
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.



The Stata Journal (2005)
5, Number 2, pp. 154–161

Value label utilities: labeldup and labelrename

Jeroen Weesie
Utrecht University

Abstract. I describe two utilities dealing with value labels. labeldup reports and
optionally removes duplicate value labels. labelrename renames a value label.
Both utilities, of course, preserve the links between variables and value labels and
support multilingual datasets.

Keywords: dm0012, labeldup, labelrename, value labels, data integrity, multilin-
gual datasets

1 Introduction

This brief insert describes two utilities for value labels. labeldup describes duplicate
value labels, e.g., two or more value labels that consist of two value-to-string mappings,
namely, 0 to “no” and 1 to “yes”. labeldup optionally removes the duplicate labels,
using one of the original value labels while making sure that variables are still correctly
value labeled. labelrename renames a value label and updates all associations between
variables and this value label.

These two utilities were developed in parallel to mlanguage, which is described in
Weesie (2005). mlanguage imposes a naming convention on the value labels. The abil-
ity to rename value labels in a dataset makes it easier to match those conventions.
The ability to eliminate duplicate value labels facilitates adding a set of labels in an-
other language—obviously, you would want to translate the value label (0 → “no”,
1 → “yes”) into, say, Spanish, only once, not 100 times. Not only would you be wast-
ing time, but it is easy to make mistakes: different translations in different copies of
the value label, typos, translating the wrong labels, etc. Duplication of value labels is
a form of redundancy (non-normalization) that you should avoid. A trivial reason is
that datasets are larger than necessary. In most cases, you would hardly bother about
this. Much more importantly, redundancy is a threat to data integrity, increases the
maintenance costs of datasets, and makes it more difficult to create correct multilingual
datasets, i.e., datasets with more than one defined set of labels.

These two utilities provide some support for multilingual datasets generated with
the commands label language (included in the Stata update 8.1) and mlanguage (see
Weesie 2005). It is possible to rename value labels that belong to a dormant (inactive)
language. Duplicates among the value labels are found, irrespective of the language
sets to which they belong. This is only a first step in multilingual support. Currently,
no simple way is provided to rename matching value labels in multiple languages; you
have to rename value labels in each of the languages “manually”. Also, no support is
provided to select among duplicates only if equivalent duplications exist in each of the
languages.

c© 2005 StataCorp LP dm0012



J. Weesie 155

2 Example

Many Stata users will sometimes face the challenge of importing a dataset stored in
another format. Stat/Transfer, an independent software program from Circle Systems,
can transfer a dataset between, say, SPSS’s .sav format and Stata’s .dta format. Many
other statistical database systems support value labels, treating them as properties of
variables rather than as separate objects that may be attached to variables, as Stata
does. Stat/Transfer generates a Stata dataset with separate value labels for each value-
labeled variable. Thus imported databases will likely have considerable value label
redundancy. We will illustrate how the commands labeldup and labelrename can be
used to “polish” the value labels of such an imported dataset.

The starting point of this example is an artificial Stata dataset that I constructed
for this purpose from the standard automobile data.

. use auto_labutil, clear
(1978 Automobile Data)

. describe

Contains data from auto_labutil.dta
obs: 74 1978 Automobile Data
vars: 7 18 Apr 2005 13:00
size: 2,072 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

make str17 %-17s Make and Model
price int %8.0gc Price
rep78 byte %13.0g repair Repair Record 1978
rep79 byte %9.0g repair Repair Record 1979
rep80 byte %9.0g repair Repair Record 1980
foreign byte %8.0g origin Car type
engine byte %9.0g origin Engine type

Sorted by: foreign

. label list
origin:

0 Domestic
1 Foreign

repair:
1 very bad
2 bad
3 mediocre
4 good
5 very good

This is a standard Stata dataset with five value-labeled variables and two value
labels. The value label repair is attached to three variables (rep78, rep79, and rep80);
the value label origin is attached to two variables (engine and foreign).

Now suppose that the data are not yet in Stata format, but, say, are in a SPSS system
file auto labutil.sav. I want to convert this SPSS system file into Stata format. On
my computer, I use the command-line interface of Stat/Transfer to convert the dataset



156 Value label utilities

from SPSS into Stata format with the following command (the flag /y indicates the
output files may overwrite existing files):

. shell c:\ProgramFiles\StatTransfer7\st auto labutil.sav
> auto labutil from spss.dta /y

I can now load and describe the data:

. use auto_labutil_from_spss, clear

. des

Contains data from auto_labutil_from_spss.dta
obs: 74
vars: 7 18 Apr 2005 13:00
size: 2,072 (99.9% of memory free)

storage display value
variable name type format label variable label

make str17 %17s make and model
price int %8.0g price
rep78 byte %8.0g rep78 repair record 1978
rep79 byte %8.0g rep79 repair record 1979
rep80 byte %8.0g rep80 repair record 1980
foreign byte %8.0g foreign car type
engine byte %8.0g engine engine type

Sorted by:

. label list
rep78:

1 very bad
2 bad
3 mediocre
4 good
5 very good

rep79:
1 very bad
2 bad
3 mediocre
4 good
5 very good

rep80:
1 very bad
2 bad
3 mediocre
4 good
5 very good

foreign:
0 domestic
1 foreign

engine:
0 domestic
1 foreign

I focus on the value labels. As stated before, Stat/Transfer has created five value
labels named after the variables to which they are attached. Clearly the value labels
engine and foreign, and similarly rep78, rep79, and rep80, are identically defined.
In this pet example, these replications are easy to spot, and it would be easy to clean up



J. Weesie 157

the data. For a big dataset with thousands of variables and thousands of value labels,
such replications are much harder to track, and eliminating the duplicates requires a lot
of irritating and error-prone work. Here labeldup automates the process.

. labeldup

2 sets of duplicate value labels found:

Dupset 1: engine foreign
Dupset 2: rep78 rep79 rep80

Specify option select to compress value labels using underlined labels
Specify option names() to select other value names to be retained

labeldup has indeed correctly identified the two sets of duplicate value labels. It
also informs us what will happen if instructed to select unique value labels among the
duplicate sets: From the first set, it will use the underlined label engine; from the
second set, it will use the underlined rep78. These choices may be overruled with the
option names(). In this example, I accept the defaults and reinvoke labeldup with the
option select.

. labeldup, select

2 sets of duplicate value labels found:

Dupset 1: engine foreign
Dupset 2: rep78 rep79 rep80

. des

Contains data from auto_labutil_from_spss.dta
obs: 74
vars: 7 18 Apr 2005 13:00
size: 2,072 (99.9% of memory free)

storage display value
variable name type format label variable label

make str17 %17s make and model
price int %8.0g price
rep78 byte %8.0g rep78 repair record 1978
rep79 byte %9.0g rep78 repair record 1979
rep80 byte %9.0g rep78 repair record 1980
foreign byte %8.0g engine car type
engine byte %8.0g engine engine type

Sorted by:

The variables are now correctly labeled using the two value labels named rep78 and
engine, but I am not satisfied. I don’t like mixing up names of variables and names of
value labels. The last modification that I want to make is to rename the value labels
from rep78 to repair and from engine to origin, just as in the dataset that I showed
you in the beginning of this insert.

. labelrename rep78 repair

Value label rep78 renamed to repair
value label rep78 was attached to variables rep78 rep79 rep80



158 Value label utilities

. labelrename engine origin

Value label engine renamed to origin
value label engine was attached to variables foreign engine

. des

Contains data from auto_labutil_from_spss.dta
obs: 74
vars: 7 18 Apr 2005 13:00
size: 2,072 (99.9% of memory free)

storage display value
variable name type format label variable label

make str17 %17s make and model
price int %8.0g price
rep78 byte %9.0g repair repair record 1978
rep79 byte %9.0g repair repair record 1979
rep80 byte %9.0g repair repair record 1980
foreign byte %8.0g origin car type
engine byte %8.0g origin engine type

Sorted by:

. label list
origin:

0 domestic
1 foreign

repair:
1 very bad
2 bad
3 mediocre
4 good
5 very good

❑ Technical Note

The careful reader will have noticed that the capitalization of the variable and value
labels is not the same as in the original data. Converting data to SPSS and back
to Stata loses capitalization since SPSS does not distinguish between uppercase and
lowercase letters. For the variable labels, this can be fixed relatively easily using the
case-conversion function proper(). This function puts the first characters of words in
uppercase and the other characters in lowercase. Thus we can loop over all variables,
extract the variable label, convert it into the new form, and assign it as the variable
label:

. foreach v of varlist _all {

. local oldlabel : variable label ‘v’

. local newlabel = proper(‘"‘oldlabel’"’)

. label var ‘v’ ‘"‘newlabel’"’

. }

Stata 8 introduced new inline macro expansion functions ‘: ’ and ‘= ’, which make
it possible to code this more compactly as



J. Weesie 159

. foreach v of varlist _all {

. local newlabel = proper(‘"‘:variable label ‘v’’"’)

. label var ‘v’ ‘"‘newlabel’"’

. }

or even more compactly, but almost incomprehensibly, as

. foreach v of varlist _all {

. label var ‘v’ ‘"‘=proper(‘"‘:variable label ‘v’’"’)’"’

. }

Now the variable labels have the appropriate capitalization. There is no comparable
method to convert the case of value labels. We have to accept the lowercase labels,
unless we are willing to do some intricate programming via uselabel.

❑

3 The commands

3.1 The command labeldup

Syntax

labeldup
[

labellist1

] [

, select names(labellist2) nodrop
]

Description

labeldup reports, and optionally removes, duplicate value labels among the value labels
in labellist1 or in all value labels if no labellist1 is specified. Duplicate value labels consists
of identical value-to-text mappings, e.g., two value labels A and B that both map 0 to
“no” and 1 to “yes” (and nothing else). labeldup reports such duplicate value labels. It
can also compress the dataset, using one value label rather than multiple labels. Links
between variables and value labels will, of course, be preserved, even in languages that
are inactive (see the description of mlanguage in Weesie [2005]).

Options

select specifies that duplicate value labels be removed, using the value label names
that come first alphabetically. For instance, if value labels B, C, and D are duplicates,
the name B is selected. Among the duplicate value labels V101, V102, and V103, the
label V101 is selected. See option names() to overrule this behavior.

names(labellist2) specifies a list labellist2 of value labels that you prefer to retain as
value label names; in each list of duplicate value labels, at most one of the preferred
names may occur. If no preferred name is found among the duplicates, labeldup
takes the first name alphabetically.



160 Value label utilities

nodrop suppresses dropping value labels that are no longer used, i.e., that are not
attached to a variable. In the case of multilingual datasets, a value label is not used
if it is not attached to a variable either in active language or in one of the dormant
languages.

3.2 The command labelrename

Syntax

labelrename oldname newname
[

, force
]

Description

labelrename renames a value label from oldname to newname, making sure that all
variables to which oldname was attached are now attached to newname.

If a value label newname already exists, Stata verifies that oldname and newname

define the same set of value-to-text mappings.

labelrename supports multilingual datasets (see the description of mlanguage in
Weesie [2005]). If oldname is attached to variables in other languages, they are redi-
rected to newname as well.

Option

force attach name newname to all variables that currently use oldname, even if value
label oldname has not yet been defined.

3.3 Also see

We also recommend looking at the following commands that are related to labeldup

and labelrename:

Commands See

uselabel and labelbook [D] labelbook

label [D] label

label language [D] label language

mlanguage Weesie (2005)



J. Weesie 161

4 References

Weesie, J. 2005. Multilingual datasets. Stata Journal 5(2): 22–47.

About the Author

Jeroen Weesie is associate professor of Mathematical Sociology at the Department of Sociology
at Utrecht University.




