

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2005)
5, Number 2, pp. 162–187

Multilingual datasets

Jeroen Weesie
Utrecht University

Abstract. This insert describes a new command mlanguage that facilitates the
creation and maintenance of “comprehensive” multilingual datasets. These are
datasets with many variables, many of which are value labeled, with labels in
different languages, all contained within the dataset. The tools make it easy to
add labels in a new language by translating an existing set of labels, to switch
between the sets of labels, to verify the integrity of such labels, and to assist in
keeping the labels complete.

Keywords: dm0013, mlanguage, multilingual datasets, data integrity, value labels

1 Introduction

The 9 September 2003 update of Stata 8 introduced the ability to have up to 100
different sets of data, variable, and value labels in a dataset. A dataset might contain
one label set in English, another in German, and a third in Dutch. While a dataset
may contain multiple sets of labels, one set of labels will be in use at any one time.
Switching between these sets is easy and fast. When other Stata commands produce
output (such as describe, tabulate, codebook, etc.), they use the labels of the active
(currently set) language. Other aspects of the output, such as the table headers, the
online help, etc., are of course not affected—they are always in English. When you
define or modify the labels using the other label commands, such as label variable

or label value, you modify the active (current) set of labels. The different sets of
labels are automatically saved with your data. Moreover, when you use the data the
next time, Stata will remember what language you selected last before saving the data.

The different sets of labels are called “languages”, reflecting their most likely appli-
cation representing different spoken languages; you do not need to use the multiple sets
in this way. Another useful application would be to create a dataset with one set of long
labels and another set of shorter ones, or you could temporarily switch off labeling in
output; however, dropping label information involves a permanent loss of information.
If you define a language with an empty set of labels, switching between the original and
the empty language switches the display of labels on and off.

Since readers of the Stata Journal may not yet be familiar with this recently added
functionality of label, I give a brief description in section 2. In section 3, I introduce
mlanguage, a new command that was written to facilitate the creation and maintenance
of “big” multilingual datasets. For instance, mlanguage makes it easy to add a label set
in a new language to a dataset that is already labeled. Think of this as translating a
collection of strings from one language into another language. The main work has to be
done by a person who can translate in a text file a set of label strings from, say, German

c© 2005 StataCorp LP dm0013

J. Weesie 163

into English; this person need not know Stata. Other tools facilitate the verification
that the labels are consistent, complete, and compatible across languages (in a sense
described below) and help to restore data integrity if problems are encountered.

2 The language subcommand of label

In this section, I briefly describe the main features of the command label language.
For more information, refer to the online help (make sure that you update Stata so that
it is available); if you already own Stata 9, see [D] label language. label language

provides subcommands for selecting a language (set of labels), defining a new empty
language, copying a language, renaming a language, and dropping a language.

2.1 Syntax

label language

label language languagename

label language languagename, new
[

copy
]

label language languagename, rename

label language languagename, delete

2.2 Description

label language (without arguments)

lists the available languages and the name of the active one. The active or current
language refers to the labels you will see if you use, say, describe or tabulate. The
available languages refer to the names of other sets of previously created labels. For
instance, you might currently be using the labels in en (English), but also available
might be labels in de (German) and nl (Dutch).

label language languagename

changes the labels to those of the specified language. For instance, if label language
revealed that en, de, and nl were available, typing label language de would
change the current language to de.

164 Multilingual datasets

label language languagename, new
[

copy
]

creates a new set of labels collectively named languagename. You may name the set
as you please as long as the name does not exceed 8 characters. For suggestions on
naming spoken languages, refer to section 4. Initially all labels are empty unless you
specify the option copy, which initializes the labels to those of the current language.

label language languagename, rename

changes the name of the label set currently in use. If the label set in use were named
default and you now wanted to change that to en, you could type label language

en, rename.

The choice of the name default in the example was not accidental. If you have
not yet used label language to create a new language, the dataset will have one
language that will be named default.

label language languagename, delete

deletes the specified label set. If languagename is also the current language, one of
the other available languages is chosen to become the current language. You should
explicitly select the language you want to be active after dropping a language with
label language languagename.

2.3 A first application

Often I want to switch between looking at numerical data and looking at (value) labeled
data. Think of doing an analysis for females only, based on the value-labeled variable
sex. We need to use the expression if sex==?, with ? denoting the females. What
numerical value ? was used in this dataset? Looking this up is somewhat awkward.
Commands such as tabulate can suppress the labels, whereas other commands, such
as table and tabstat, do not. What can we do? Dropping the labels requires a lot
of work and cannot be undone easily. One possibility is to create “smart value labels”
that contain both the numerical values and the category descriptions. The command
numlabel, introduced in Stata 8, makes this easy because it allows you to modify
existing value labels. For instance, the value labels

0 "female"
1 "male"

can be modified to

0 "[0] female"
1 "[1] male"

Output with such labels looks somewhat ugly, though, and Stata may have to display
truncated labels. An alternative makes use of the multiple languages mechanism. Think
of the set of empty labels as a language. Type the two statements

J. Weesie 165

. label language full, rename

. label language null, new

to use the name full for the current set of labels and null for the empty set. Now if
we want to look at labeled output, we make sure that the language full is selected

. label language full

while Stata will generate nonlabeled output if the null language is active:

. label language null

If you think this is too much to type, you can easily write two commands labon and
laboff to switch the display of labels on and off.

program labon
version 8.1, born(09sep2003)

quietly label language full
dis as txt "(labels will be displayed)"

end

program laboff
version 8.1, born(09sep2003)

quietly label language null
dis as txt "(labels will not be displayed)"

end

2.4 Remarks

To create and work with a multilingual dataset, follow these steps:

1. define a first set of labels using label data, label variable, label define,
and label value

2. optionally rename the first language from default to a desired name:
label language languagename1, rename

3. define a new language, which is initially empty:
label language languagename2, new

4. define labels in the new language, using the same commands as in step 1

5. repeat steps 3 and 4 as often as needed

6. save the data with all labels in all defined languages

7. activate the language you want to use

• look at output in the labels in the activated language

• modify the activated language

166 Multilingual datasets

3 The mlanguage command

The main purpose of this article is to introduce a new utility for producing and manag-
ing comprehensive multilingual datasets. Being written “on top of ” label language,
mlanguage requires that your Stata version be no older than 9 September 2003 so that
the label language subcommand is available. mlanguage offers facilities to make it
easy to add a full set of labels in a new language by translating an existing set of labels,
where the actual translation (e.g., from German to English) can be performed outside
of Stata, possibly even by a person not well versed in Stata. Second, mlanguage offers
tools for maintaining a series of comprehensive sets of labels, guarding that the labels
across the languages satisfy some reasonable properties (see below for details).

mlanguage sometimes has to “propose” new value labels. These have to be named.
mlanguage adopts a naming scheme for the value labels in different languages, namely,
basename languagename. For example, in a dataset with the labels in the languages
en, nl, and de, the different versions of a value label repair are named repair en,
repair nl, and repair de. The language extension may actually be absent in one
language. This may be a desirable situation if one of the languages is to be treated as
a “base” language, e.g., the language in which the data were collected. If you prefer to
treat all languages equally, you may want to change the existing value label names to
match the scheme. The subcommand mlanguage rename languagename, label can
be used for this purpose. While mlanguage does not enforce this naming convention,
I suggest that you follow it because transparent and consistent naming reduces the
likelihood of mistakes.

mlanguage, which may be abbreviated as mlang, is designed as a command with
eight subcommands. This design allows the extension of the command with new types
of functionality. Suggestions for such extensions are welcomed by the author.

3.1 Syntax

mlanguage
[

dir | query
]

mlanguage { select | set } languagename
[

: cmd
]

mlanguage { drop | delete } languagename1

[

, select(languagename2)
]

mlanguage rename newlanguagename
[

, label
]

mlanguage list
[

languagenamelist
] [

, nopattern nodescribe noseparator

novalue varlist(varlist)
]

J. Weesie 167

mlanguage add newlanguagename, saving(filename)
[

nocomment noinstruction

column(#) unlabeled varlist(varlist) replace
]

mlanguage check
[

languagenamelist
] [

, varlist(varlist) same
]

mlanguage fix
[

languagenamelist
]

, saving(filename)
[

, nocomment

noinstruction column(#) novalue unlabeled varlist(varlist) replace
]

3.2 Description

I will describe the subcommands of mlanguage in some detail. The first four sub-
commands are wrappers for the corresponding label language commands. They are
provided to offer a consistent interface while offering some minor additional functionality
to label language.

mlanguage
[

dir | query
]

displays the available languages and the name of the current language. The current
language refers to the labels you would see if you used, say, describe or codebook.

The dir and query subcommands of mlanguage resemble label language, dir

but produce less output. Typing mlanguage with no options is equivalent to typing
mlanguage dir.

mlanguage { set | select } languagename

changes the labels to those of the specified language. For instance, if mlanguage dir

revealed that en, de, and nl were available, typing mlanguage select de would
change the current language to de.

The prefix syntax mlanguage set | select languagename : cmd runs cmd with la-
bels in the language languagename but does not select languagename as the active
language.

The command mlanguage select languagename is equivalent to label language

languagename.

mlanguage { drop | delete } languagename1

[

, select(languagename2)
]

deletes label set languagename1. If languagename1 is also the current language, one
of the other available languages is chosen to become the current language; the option
select() selects languagename2 to become the current one.

The command mlanguage drop languagename is equivalent to label language

languagename, delete.

168 Multilingual datasets

mlanguage rename newlanguagename
[

, label
]

changes the name of the label set currently in use. If the label set in use were named
default and you now wanted to change that to en, you could type mlanguage

rename en. The name default in this example was not accidental. If you have not
yet created a new language, the dataset will have one language that will be named
default.

The command mlanguage rename languagename (without the option label) is
equivalent to label language languagename, rename. The option label modifies
the names of the value labels to match the naming convention adopted by mlanguage.
It appends to the value labels of the active language the string languagename. If
the value labels in the active language already have a suffix, it is replaced by the
string languagename. Anyway, the links between variables and value labels are, of
course, adjusted accordingly.

The other four subcommands of mlanguage offer facilities that are not matched by the
label language subcommands.

mlanguage list
[

languagenamelist
]

. . .

displays the label information (data label, variable labels, and value labels) for the
specified languages. If no languagenamelist is specified, the information is displayed
for all defined languages.

The data and variable labels are displayed in a describe-like format.

The value labels are organized by “language-label pattern”: a collection of value
labels (including “none”) attached to one or more variables in different languages.
For instance, if variables x1, x2, . . . , use value label Lab1 in language L1, label Lab2

in language L2, etc., (L1:Lab1) (L2:Lab2) . . . is called the language-label pattern used
by the variables x1, x2, etc. In a typical application, such a collection of value labels
is expected to contain translations in the languages L1, L2, This organization
of the output makes it easy to verify translations.

mlanguage add languagename . . .

assists in adding a collection of labels in a new language to the dataset in memory
that has already been labeled in one or more languages. The procedure involves
translating the labels from a source (= current) language into a target (= language-

name) language. Three steps must be taken:

1. Make sure that the data are in memory and that the source language is selected
as the current language. Invoke

mlanguage add target, saving(fn)

to generate a script file fn.do with a possibly long series of label commands
that (i) define the new language target , (ii) define the data label, (iii) define the
variable labels, (iv) define a new set of value labels, and (v) attach the new value

J. Weesie 169

labels to the variables. The initial values of the labels are those of the source

(current) language. The names of the new value labels defined in the script follow
the naming scheme explained above; if the value label in the source language has
the suffix source, this suffix is replaced by target; otherwise, target is appended.

2. The literal strings in fn.do must be translated into the target language, probably
by a human expert in the target language who need not be a Stata user. To
facilitate verification of the translation, the source labels are included in comments,
so they remain visible after the label texts are replaced by a translation. Be sure
not to damage the Stata syntax itself. I advise you to do the translations in a
copy of the file so that you can repair the Stata commands if you make a mistake.

3. When you have finished the translation, the translated file fn.do must be run

with the dataset in memory; it does not matter which language is selected at this
point. Only at this step are labels in the target language added to the dataset.
Moreover, the language target is selected upon completion.

This process can be repeated as often as needed. The maximum number of languages
in a dataset is 100. This is probably enough for all foreseeable applications, the
possible exception being datasets of the European Union.

mlanguage check
[

languagenamelist
]

. . .

verifies that the value labels are consistent, complete, and compatible across the
languages in languagenamelist, or across all languages in the dataset if no such list
is specified.

By consistency of value labels, I mean that if variables share a value label in some
language, these variables cannot be attached to different value labels in another
language. For instance, if the variables edu father and edu mother are both la-
beled by the value label edu en in English, in German the value label edu de cannot
be attached to edu father and edu2 de to edu mother. This situation is inconsis-
tent, even if edu de and edu2 de are identically defined; see the utility command
labeldups described in Weesie (2005) to find and eliminate duplicate value labels.

Completeness of the value labeling means that if a variable is value valued in one
language, it is value labeled in other languages as well. If in German a value label
is attached to edu father while it is unlabeled in Dutch, the value labeling is said
to be incomplete. Incompleteness of value labels, and of variable and data labels as
well, can be fixed using mlanguage fix.

Compatibility means that the value labels attached to a variable in different lan-
guages provide mappings for the same set of values. If in English, mappings are
provided for 0 (no) and 1 (yes), it would be strange (incompatible) if, in addition,
in Spanish the value 2 meant “maybe”. This looks like a real mistake that you will
have to fix manually.

170 Multilingual datasets

Note that the command does not check that mappings are provided for all numerical
values of the variables to which the labels are attached. See [D] codebook and
[D] labelbook for such additional checks.

mlanguage fix . . .

assists in making label information complete over all languages. Completeness of
the data label, variable labels, and value labels means that if a label is available in
one language, it is available in other languages as well. Thus completeness does not
mean that “everything” should be labeled; see also option unlabeled.

Making value labels complete is only possible if they are consistent; see mlanguage

check for details.

If the label information is found to be incomplete, mlanguage fix generates script
files, one for each language with missing labels, with definitions in one of the other
languages. The labels in these files, named saving languagename.do, must be trans-
lated into the respective language languagename, and finally, these do-files must be
executed.

3.3 Options

select(languagename2), an option with subcommands drop and delete, specifies the
language to become active after dropping language languagename1.

label, an option with the subcommand rename, specifies that the names of the value
labels be modified to satisfy the naming convention of mlanguage, namely, from
oldname into oldname languagename. This option may be specified only if the data
are monolingual.

nopattern, an option with the subcommand list, suppresses the display of the value
labels by “language-label pattern”. novalue is a synonym when used with subcom-
mand list.

nodescribe, an option with the subcommand list, suppresses the describe-like table,
listing for each variable the variable and value labels in the different languages.

noseparator, an option with the subcommand list, suppresses the separator lines in
the describe-like table with variable labels in the different languages.

varlist(varlist), an option with the subcommands add, check, fix, and list, specifies
the list of variables used in the subcommand. The default is to use all variables.

saving(filename) is required with the subcommand add. filename specifies the name
of the file to be created. If no extension is specified, the extension .do is appended.

saving(filename) is required with the subcommand fix. filename should not contain
an extension. For each of the specified languages ln, definitions of label information
are included in the file filename ln.do. For instance, if the dataset contains label
information in the languages en, nl, and de, mlanguage fix, file(todo) creates

J. Weesie 171

the files todo en.do, todo nl.do, and todo de.do with label information to be
translated into en, nl, and de, respectively. A language file will not be produced
for a language for which no action is needed. A language file may consist of only a
series of label value statements to attach existing value labels to variables; such
files need not be edited and can be run unchanged. Usually, however, translations
must be provided in these language files.

nocomment, an option with the subcommands add and fix only, suppresses including
each text to be translated as a comment to facilitate verifying that translations are
correct.

noinstruction, an option with the subcommands add and fix only, suppresses the
instructions at the beginning of script files.

novalue, an option with the subcommands list and fix only, suppresses generating
label statements that define or attach value labels.

column(#), an option with the subcommands add and fix only, is rarely used. It spec-
ifies the column at which comments are to be written. The default is column(60).

unlabeled, an option with the subcommands add and fix only, specifies that label

statements be generated for the data label and for the variable labels that are cur-
rently undefined.

replace, an option with the subcommands add and fix only, specifies that output files
be overwritten if they already exist.

same, an option with subcommand check only, verifies that value labels attached to a
variable for different languages provide mappings for the same set of values (“com-
patibility”).

4 ISO-639 language codes

You may name languages as you please. You may name Dutch labels Nederlnd,
Holland, Dutch, LowLands, or whatever else appeals to you. label language and
mlanguage allow language names of up to 8 letters; the names may not contain nonal-
phabetic characters. The language names Nederlands (too long) and Pays-Bas (invalid
character) are therefore not allowed.

For consistency across datasets, if the language you are creating is a spoken language,
I recommend that you use the ISO 639-1 two-letter codes if possible; ISO-639 provides
three-letter codes for less-widely used languages. A subset of the codes is listed in the
table below.

(Continued on next page)

172 Multilingual datasets

English name English name
alpha2 alpha3 of Language alpha2 alpha3 of Language

ar ara Arabic it ita Italian
bnt Bantu ja jpn Japanese

eu baq Basque la lat Latin
bg bul Bulgarian lv lav Latvian
zh chi Chinese lt lit Lithuanian
hr scr Croation no nor Norwegian
cs cze Czech pap Papiamento
da dan Danish fa per Persian
nl dut Dutch and Flemish pl pol Polish
en eng English pt por Portuguese
eo epo Esperanto ro rum Romanian
et est Estonian ru rus Russian
fi fin Finnish sr scc Serbian
fr fre French sgn Sign languages
fy fry Frisian sk slo Slovak
de ger German es spa Spanish; Castilian
el gre Greek (modern) sw swa Swahili
kl kal Greenlandic sv swe Swedish
he heb Hebrew th tha Thai
hi hin Hindi tr tur Turkish
hu hun Hungarian uk ukr Ukrainian
is ice Icelandic uz uzb Uzbek
id ind Indonesian vi vie Vietnamese
ga gle Irish cy wel Welsh

The full list can be found at

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

5 Example

As an illustration of how mlanguage can assist you in the construction and maintenance
of a multilingual dataset, I consider the automobile data often used in Stata documen-
tation. For simplicity, I have only kept the variables make, price, rep78, rep79, and
foreign.

(Continued on next page)

J. Weesie 173

. describe

Contains data from cardata.dta
obs: 74
vars: 5 18 Apr 2005 16:32
size: 1,924 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

make str17 %-17s
price int %8.0gc
rep78 byte %13.0g
rep79 byte %9.0g
foreign byte %8.0g

Sorted by: foreign

The output is fairly incomprehensible, especially if you are unfamiliar with the data.
The dataset is not labeled; the variables are not labeled; and moreover, the categorical
variables rep78, rep79, and foreign are not value labeled. In fact, I removed the labels
to show how to add labels.

5.1 Adding labels in a first language

Three pieces of label information can be added to this dataset. First, I add a label
describing the dataset:

. label data "1978 Automobile Data"

Next, I add descriptive labels to the variables:

. label var make "Make and Model"

. label var price "Price"

. label var rep78 "Repair Record 1978"

. label var rep79 "Repair Record 1979"

. label var foreign "Car type"

Finally, I want to add value labels describing the categories of variables. Stata treats
value labels as special objects that are defined once and can be attached to as many
variables as needed.

. label define repair 1 "very bad" 2 "bad" 3 "reasonable" 4 "good" 5 "very good"

. label value rep78 repair

. label value rep79 repair

. label define origin 0 Domestic 1 Foreign

. label value foreign origin

174 Multilingual datasets

Now the output of describe and label list looks more appealing:

. des

Contains data from cardata.dta
obs: 74 1978 Automobile Data
vars: 5 18 Apr 2005 16:32
size: 1,924 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

make str17 %-17s Make and Model
price int %8.0gc Price
rep78 byte %13.0g repair Repair Record 1978
rep79 byte %10.0g repair Repair Record 1979
foreign byte %8.0g origin Car type

Sorted by: foreign

. label list
origin:

0 Domestic
1 Foreign

repair:
1 very bad
2 bad
3 reasonable
4 good
5 very good

at least if you prefer to look at labeling information in English. I have now defined a
single set of labels. Like label language, mlanguage refers to different sets of labels as
languages. The subcommand dir (or its synonym query, and in fact also the “empty”
subcommand) displays the available languages and the currently active language.

. mlanguage dir

Value and variable labels have been defined in only one language: default

We are told that label information is available in only one language. This language has
not yet been identified and is therefore referred to as default. I prefer to make it clear
that the labels that I entered above are the English versions, so I use the two letter
(alpha2) ISO-639 code en for English. The rename subcommand of mlanguage can be
used to change the language name from the current value default to en.

. mlanguage rename en, label
(language default renamed en)

. mlanguage dir

Value and variable labels have been defined in only one language: en

The option label of mlanguage rename specifies that the names of the value labels
be renamed to fit the naming scheme for value labels in multilingual datasets adopted
by mlanguage, namely, basename languagename. Below, I will add Dutch (nl) and
German (de) versions of value labels. At that moment, there will be three versions of
the repair value label:

J. Weesie 175

repair en English version of value label repair
repair nl Dutch version of value label repair
repair de German version of value label repair

The option label ensured that the English versions of the value labels are called
repair en and origin en rather than repair and origin so that all languages are
treated equally. After this last modification, the English labeling in the dataset is
complete.

. describe

Contains data from cardata.dta
obs: 74 1978 Automobile Data
vars: 5 18 Apr 2005 16:32
size: 1,924 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

make str17 %-17s Make and Model
price int %8.0gc Price
rep78 byte %13.0g repair_en

Repair Record 1978
rep79 byte %10.0g repair_en

Repair Record 1979
foreign byte %8.0g origin_en

Car type

Sorted by: foreign

The names of the variable labels in the output look somewhat poorly aligned. This is
due to the larger length of the names of the value labels.

5.2 Adding labels in a second language

Next I want to add support for the Dutch language with ISO-639 alpha2 code nl. This
requires a large number of label statements, paralleling those that defined the English
labels.

. label language nl, new

. label data "Dutch data label"

. label var rep78 "Dutch label for rep78"
...

. label define repair_nl 1 "text1" 2 "text2" ... 5 "text5"

. label value rep78 repair_nl

. label value rep79 repair_nl
...

This is just a pet example, as I speak Dutch myself. Therefore, this is not very difficult,
and I should be able to do this without error. With a dataset with thousands of variables
and value labels, it is hardly feasible to work in this way. Moreover, if I wanted to
produce a version in Spanish, I would have to turn to a translator. The subcommand
add of mlanguage is designed for this situation. I will first add labels in the language
nl:

176 Multilingual datasets

. mlanguage add nl, saving(tonl) column(55)
file tonl.do was successfully created

mlanguage created a text file tonl.do with the required Stata label commands. Note
that these commands have not yet been processed. We must edit the file before executing
the commands.

. type tonl.do
// instruction
// (1) translate the quoted strings into language nl
// (2) save the file under a new name
// (3) execute the saved file with the current data set in memory
// (4) use -mlanguage list- to verify results

label language nl, new

label data ‘"1978 Automobile Data"’ // 1978 Automobile Data
label var make ‘"Make and Model"’ // Make and Model
label var price ‘"Price"’ // Price
label var rep78 ‘"Repair Record 1978"’ // Repair Record 1978
label var rep79 ‘"Repair Record 1979"’ // Repair Record 1979
label var foreign ‘"Car type"’ // Car type

label define origin_nl 0 ‘"Domestic"’ // Domestic
label define origin_nl 1 ‘"Foreign"’ , add // Foreign

label define repair_nl 1 ‘"very bad"’ // very bad
label define repair_nl 2 ‘"bad"’ , add // bad
label define repair_nl 3 ‘"reasonable"’ , add // reasonable
label define repair_nl 4 ‘"good"’ , add // good
label define repair_nl 5 ‘"very good"’ , add // very good

// no changed needed after this point
label value rep78 repair_nl
label value rep79 repair_nl
label value foreign origin_nl

// end-of file

The file starts with a series of comment lines with instruction; recall that Stata treats
all text after // until the end-of-line as a comment. The first statement

label language nl, new

adds a new language, nl, initially without any labels. The rest of this file labels the data:
there is one command line for the description of the dataset, five command lines with
variable labels, two command lines for the definition of the value label origin nl, and
five lines for repair nl. The value labels are defined one mapping at a time, making it
easier to work in the file. It would also be necessary if we were dealing with value labels
with lots of mappings. In quoted strings, the English labels are given—Stata cannot,
of course, do the translation itself. These strings should be translated into their Dutch
equivalents. Throughout compound quotes ‘" and "’ rather than the simpler double
quotes " are used; compound quotes allow quotes in the label texts. The file contains
the English labels in comments. These comments should not be changed. Including the
original labels in comments facilitates the translation and verification process.

J. Weesie 177

In this case, I translated the English labels in the file tonl.do into their Dutch equiva-
lents and named this file addnl.do. The contents of this file are

. type addnl.do
// instruction
// (1) translate the quoted strings into language nl
// (2) save the file under a new name
// (3) execute the saved file with the current data set in memory
// (4) use -language list- to verify results

label language nl, new

label data ‘"Gegevens over personenauto’s (1978)"’ // 1978 Automobile Data
label var make ‘"Merk en model"’ // Make and Model
label var price ‘"Prijs"’ // Price
label var rep78 ‘"Onderhoud 1978"’ // Repair Record 1978
label var foreign ‘"Auto type"’ // Car type
label var rep79 ‘"Onderhoud 1979"’ // Repair Record 1979

label define origin_nl 0 ‘"Amerikaans"’ // Domestic
label define origin_nl 1 ‘"Overig"’ , add // Foreign

label define repair_nl 1 ‘"zeer slecht"’ // very bad
label define repair_nl 2 ‘"slecht"’ , add // bad
label define repair_nl 3 ‘"redelijk"’ , add // reasonable
label define repair_nl 4 ‘"goed"’ , add // good
label define repair_nl 5 ‘"zeer goed"’ , add // very good

// no changed needed after this point
label value rep78 repair_nl
label value foreign origin_nl
label value rep79 repair_nl

// end-of file

We are now ready to actually add the Dutch labels to the data. All we have to do is to
execute addnl.do, using do or run, making sure that the original data are in memory:

. do addnl

Indeed the dataset is now bilingual, with nl the active language.

(Continued on next page)

178 Multilingual datasets

. mlanguage

Available languages : en nl
Current language : nl

. describe

Contains data from cardata.dta
obs: 74 Gegevens over personenauto’s

(1978)
vars: 5 18 Apr 2005 16:32
size: 1,924 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

make str17 %-17s Merk en model
price int %8.0gc Prijs
rep78 byte %13.0g repair_nl

Onderhoud 1978
rep79 byte %11.0g repair_nl

Onderhoud 1979
foreign byte %10.0g origin_nl

Auto type

Sorted by: foreign

. label list
repair_nl:

1 zeer slecht
2 slecht
3 redelijk
4 goed
5 zeer goed

origin_nl:
0 Amerikaans
1 Overig

origin_en:
0 Domestic
1 Foreign

repair_en:
1 very bad
2 bad
3 reasonable
4 good
5 very good

You can now tabulate a variable with Dutch value labels:

. tab rep78

Onderhoud
1978 Freq. Percent Cum.

zeer slecht 2 2.90 2.90
slecht 8 11.59 14.49

redelijk 30 43.48 57.97
goed 18 26.09 84.06

zeer goed 11 15.94 100.00

Total 69 100.00

J. Weesie 179

The English labels are still available—all sets of labels are saved with the data. We can
switch easily, and almost instantly, between languages:

. mlanguage select en

. tab rep78

Repair
Record 1978 Freq. Percent Cum.

very bad 2 2.90 2.90
bad 8 11.59 14.49

reasonable 30 43.48 57.97
good 18 26.09 84.06

very good 11 15.94 100.00

Total 69 100.00

The English labels were activated and are currently active. You can also use a set of
labels temporarily.

. mlang set nl: tab rep78 rep79
(output omitted)

5.3 Adding more languages

We continue adding a third set of labels in German with ISO code de. mlanguage add

creates a file with the labels in the “current language”. If you prefer to translate from
English to German, you must make sure that English is the current label language:

. mlanguage select en

. mlanguage add de, saving(tode)

Alternatively, if you prefer translating Dutch into German, you should make Dutch the
current language before invoking mlanguage add.

. mlanguage select nl

. mlanguage add de, saving(tode)

The value labels that will contain the German labels are origin de and repair de. The
“initial” label texts are in Dutch because Dutch was the current language at the time
the file tode.do was created. Next we must translate the Dutch labels into German
and save the edited file as addde.do. To save paper, we do not show the contents of
tode.do and addde.do. Finally, to add de labels, the translated script addde.do must
be executed.

. do addde

This results in a trilingual dataset:

. mlang

Available languages : de en nl
Current language : de

180 Multilingual datasets

We can obtain a comparative view of the labeling information using the list subcom-
mand of mlanguage:

. mlanguage list en nl de

Label information for languages en nl de

Contains data from cardata.dta

en 1978 Automobile Data
nl Gegevens over personenauto’s (1978)
de Autodaten 1978

Variable Language Value label Variable label

make en Make and Model
nl Merk en model
de Marke und Modell

price en Price
nl Prijs
de Prijs

rep78 en repair_en Repair Record 1978
nl repair_nl Onderhoud 1978
de repair_de Wartungskosten 1978

rep79 en repair_en Repair Record 1979
nl repair_nl Onderhoud 1979
de repair_de Wartungskosten 1979

foreign en origin_en Car type
nl origin_nl Auto type
de origin_de Auto typos

Value labels by language-label pattern

pattern: (en repair_en) (nl repair_nl) (de repair_de)
varlist: rep78 rep79

repair_en:
1 very bad
2 bad
3 reasonable
4 good
5 very good

repair_nl:
1 zeer slecht
2 slecht
3 redelijk
4 goed
5 zeer goed

repair_de:
1 sehr slecht
2 slecht
3 befriedigend
4 gut
5 sehr gut

pattern: (en origin_en) (nl origin_nl) (de origin_de)
varlist: foreign

J. Weesie 181

origin_en:
0 Domestic
1 Foreign

origin_nl:
0 Amerikaans
1 Overig

origin_de:
0 Amerikanisch
1 sonstige

Focusing first on the describe-like table with the variable labels in all languages, you
will notice that the variable labels for the variable price in Dutch (nl) and German
(de) are the same. This was an honest mistake while I made the translation. This can
be easily fixed:

. mlanguage select de : label var price "Preis"

Although in a more realistic application, I would change the file addde.do rather than
make an interactive change.

Second, mlanguage list has listed the value labels, grouped in “language-label pat-
terns”. This part of the output makes it easy to validate the collections of related value
labels. Occasionally, this may also be useful if you find the texts of some value label too
vague. If you are working with the English labels and tabulate the labels of foreign,
you might find them vague. Foreign to what? Domestic where? You may find the labels
in the other languages helpful in the interpretation.

. mlang list, var(foreign) nodes

Value labels by language-label pattern

pattern: (de origin_de) (en origin_en) (nl origin_nl)
varlist: foreign

origin_de:
0 Amerikanisch
1 sonstige

origin_en:
0 Domestic
1 Foreign

origin_nl:
0 Amerikaans
1 Overig

❑ Technical Note

Note that the order of the languages in the output corresponds to the ordering shown by
mlanguage dir. In the first example of mlanguage list, we overruled the ordering to
one we liked better. We could also have selected a subset of the available languages.

❑

182 Multilingual datasets

5.4 Checking for integrity

After you have worked with a multilingual dataset for some time, the labeling informa-
tion may need some maintenance work. You probably added variables that were variable
or value labeled in the language in which you were working at that time, but you may
have overlooked—or not have been able or willing—to add labels in the other languages
as well. Maybe you have been working with colleagues who work in different languages,
each adding variables with labels in different languages. Comparing the label sets across
the languages “by hand” is possible, but is hardly amusing and certainly error prone in
all but very small datasets. The subcommand check of mlanguage assists in the more
complicated part of the job: verifying that the value labels are really defined and are
consistent, complete, and compatible.

Consistency of value labels across languages means that if variables x1 and x2 share a
value label in language L1, they cannot be attached to different value labels in language
L2. For example, suppose that in en, the variables rep78 and rep79 share the value label
repair en, while in nl, rep78 is value labeled by repair nl and rep79 by origin nl.
Then we would say that the value labeling is inconsistent. If the two variables share
a value label, they must be in commensurable units, share meaning, etc. Such a rela-
tionship between the two variables holds in en, but not in nl. This difference in the
relationships between variables is called “inconsistency”. This form of inconsistency
indicates a labeling problem that probably needs to be fixed. In the following example,
I mixed up the value labels for repair record and for national origin of equipment. I
should attach the correct value label to variable rep79 in language nl. This need not
be a serious problem, though. check only compares the names of the value labels, not
the label contents. Absence of evidence (of commensurability) does not imply evidence
of absence. You might attach two value labels that are in fact duplicates, i.e., consist
of the same set of mapping. In this case, the problem is one of redundancy. Experts in
database management stress that redundancy should be avoided because it threatens
data integrity; the waste of resources is trivial in comparison. I recommend avoiding
redundancy. In a companion article (Weesie 2005), I describe a command labeldup

that identifies duplicate value labels and optionally eliminates them.

We say that the value labeling is complete if variables are either value labeled in
all languages or in none. If rep78 is value labeled in en, but not in nl, the labeling is
incomplete. Incompleteness may be due to value labels, but also to variable labels and
to the labels of the dataset. The subcommand fix facilitates completing the labeling
through a procedure that resembles adding a new language.

Compatibility involves a comparison of the value labels that are linked to a variable
in different languages. The value labels are compatible if they provide mappings for
the same set of values in each of the languages. Suppose that the English value label
origin en of foreign consists of mappings for 0 and 1, say 0 → “Domestic” and 1 →
“Foreign”, while the German value label origin de of foreign provides mappings for
0, 1, and 2, for example 0 → “Europa”, 1 → “Amerika”, and 2 → “Asien”. Thus 2
is mapped in the German label but not in the English label. This will probably be an
error that needs to be fixed.

J. Weesie 183

To illustrate mlanguage check, I added variables rep80, engine, and fuel, which I
tried to label, but I did not try very hard. In the English label set, we have

. mlang select en

. des

Contains data from cardata.dta
obs: 74 1978 Automobile Data
vars: 8 18 Apr 2005 16:32
size: 2,146 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

make str17 %-17s Make and Model
price int %8.0gc Price
rep78 byte %13.0g repair_en

Repair Record 1978
rep79 byte %12.0g repair_en

Repair Record 1979
foreign byte %12.0g origin_en

Car type
rep80 byte %11.0g Repair Record 1980
engine byte %12.0g origin_en

Engine type
fuel byte %13.0g fuel_en Type of fuel

Sorted by: foreign
Note: dataset has changed since last saved

How well did I do?

. mlanguage check
Inconsistency in value labeling found
Check variable: rep80

de: repair_nl
en:
nl: repair_nl

Against varlist: rep78 rep79
de: repair_de
en: repair_en
nl: repair_nl

r(198);

I made a mistake, attaching to rep80 in German the Dutch label repair nl (inconsis-
tency), and I forgot to attach a value label in English (incompleteness). Inconsistency
has to be solved manually:

. mlang select de : label value rep80 repair de

Incompleteness may be resolved by hand

. mlang select en : label value rep80 repair en

but you may want the assistance of mlanguage fix. After making these changes, also
make sure that mlanguage check does not find incompatibilities by specifying the op-
tion same.

184 Multilingual datasets

. mlanguage check, same
value labeling is consistent
value label fuel_nl not yet defined
additional value labels have to be defined
value labels are compatible

Note that mlanguage check has also detected that the variable fuel is value labeled in
Dutch by the label fuel nl but that this label has not yet been defined. There is work
to be done!

5.5 Fixing incompleteness

mlanguage fix helps make the labeling information complete. If some element of the
data (dataset, variables, categories) is labeled in one language, it should be labeled
in all languages. The command does not demand that everything always be labeled.
mlanguage fix is perfectly happy if in a dataset with labels in en, nl, and de, the
variable zipcode has no variable or value labels in any of the languages. However, if
the variable rep78 is variable labeled in en, it assumes that you also want to add variable
labels for rep78 in nl and de and creates corresponding label variable statements.
This sounds easy for variable labels and for the data label, but what about for value
labels? There are really two possibilities. You may already have defined the value label
in, say, nl to be the value label of rep80 (e.g., you used it to value label rep78) and
failed to make the link. Alternatively, you may need to define new value labels by
translating the English value labels. mlanguage fix tries to make a reasonable guess
on what you want by exploiting the requirement that value labels be consistent across
languages in the sense explained in the previous subsection. mlanguage fix thus will
fail if the value labeling is currently inconsistent. How consistency helps mlanguage

fix make an educated guess is easily explained by an example. Suppose that in en, the
variables rep78 and rep79 share the value label repair en. Furthermore, in nl, the
variable rep78 is value labeled by repair nl, but rep79 is not value labeled. Finally, in
de, neither rep78 nor rep79 are value labeled. Now mlanguage fix works as follows.
The variables rep78 and rep79 have a common value label in one language (in this
example en); hence, they are “of the same type”. This is a conceptual relation between
variables, and it should hold, irrespective of language. Thus we can conclude that the
variables should also share a value label in nl and in de. In the language nl, this is
simple. The value label for rep79 must be the one that is already attached to rep78;
thus mlanguage fix writes in todo nl.do one statement to fix the missing link:

label value rep78 repair nl

In the language de, the situation is different. fix has inferred that the repair

variables must be value labeled because they are in en. However, we do not already
have a value label for this in de; at least, mlanguage fix does not know of any. Thus
mlanguage fix must produce code to define the value label in de, named repair de,
and to attach this new label to the variables:

J. Weesie 185

label define repair_de 1 "very bad"
label define repair_de 2 "bad"
...
label value rep78 repair de
label value rep79 repair de

Similar to the mlanguage add subcommand, mlanguage fix creates a series of files,
one for each language, with the label information that you must supply. These files
are very similar to the do-files produced by mlanguage add but include only the labels
needed to make the labeling complete. You must translate (or have someone else do it)
the labels in each of the do-files and execute the do-files, and voila, the dataset is in
good shape again.

A careful reader may now wonder about the translation. In the case of mlanguage
add, the labels were initialized to the values in the current language, so all translations
are from the current language to the added language. With mlanguage fix, the case is
more complicated if you are dealing with more than two languages. There are two issues
here, which we will discuss in the context of our three-language example. Suppose that
a variable label is missing in German. If the corresponding variable label is available in
only one of the other languages, that label must be used as an initial value for translation.
But what if both English and Dutch versions are available? mlanguage fix must choose
which one to use. For this purpose, mlanguage fix uses an ordering of the languages;
the first language in this ordering in which the label is available is used for initialization.
The ordering is just the languagenamelist argument to mlanguage fix; if this list is not
specified, mlanguage fix uses the ordering of the available languages as reported by
mlanguage dir.

Second, the fix-file for the German label set may contain some labels initialized
in English and other labels in Dutch. We include the name of the “source language”
in the comments so that different people can work on “their” translations.1 Enough
words—let’s see some action.

. mlanguage fix, saving(F) replace noinstruct

Language de needs additional labeling; see file F de.do
Language en needs additional labeling; see file F en.do
Language nl needs additional labeling; see file F nl.do

Since I planned to display the files, I suppressed the instructions. The file F en.do

consists of the labeling needed to make the English label set complete.

. type F_en.do
label language en

// the rest of this file attaches value labels to variables
// you need not make any changes below this point

label value rep80 repair en

1 If this design, in which labels are grouped by target language, is inconvenient, you may split the
files using an editor or a grep-like utility. If this does not work well, please contact me, and I may
consider adding an option to split the labels in (source, target) specific files.

186 Multilingual datasets

The first line activates English (en). We are instructed that the value label repair en

must be attached to rep80, but we need not do anything for this—apart from running
the file F en.do.

Similarly, we look at the files F nl.do and F de.do:

. type F_nl.do
label language nl

label define fuel nl 1 ‘"gas"’ // en: gas
label define fuel nl 2 ‘"diesel"’ , add // en: diesel
label define fuel nl 3 ‘"liquid gas"’ , add // en: liquid gas
label define fuel nl 4 ‘"vegetable oil"’ , add // en: vegetable oil

// the rest of this file attaches value labels to variables
// you need not make any changes below this point

. type F_de.do
label language de

label variable rep80 ‘"Repair Record 1980"’ // en: Repair Record 1980
label variable fuel ‘"Type of fuel"’ // en: Type of fuel

label define fuel de 1 ‘"gas"’ // en: gas
label define fuel de 2 ‘"diesel"’ , add // en: diesel
label define fuel de 3 ‘"liquid gas"’ , add // en: liquid gas
label define fuel de 4 ‘"vegetable oil"’ , add // en: vegetable oil

// the rest of this file attaches value labels to variables
// you need not make any changes below this point

label value fuel fuel de

In F nl.do, we see that statements are included to define the Dutch version of
value label for fuel. No statement to attach the label is included—the link is already
established. The German label requires the most work: Two variable labels and one
value label must be translated. If the translations are done, all we have to do is to run
the scripts, and the labeling is complete again.

❑ Technical Note

If the labeling of a language is consistent and complete, adding a new language ln with

. language add ln, saving(toln)

is equivalent to adding an empty language and then fixing the problem!

. label language ln, new

. language fix, saving(toln)

❑

6 References

Weesie, J. 2005. Value label utilities: labeldup and labelrename. Stata Journal 5(2):
14–21.

J. Weesie 187

About the Author

Jeroen Weesie is associate professor of Mathematical Sociology at the Department of Sociology
at Utrecht University.

