structure (a) and corresponding raster map (b)

The exported ASCII file contains the spatial information in a header that occupies the
first six rows of the data (see table 1). The number of columns (ncols = 5) is indicated
in the first line and the number of rows (nrows = 5) in the second line. Line three
and four locate the map in space with geographic coordinates for the lower left X-
coordinate, xllcorner, and for the lower left Y -coordinate, yllcorner. Line five states
the size of the cells in the specified map units, and line six assigns numerical missing
values (ArcInfo

TM

and ArcView
TM

assign −9999 by default). The map values start
in line six with the upper-left cell from figure 1. Values are separated by spaces and
move from left to right, and then top to bottom. No carriage returns are necessary, as
the number of columns in the header information determines when a new row starts
(Environmental Systems Research Institute (ESRI) 2000).

(Continued on next page)
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Table 1: ASCII raster with header information

ncols 5
nrows 5
xllcorner 1
yllcorner 1
cellsize 1
NODATA value −9999
1 1 2 2 2 3 1 3 2 1 2 3 3 4 . . .

3 Importing data

The structure of the ASCII file from figure 1 and table 1 makes it straightforward to
import the text file into Stata. The program ras2dta imports the data starting from
observation 13 after the header that ends with the default missing value of −9999. Each
raster cell of a map is turned into one observation, and an entire map of raster cells
yields one variable in Stata. Figure 1 yields 25 observations starting from the top left,
to the left, then to the bottom (first observation = 1, second = 1, . . . , sixth = 3, seventh
= 1, . . . , twenty-fifth = 5).

Information from the header is used to identify the missing values and the number
of X- and Y -coordinates. ras2dta optionally generates a variable carrying an identity
code for the cells, idcell(), to later facilitate the use of, e.g., merge or joinby and
the export of data back to the GIS software. Missing values, like values located outside
the area of interest, can be dropped when the data is read by infile. Optionally, two
variables are generated representing the X- and Y -indicators of the raster map. This is
potentially convenient for drawing a spatial sample (see section 4) and for spatial statis-
tical calculations. ras2dta allows maps to be imported with different spatial structures.
The corresponding header information of each map is then saved as a separate file for
each of the imported raster maps.

3.1 Syntax

ras2dta , files(filelist)
[

idcell(varname) xcoord(#) ycoord(#) missing(#)

dropmiss extension(string) genxcoord(varname) genycoord(varname)

header saving(filelist) replace clear
]

3.2 Options

files(filelist) is required. It specifies the names of the ASCII files in filelist to be
converted into Stata format. ASCII files must be located in the same directory and
be listed with a separating space, without the file extension.
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idcell(varname) is optional. It generates a spatial identifier (unique ID code) for the
grid cells imported. The ID code starts at one in the top-left corner and increments in
steps of one until the last cell at the bottom-right corner, from left to right and then
top to bottom. idcell() saves the variable under the specified name in varname.

xcoord(#) is required if no header is present in the ASCII file. The number of X-values
(number of columns or ncols) must be entered as an integer value.

ycoord(#) is required if no header is present in the ASCII file. The number of Y -values
(number of rows or nrows) must be entered as an integer value.

missing(#) is optional. It must be specified if missing values are not the default ESRI

no-data value of −9999.

dropmiss is optional. If specified, all default (= −9999) or user-defined (via missing())
missing values are dropped, including the corresponding codes from idcell().

extension(string) specifies the file extension of the ASCII file. extension(.asc) is the
default. For files without an extension, extension(" ") must be entered.

genxcoord(varname) is optional. It creates the variable varname carrying identifiers
for the columns of the entire imported grid. X-coordinates will start with 1 at
the top-left corner and increment to the right in steps of 1 (this is not affected by
dropmiss).

genycoord(varname) is optional. It creates the variable varname carrying identifiers
for the rows of the entire imported grid. Y -coordinates will start with 1 at the
top-left corner and increment to the bottom in steps of 1 (this is not affected by
dropmiss).

header(filename) optionally saves one ASCII header as a Stata data file for each im-
ported grid. The header files are named h filename, where filename is the name of
the imported grid, with one variable called hdr. Existing files with the same name
will be replaced.

saving(filelist) saves the Stata files under different names, as specified in filelist in-
side the parentheses of saving() (without separating comma and file extension).
saving() will always save the files as Stata datasets. If saving() is specified, the
number of imported grids specified in files() must equal the number of files speci-
fied in saving(). The default is to save the file in the same directory and under the
same name as the original ASCII grid.

replace replaces existing files with the same name in the current working directory.

clear clears the data currently in memory.

4 Spatial sampling

The existence of spatial relationships among observations can result in unreliable es-
timates and misguided statistical inference of the parameters. Econometric problems
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with spatial data can be due to interactions among neighboring agents. Spatial effects
can also emerge when data from different sources, different sample designs, or varying
aggregation rules is used (Anselin 1988).

One ad hoc technique to correct for spatial effects is to draw a systematic spatial
sample from a grid. With systematic spatial sampling, a number of cells are selected in
a regular fashion. This is done by keeping only cells that are a specified distance away
from the nearest selected neighbor, resulting in a noncontiguous subsample of the data.
Systematic spatial sampling permits the application of standard estimation methods
(Anselin 2001).

The program spatsam draws such systematic spatial samples with a user-specified
gap in the X- and Y -direction and optionally saves the sample as a new dataset. spatsam
depends on the presence of X- and Y -coordinates that can be generated when importing
the grids using ras2dta.

4.1 Syntax

spatsam , gap(#) xcoord(varname) ycoord(varname)
[

insample(varname)

norestore saving(filename) replace
]

4.2 Options

gap(#) is required and specifies the spatial lag between selected observations. For
example, gap(4) specifies the selection of every fourth cell in the X- and Y -direction.
Then the first observation in the sample is in the fourth row and fourth column, the
second observation in the eighth row and fourth column, etc.

xcoord(varname) is required and specifies the variable that carries the X-coordinates.

ycoord(varname) is required and specifies the variable that carries the Y -coordinates.

insample(varname) is optional and saves the selected observations as a binary variable
named varname. Selected observations get the value 1, and nonselected observations
get the value 0. insample() is not affected by the use of norestore.

norestore prevents the restoration of the data previously in memory.

saving(filename) is optional and saves the data file under the name specified in file-

name.

replace replaces existing files with the same name in the current working directory.

For large raster maps, drawing a spatial sample with spatsam has the additional ad-
vantage that it significantly decreases the number of observation, thereby reducing the
computational time.
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5 Exporting Stata variables as raster grids

After importing data, managing data, making econometric estimations, and performing
postestimation commands within Stata, the results may often be exported back to
the GIS software package for a visual assessment and further spatial calculations. The
program dta2ras takes Stata variables and saves them as ASCII raster grids in a format
readable by most standard GIS software packages. If no varlist is specified, all the
variables in the dataset are exported. The ASCII grid files include a standard header and
can be readily imported into, e.g., ArcView (assuming Spatial Analyst or 3D-Analyst
is loaded) with File → Import Data Source → ASCII Raster.

dta2ras asserts that the number of rows times the number of columns is equal to
the number of observations. With one call of dta2ras, only variables of the same spatial
structure (same number of rows and columns and the same cellsize) can be exported.
If a spatial sample was previously drawn, dta2ras optionally expands the spatially
sampled number of observations to the full grid size, i.e., to the number of rows times
columns. The expansion requires the presence of a spatial identifier (idcell()) as
generated by ras2dta. Missing identifiers in idcell() are filled with missing values
to arrive at the desired total number of observations. After sorting by idcell(), each
variable has the same structure and number of observations as in the original grid. This
allows importing the variable back into the GIS software by inserting a previously saved
header file or by manually providing the spatial structure of the raster grid with at
least the information on columns and rows in xcoord() and ycoord(), and (optionally)
also with the remaining information on cellsize(), xllcorner(), yllcorner(), and
missing().

5.1 Syntax

dta2ras varlist ,
{

header(filename) | xcoord(#) ycoord(#)
} [

cellsize(#)

xllcorner(#) yllcorner(#) missing(#) idcell(varname)

idfile(filename) expand norestore saving(filelist) replace
]

5.2 Options

header(filename) specifies the header file, which must be a Stata data file named
filename with one variable named hdr. ras2dta can automatically create this file.
If this option is not specified, xcoord() and ycoord() are required.

xcoord(#) is required if header() is not specified and defines the number of X-
coordinates (columns or ncols) as integer values.

ycoord(#) is required if header() is not specified and defines the number of Y -
coordinates (columns or ncols) as integer values.

cellsize(#) is optional. It specifies the cell size of the resulting grids. The default is
cellsize(1).
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xllcorner(#) is optional. It specifies the X-coordinate of the lower-left cell. The
default is xllcorner(1).

yllcorner(#) is optional. It specifies the Y -coordinate of the lower-left cell. The
default is yllcorner(1).

missing(#) is optional. It must be specified if missing values are not the default
ArcInfo/ArcView no-data value of −9999. The default is missing(-9999).

idcell(varname) is a variable carrying the spatial identifier (ID code) of the grid cells
and is required if expand is specified without idfile(). The upper-left cell in
idcell() starts at 1 and must increment in steps of 1 moving from left to right, and
then top to bottom.

idfile(filename) is the Stata data file that carries the spatial identifier (ID code) of
the grid cells and is required if expand is specified without idcell(). The upper-left
cell in idfile() must carry the identifier 1 and must increment in steps of 1 moving
from left to right, and then top to bottom. If idfile() is specified, the identifying
variable in the master and using data must have the same name.

expand expands the dataset to the full number of observations, e.g., if a spatial sample
was previously drawn using spatsam. expand depends on the presence of idcell()
or idfile().

norestore prevents the restoration of the data previously in memory.

saving(filelist) saves the ASCII files under different names, as specified in filelist

(names separated by spaces, without comma and file extension). saving() saves
the files in ASCII format. If saving() is specified, the number of exported variables
in varlist must equal the number of files specified in filelist. The default is to save
the raster grids under the exported variable names with the ending o.asc.

replace replaces already existing files of same name in the current working directory.

6 A numerical example

A subset of real-world data from the Central Highlands of Vietnam is used as a numerical
example for econometric estimation with spatially explicit raster data. The data is
described in Müller (2003) and stems from a research project on the determinants of
land-use change. Forest cover (forest) is chosen for the purposes of this paper as
the binary dependent variable (forest = 1 and nonforest = 0). As covariates, several
indicators describing the agricultural potential of each raster cell are used, comprising
of slope (slp), elevation (elev), soil suitability (soil), as well as the Euclidean distance
to major roads (disroad) as a proxy indicating access to markets and transportation
costs. For simplicity reasons, I omitted a range of other variables that potentially
influence forest cover, such as population density, the introduction of technologies, or
the occurrence of protected areas. The dependent variable and the four covariates are
calculated and stored within a GIS as raster layers with the same geographic projection,
grid cell size, and spatial extent.
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6.1 Data preparation

From within the GIS software, each raster layer is exported as an ASCII data file. The
layer forest cover as the dependent variable forest is imported to Stata with

. ras2dta, f(forest) header idcell(idc) genx(x) geny(y) replace clear

No of columns: 389
No of rows: 347
number of cells: 134,983
file forest.dta saved

. summarize

Variable Obs Mean Std. Dev. Min Max

idc 134983 67492 38966.38 1 134983
forest 134983 .8371795 .3692032 0 1

x 134983 195 112.2947 1 389
y 134983 174 100.1702 1 347

The variable idc carries a unique identifier for each observation. The binary variable
forest indicates a forest cover of 84%. Column values are contained in the variable x,
advancing from column one to column 389, and restart at one in the second row. This
procedure is repeated 347 times for every row. Row numbers are named y, advancing
from row one to row 347 in blocks of 389 (columns). The spatial information of the
raster grid for forest is saved in h forest.dta:

. use h_forest, clear

. list, sep(2)

hdr

1. ncols
2. 389

3. nrows
4. 347

5. xllcorner
6. 223331.63634

7. yllcorner
8. 1372962.4841

9. cellsize
10. 50

11. NODATA_value
12. -9999

Observation two specifies the number of columns (389), and observation four specifies the
number of rows (347). The total number of observations is the product of columns and
rows (134,983). The lower-left coordinate, referenced to a projected coordinate system
(in this case, to Universal Transverse Mercator, UTM) is represented by observation six



D. Müller 233

x and eight y, respectively. The map units of the raster grids are specified in meters
within the GIS. Therefore, the size of a square grid cell is 50 by 50 meters. The total
area covered by the map is the number of observations (134,983) times the area of one
cell (2,500 m2) or approximately 337.5 km2.

The four raster maps used as covariates are imported using ras2dta. A variable carrying
the spatial identifier (idcell()) and X- and Y -coordinates are generated with the
options idcell(idc), genxcoord(x), and genycoord(y) for each of the four layers.

. foreach grid in elev slp soil disroad {
2. qui ras2dta, f(‘grid’) idcell(idc) header genx(x) geny(y) drop

> replace clear
3. qui use h_‘grid’, clear
4. cf hdr using h_forest
5. }

The built-in Stata command cf verifies that the headers of all the imported rasters are
identical. We now merge the covariates based on the spatial identifier, the X- and the
Y -coordinates to the dependent variable forest with observations uniquely identified
in both datasets. The complete dataset is saved as forestfull.dta for later use in
postestimation commands.

. use forest, clear

. merge idc x y using elev slp soil disroad, unique

. drop _merge*

. lab def for 0 "Non-forest" 1 "Forest"

. lab val forest for

. lab var forest "Observed"

. save forestfull, replace
file forestfull.dta saved

The spatial sample is drawn by selecting every third cell in the X- and Y -direction.

. spatsam, gap(3) xcoord(x) ycoord(y) saving(forsam3) replace
you selected 14835 observations
file forsam3.dta saved

And another sample with a gap of five cells to allow for the comparison of estimation
results.

. spatsam, gap(5) xcoord(x) ycoord(y) norest
you selected 5313 observations

With a gap of five cells in the X- and Y -direction, every cell is 200 meters (four cells
of 50 meters each) away from its nearest neighbors in all four directions. This sampling
procedure reduced the number of observations from almost 135,000 to 5,313. The gap
of three cells resulted in 14,835 observations, with every cell being 100 meters from the
nearest neighbors.
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6.2 Econometric estimation

The resulting dataset we use to fit standard binary logit models. First, for the gap of
five cells:

. logit forest slp elev soil disroad, nolog

Logit estimates Number of obs = 5313
LR chi2(4) = 2995.12
Prob > chi2 = 0.0000

Log likelihood = -877.67432 Pseudo R2 = 0.6305

forest Coef. Std. Err. z P>|z| [95% Conf. Interval]

slp .1217579 .0156945 7.76 0.000 .0909972 .1525185
elev .0465324 .0032897 14.15 0.000 .0400847 .05298
soil -.1377835 .0625698 -2.20 0.028 -.260418 -.015149

disroad .5697638 .0654302 8.71 0.000 .441523 .6980045
_cons -22.68067 1.470205 -15.43 0.000 -25.56222 -19.79912

note: 0 failures and 1466 successes completely determined.

And, second, for the gap of three cells:

. use forsam3, clear

. logit forest slp elev soil disroad, nolog

Logit estimates Number of obs = 14835
LR chi2(4) = 8302.53
Prob > chi2 = 0.0000

Log likelihood = -2455.8097 Pseudo R2 = 0.6283

forest Coef. Std. Err. z P>|z| [95% Conf. Interval]

slp .10766 .0090433 11.90 0.000 .0899355 .1253846
elev .047577 .0020051 23.73 0.000 .0436472 .0515069
soil -.1796031 .0378277 -4.75 0.000 -.2537439 -.1054622

disroad .5921515 .0393804 15.04 0.000 .5149674 .6693356
_cons -23.02267 .8948099 -25.73 0.000 -24.77647 -21.26887

note: 0 failures and 4155 successes completely determined.

The variables have the expected signs and significantly influence the probability of
observing forest cover. Cells with higher slope and elevation, with lower soil suitability
for agriculture, and that are further away from main roads are more likely to be under
forest cover. The results from the estimation with the gap of three cells and with the
gap of five cells differ, as expected, in coefficient size, standard errors, significance levels,
and confidence intervals. However, the coefficients still have the expected signs and are
all significant at the 1% and 5% levels, respectively. Therefore, the substantive findings
from the regressions can be retained unchanged.

Predicted probabilities facilitate meaningful interpretations. To obtain the predicted
probabilities and to observe the prediction accuracy, we compute the predicted prob-
ability of a positive outcome for each cell given the values of the covariates for that
observation and the number of correctly predicted cells. The higher the predicted prob-
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abilities, the higher is the likelihood that a cell is under the predicted outcome “forest
cover”. Prediction values for the estimated probabilities are created by using the high-
est predicted probability as the predicted outcome, i.e., probability values exceeding 0.5
in the case of binary dependent variables. This choice is arbitrary, and alternatively,
higher thresholds can be used to assess the prediction accuracy and prediction strength.
Increasing prediction thresholds will decrease the number of correctly predicted cells.

The estimated parameters of the reduced dataset are derived following the spa-
tial sample with a gap of three cells. The predicted probabilities are computed from
these parameters for all observations at every location of the study area to generate a
continuous surface that allows a more accurate quantitative and visual postestimation
assessment.

. use forestfull, clear

. predict pforest, p

. gen predfor = 0

. replace predfor = 1 if pforest > 0.5
(111251 real changes made)

. lab var predfor "Predicted"

. lab val predfor for

. gen predcorr = (forest == predfor)

. summarize pforest forest predfor predcorr

Variable Obs Mean Std. Dev. Min Max

pforest 134983 .8373526 .2884086 .0497403 1
forest 134983 .8371795 .3692032 0 1
predfor 134983 .8241853 .3806639 0 1

predcorr 134983 .9302283 .2547629 0 1

93% of the cells are predicted correctly using the highest predictions as the predicted
values. Another measure of goodness of fit is the prediction matrix where actual val-
ues are tabulated against the predicted values. The prediction matrix facilitates the
assessment of model accuracy as a summary of the model fit, as it reduces the model
complexity. Correct predictions are shown in the diagonal of the prediction matrix:

. tab forest predfor

Predicted
Observed Non-fores Forest Total

Non-forest 18,146 3,832 21,978
Forest 5,586 107,419 113,005

Total 23,732 111,251 134,983

5,586 locations under forest cover are predicted to be nonforest, while 3,832 locations
are wrongly predicted as forest. 125,565 (18,146 + 107,419) observation or 93% (see
above) are predicted correctly.
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6.3 Export of results and geovisualization

The prediction matrix yields no insights into the spatial accuracy of the predictions.
The tabulation of predicted probabilities can also be examined graphically in prediction
maps or mapped probability values (Nelson and Geoghegan 2002). To do this, the
predictions are exported to an ASCII raster grid:

. dta2ras pforest, header(h_forest) expand idcell(idc) replace
(note: file pforest_o.asc not found)
pforest saved as -pforest_o.asc-

The ASCII file pforest o.asc is imported into the GIS software package to map the pre-
dicted probabilities. The resulting prediction map in figure 2 visualizes the probabilities
to observe forest cover, generated from the variable pforest.
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Figure 2: Predicted probabilities

The values of predicted forest cover, predfor, are converted in the same way into an
ASCII raster file:

. dta2ras predfor, header(h_forest) expand idcell(idc) replace
(note: file predfor_o.asc not found)
predfor saved as -predfor_o.asc-

The geovisualizations in figures 3 (a) and (b) give a good indication of the prediction
accuracy and facilitate visual analysis of the spatial accuracy. Overlaying the actual
forest cover in figure 3 (a) with the predicted forest cover in figure 3 (b) allows for a
rapid assessment of the quantity and location of incorrect predictions. Further it helps
to identify potential hot spots, or areas of risk, for future deforestation and can be of
great policy relevance for development planning and resource management efforts.
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(a) (b)

Figure 3: Observed (a) and predicted (b) forest cover (in darker gray)
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