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Abstract. With the decreasing cost and the increasing ability to quickly genotype
single nucleotide polymorphisms (SNP) across the human genome, large databases
containing possibly hundreds of typed SNPs are becoming common in population-
based studies of quantitative traits. Testing for association between individual
SNPs and the quantitative trait is an important first step in the discovery of
disease susceptibility SNPs. This task, however, could be time-consuming and
tedious if a large number of SNPs is involved. In this article, I introduce two new
commands designed to facilitate the screening and testing of multiple SNPs for
possible association with quantitative traits.

Keywords: st0083, hwsnp, qtlsnp, genetic epidemiology, genetic linkage, QTL,
biallelic marker, single nucleotide polymorphisms, Hardy–Weinberg

1 Introduction

Many phenotypes of medical importance can be measured quantitatively. Even qual-
itative diseases, such as diabetes and essential hypertension, result from variation in
an underlying quantitative trait. In the last few years, there has been an increase in
population-based studies that aim to identify genomic regions and subsequent genetic
variants associated with many common diseases. This effort may begin a genome-wide
or region-wide search for association using large numbers of single nucleotide polymor-
phisms (SNP), resulting in the creation of large databases with possibly hundreds of
genotyped SNPs and possibly tens of quantitative traits to be examined.

The initial evaluation of these SNPs can be tedious and time-consuming. This mo-
tivated me to write two new Stata commands to facilitate rapid SNP screening: the
hwsnp command, which tests SNPs for Hardy–Weinberg equilibrium, and the qtlsnp

command, which uses Stata’s regression commands and options to facilitate the rapid
evaluation of multiple SNPs for possible association with a quantitative trait. Note that
although the focus of this command and article is on SNP analysis, these commands
work equally well for other biallelic markers.

c© 2005 StataCorp LP st0083



142 Exploratory SNP analysis for quantitative traits

2 The hwsnp command

hwsnp succinctly reports the results of Hardy–Weinberg equilibrium tests performed on
each of multiple SNPs. hwsnp calls genhw and reports results from both asymptotic and
exact Hardy–Weinberg (HW) equilibrium tests. Note that genhw must be installed in
order for this command to work (Cleves 1999). If it is not installed, simply type in
Stata findit genhw and follow the instructions to install genhw.

2.1 Syntax

hwsnp SNPlist
[

if exp
] [

in range
] [

, separator(string) outfile(filename)

replace
]

by . . . : may be used with hwsnp; see [R] by ([D] by in Stata 9).

SNPlist may contain one or more SNPs.

hwsnp expects the data to be in wide form—each observation representing one subject.
If the data are in long form (i.e., multiple observations per subject), reshape may be
used to transform it to wide form; see [R] reshape ([D] reshape in Stata 9).

hwsnp expects each SNP in SNPlist to be of length = 2, where the first character (or
digit) is the first allele of an individual’s genotype at the SNP locus and the second
character or digit is the second allele of that individual’s genotype at the SNP locus
(example of valid genotypes: ct, tt, 12, 22). See the separator() option if your data
are coded differently.

2.2 Options

separator(string) is used to inform hwsnp how the SNPs are coded. By default,
each SNP in SNPlist is assumed to be of length = 2, where the first character
(or digit) is the first allele of an individual’s genotype at the SNP locus and the
second character or digit is the second allele of that individual’s genotype at the
SNP locus. separator() modifies this by indicating the characters used to separate
alleles in the genotype. For example, if the genotype is coded as THR/SER, specify
separator("/").

outfile(filename) saves in filename.dta for resils for each SNP.

replace replaces an existing output file.

2.3 Example

In a recent study of individuals with congestive heart disease (CHD), we genotyped
143 CHD patients at 114 SNPs in genomic areas believed to harbor genes important in
lipid metabolism. A fairly comprehensive fasting lipid profile was performed on each
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patient, which included these four common lipid measurements: triglycerides (trig),
total cholesterol (totalchol), LDL cholesterol (ldl), and HDL cholesterol (hdl).

Following is a list of the first ten observations and eight variables in the dataset:

. use lipids, clear

. list PatientID trig totalchol ldl hdl SNP1 SNP2 SNP114 in 1/10

Patien~D trig totalc~l ldl hdl SNP1 SNP2 SNP114

1. 11107 211 228 156 30 AA CC TT
2. 11115 176 217 147 35 AA AA TT
3. 11120 69 194 135 45 AA CC TT
4. 11135 169 189 126 29 AA AC TT
5. 11141 73 159 100 44 AA AC CC

6. 11145 462 216 107 24 AA AC CC
7. 11148 167 232 160 39 AA AA TT
8. 11149 56 158 101 46 AA AA CC
9. 11155 74 129 81 33 AA AC CT
10. 11156 238 237 156 33 AA AA TT

Note that the dataset is in the wide form, containing one observation per patient,
as defined by PatientID. Because of space limitations, we only listed three of the 114
SNPs. Although in this dataset the SNPs are string variables, numeric SNP variables are
also valid.

We now test SNP1 to SNP9 for Hardy–Weinberg equilibrium using hwsnp.

. hwsnp SNP1-SNP9

Pearson LR Exact
Polymorphism chi2 P-value chi2 P-value Significance

SNP 1 98.695 0.0000 55.297 0.0000 0.0000

SNP 2 0.373 0.5415 0.373 0.5416 0.6110

SNP 3 47.607 0.0000 59.514 0.0000 0.0000

SNP 4 2.725 0.0988 2.446 0.1178 0.1331

SNP 5 1.003 0.3166 1.000 0.3173 0.3026

SNP 6 0.960 0.3271 0.930 0.3348 0.3686

SNP 7 19.003 0.0000 19.381 0.0000 0.0000

SNP 8 1.440 0.2301 1.407 0.2356 0.2271

SNP 9 0.039 0.8426 0.040 0.8424 1.0000

hwsnp tests the null hypothesis that the SNP is in Hardy–Weinberg equilibrium. It
reports Pearson’s and the likelihood-ratio chi-squared statistics, as well as the exact
significance probability. See Cleves (1999) for details about these tests.
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Note that adjustments for multiple comparisons are not being made or reported but
may need to be accounted for in the final analysis.

3 The qtlsnp command

qtlsnp displays summary results for SNP analysis of quantitative traits. It succinctly
reports on multiple SNPs and trait variables. Optionally, qtlsnp reports details for each
SNP analyzed.

By default, qtlsnp uses linear regression to compare the equality of means across
genotypes, while allowing for covariate adjustment. By specifying the median option,
qtlsnp uses median regression instead of linear regression (see [R] qreg), and by specify-
ing bs, qtlsnp uses median regression with bootstrapped VCE (see bsqreg in [R] qreg).

By default, qtlsnp assumes a codominant genetic model and tests for additive and
dominant effects, as well as testing that both effects are equal to zero. (This comparison
is equivalent to comparing means across the three possible genotypes.)

Optionally, by specifying the dominant or recessive option, qtlsnp will assume
a dominant or recessive genetic model of inheritance, respectively. For example, if the
three possible genotypes at a given SNP are cc, ct, and tt, the dominant option directs
qtlsnp to combine the cc and ct genotypes and compare the quantitative mean trait
value for these combined genotypes against the mean of the tt genotype. The recessive
option combines the ct and tt genotypes, and qtlsnp compares the quantitative mean
trait value for these combined genotypes with the mean of the cc genotype. Note that
the terms dominant and recessive as used here are arbitrary labels used only to group
genotypes.

3.1 Syntax

qtlsnp SNPlist
[

if exp
] [

in range
]

, traitvars(varlist)
[

siglev(#)

sumlev(#) class(varlist) cont(varlist) dominant recessive detail brief

nosummary means median bs robust rreg noasterisks graph rotate

outfile(filename
[

, replace
]

) effect(additive | dominant | both) overall

twoway options
]

by . . . : may be used with qtlsnp; see [R] by ([D] by in Stata 9).

SNPlist may contain one or more SNPs.

qtlsnp expects the data to be in wide form—each observation representing one subject.
If the data are in long form (i.e., multiple observations per subject), reshape may be
used to transform the data to wide form; see [R] reshape ([D] reshape in Stata 9).
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qtlsnp expects each SNP in SNPlist to have a maximum of three and a minimum of two
distinct genotypes in the data. This implies that the heterozygous genotype should be
coded consistently for each SNP. For example, for a SNP with alleles C and T, we could
code the heterozygous genotype as either CT or TC, but not both. Note that the SNPs
in SNPlist can be either string or numeric. Examples of valid genotypes include ct, t/t,
12, 2-2, and THR/SER.

3.2 Options

traitvars(varlist) supplies names of the quantitative trait variables. At least one
trait variable must be specified. Only one trait variable is allowed when graph or
outfile() is specified.

siglev(#) and sumlev(#) are used to specify the significance probability used for re-
porting results. If neither option is specified, all results are summarized. If sumlev()
is specified, only SNPs significant at p ≤ sumlev() will be reported. If only siglev()

is specified, all SNPs will be summarized, but only SNPs significant at p ≤ siglev()
will be detailed. If siglev() and graph are specified together, a horizontal line at
y = −log(siglev()) will be displayed on the plot.

class(varlist) supplies the names of categorical variables to be used as covariates in
the analyses.

cont(varlist) supplies the names of continuous variables to be used as covariates in the
analyses.

dominant or recessive specify that heterozygous are to be combined with the homozy-
gous wild or homozygous variant during analysis. If neither option is specified, a
codominant model is assumed.

detail produces a detailed report of each SNP analyzed. This option uses a distilled
version of Tony Brady’s reformat command (type findit reformat in Stata).

brief is used with detail to suppress printing details for all covariates in the model.
If brief is specified, only model statistics for the SNPs are reported.

nosummary is used with detail to suppress the printing of the summary table.

means is used with detail to produce tables of summary statistics by SNP genotype.

median specifies that comparisons be based on median regression instead of linear re-
gression. This option calls Stata’s qreg command. See [R] qreg for details.

bs specifies that comparisons be based on median regression with bootstrapped VCE.
See [R] qreg for details.

robust specifies that the Huber/White/sandwich estimator of variance be used in place
of the traditional calculation.

rreg specifies that comparisons be based on robust regression instead of linear regres-
sion.
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noasterisks is used to suppress the printing of stars for significant probabilities.

graph produces graphical output of significance probabilities by SNP. Only one quanti-
tative trait is allowed with the graph option.

rotate is used with graph to exchange the x- and y-axes on the plot.

outfile(filename
[

, replace
]

) saves in filename.dta the p-values for each SNP.

effect(additive | dominant | both) is used with graph. It specifies which codominant
effect to plot. If effect() is not specified, all three “effects” will be plotted together.

overall specifies that only comparisons where the overall codominant effect is signifi-
cant at p ≤ sumlev() be outputted. This option is ignored when either dominant or
recessive are specified.

twoway options are most of the options documented in [G] twoway options.

3.3 Background

Assume that we have a quantitative trait Y and a candidate SNP with alleles A and B.
Further, assume that the population is in Hardy–Weinberg equilibrium and that the two
alleles have frequencies of pA and pB = (1 − pA), respectively. For this SNP, there are
three possible genotypes in the population: AA, AB, and BB. Let the mean genotypic
values for the three genotypes be µ1, µ2, and µ3, respectively, and assume that the
residual variance around these means is the same for the three genotypes. Define the
additive genetic effect as

α = 0.5(µ1 − µ3) (1)

and the dominance genetic effect as

δ = 0.5(2µ2 − µ1 − µ3) (2)

The additive genetic effect, α, is the phenotypic value midway between the two
homozygotes and has the interpretation that if we were to substitute allele A for allele
B in the genotype, we would expect, on average, a phenotypic value to change α units.
The dominance value δ measures the extent to which the mean of the heterozygote AB

deviates from the average of the two homozygotes. If δ = 0, there is complete additivity
in the trait and the value of the heterozygote AB lies half-way between the values of the
two homozygotes (Lui 1997, 377–379; Falconer and Mackay 1996, chapter 8).

Cautionary Note: The additive and dominant effects are interpreted in terms of
the phenotypic means of the genotype classes. If you use median regression (median
option), the additive and dominant effects are not interpretable as such, and in that
case, perhaps only the overall test has meaning.

It is the user’s responsibility that the regression assumptions regarding the quanti-
tative trait be met. This may require that the trait measurement be transformed. In
addition, it is recommended that the user verify the correctness of the functional form
of all additional covariates included in the model. The remaining discussion assumes
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that the trait measurement is in the proper form and that all covariates are correctly
specified.

3.4 Example: Examining SNPs using linear regression

Using the same dataset as in the previous example, we will now examine the 114 SNPs
for possible association with the four lipid measurements.

We begin by examining for association with serum triglycerides (trig).

. qtlsnp SNP1-SNP114, trait(trig) sumlev(0.05)

Genetic model: Codominant

Additive Dominant
effect effect Both=0

Trait SNP N F Prob>F F Prob>F F Prob>F

trig
SNP13 143 2.61 0.108 4.43 0.037** 2.25 0.109
SNP32 143 4.30 0.040** 0.11 0.736 2.41 0.093*
SNP39 143 0.34 0.560 5.23 0.024** 2.62 0.076*
SNP48 143 13.12 0.000** 16.90 0.000***8.52 0.000***
SNP96 143 4.82 0.030** 6.65 0.011** 3.38 0.037**
SNP99 142 6.56 0.011** 1.48 0.225 4.02 0.020**

*<=0.1, **<=0.05, ***<=0.001

By default, qtlsnp will assume a codominant genetic model and will fit a linear
model after generating the appropriate indicator variables to test for additive and dom-
inant genetic effects. Because we specified sumlev(0.05), only those SNPs with at least
one significant effect with p ≤ 0.05 are summarized. In this case, only 6 of the 114 SNPs
met this criterion.

(Continued on next page)
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SNP48 looks particularly interesting. We can examine this SNP in more detail:

. qtlsnp SNP48, trait(trig) detail means nosummary

Genetic model: Codominant

SNP: SNP48 Quantitative trait: trig
Genetic model: Codominant

Summary of Triglycerides
SNP 48 Mean Std. Dev. Freq.

AA 131.26531 81.554302 98
AG 107.5 57.497508 42
GG 299.33333 220.01439 3

Total 127.81119 83.255499 143

Model: Linear regression Number of obs = 143

N Coef. Std. Err. P>|t| [95% Conf. Interval]

Additive
effect 143 84.0340 23.2017 0.000 38.1630 129.9051

Dominant
effect 143 -107.7993 26.2213 0.000 -159.6402 -55.9584

Constant 143 215.2993 23.2017 0.000 169.4283 261.1704

The first table in the output results from specifying the means option. It uses
tabulate, sum() to summarize triglycerides stratified by genotype. The second table
of the output summarizes the results from the regression model. Although this SNP

looks like it could be related to the trait either directly or through linkage with the trait
locus, we need to be cautious about this result. From the first table, we can see that
there are only three homozygous GG individuals in the sample and that the mean level
for the heterozygous is less than either of the homozygous individuals. These findings
cast doubt on the reliability of the results originally observed.

In the above example, we specified the nosummary option to suppress outputting the
default summary table.

The additive and dominance parameters of the quantitative genetic model, α and
δ from (1) and (2), can be computed from the means reported in the summary table
above. Thus the additive parameter is estimated as

α = 0.5(µ1 − µ3) = 0.5 ∗ (131.27 − 299.33) = −84.03

and the dominance parameter is estimated as

δ = 0.5(2µ2 − µ1 − µ3) = 0.5 ∗ (2 ∗ 107.5 − 131.27 − 299.33) = −107.8

Let’s now examine each SNP for association with each of the remaining three lipid
measurements. We can do this in one command. To reduce the amount of output,
we will specify sumlev(0.01). That is, we ask qtlsnp to only report those SNPs with
p-values less than or equal to 0.01.
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. qtlsnp SNP1-SNP114, trait(totalchol ldl hdl) sumlev(0.01)

Genetic model: Codominant

Additive Dominant
effect effect Both=0

Trait SNP N F Prob>F F Prob>F F Prob>F

totalchol
SNP6 143 1.00 0.320 7.15 0.008** 3.78 0.025**
SNP70 142 0.01 0.943 8.65 0.004** 4.38 0.014**
SNP83 143 8.09 0.005** 2.05 0.155 4.06 0.019**

ldl
SNP24 143 6.71 0.011** 1.54 0.216 4.85 0.009**
SNP63 142 8.58 0.004** 5.49 0.021** 4.38 0.014**

hdl
SNP19 143 5.92 0.016** 0.22 0.638 4.81 0.010**
SNP24 143 5.39 0.022** 0.31 0.580 6.01 0.003**
SNP28 142 8.62 0.004** 1.63 0.203 4.89 0.009**
SNP85 143 3.68 0.057* 8.07 0.005** 5.15 0.007**

*<=0.1, **<=0.05, ***<=0.001

Thus far, we have assumed a codominant genetic model; alternatively, we can ask
qtlsnp to assume either a recessive or a dominant genetic model. This is done by
specifying the recessive or dominant option. We now do this and include all the SNPs
and lipid measurements simultaneously in the same command. Again to cut down on
the amount of output, we will specify sumlev(0.01). We will also specify the option
noasterisk to suppress printing the asterisk in the output table.

. qtlsnp SNP1-SNP114, trait(trig totalchol ldl hdl) sumlev(0.01) recessive
> noasterisks

Genetic model: Recessive

Trait SNP N F Prob>F

trig
SNP48 143 14.22 0.0002

totalchol
SNP25 142 7.67 0.0064

ldl
SNP63 142 8.80 0.0035

hdl
SNP19 143 8.98 0.0032
SNP24 143 9.85 0.0021
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. qtlsnp SNP1-SNP114, trait(trig totalchol ldl hdl) sumlev(0.01) dominant
> noasterisks

Genetic model: Dominant

Trait SNP N F Prob>F

trig
SNP99 142 7.65 0.0065

totalchol
SNP83 143 7.25 0.0079

ldl

hdl

As previously mentioned, the terms dominant and recessive are used as arbitrary
labels to group genotypes. There is no a priori way to tell qtlsnp how to group the
genotypes. However, once we have identified a SNP of interest we can use the detail

option to examine how the genotypes were combined.

For example, we can check how the genotypes for SNP99 were combined in the above
dominant model.

. qtlsnp SNP99, trait(trig) dominant detail noasterisks

Genetic model: Dominant

Trait SNP N F Prob>F

trig
SNP99 142 7.65 0.0065

SNP: SNP99 Quantitative trait: trig
Genetic model: Dominant

Model: Linear regression Number of obs = 142

N Coef. Std. Err. P>|t| [95% Conf. Interval]

SNP99
AA* 25
AG or GG 117 -49.6044 17.9391 0.006 -85.0710 -14.1378

Constant 142 168.1600 16.2836 0.000 135.9665 200.3535

* Reference category

We see that the heterozygous and the homozygous GG genotypes were combined and
compared with the homozygous AA genotype.

3.5 Example: Incorporating covariates into the models

Additional patient covariates can be included into the regression models by specifying
the cont() or class() options depending on whether the covariate is measured on an
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interval scale or not. In our lipid dataset, we have two patient covariates: the patient’s
age and the patient’s sex.

Let’s fit our recessive model as before but include these two covariates.

. qtlsnp SNP1-SNP114, trait(trig totalchol ldl hdl) sumlev(0.01) recessive
> cont(age) class(sex)

Genetic model: Recessive

Trait SNP N F Prob>F

trig
SNP48 143 13.26 0.0004***

totalchol

ldl
SNP63 142 8.16 0.0049**

hdl
SNP19 143 9.49 0.0025**
SNP24 143 9.30 0.0027**

*<=0.1, **<=0.05, ***<=0.001

We see that the same SNPs we previously identified, except for SNP25, remained
significant at α = 0.01 after controlling for age and sex. Let’s examine the relationship
between SNP25 and total cholesterol more closely.

. qtlsnp SNP25, trait(totalchol) recessive cont(age) class(sex) detail

Genetic model: Recessive

Trait SNP N F Prob>F

totalchol
SNP25 142 6.43 0.0123**

*<=0.1, **<=0.05, ***<=0.001

SNP: SNP25 Quantitative trait: totalchol
Genetic model: Recessive

Model: Linear regression Number of obs = 142

N Coef. Std. Err. P>|t| [95% Conf. Interval]

SNP25
AA or AG* 49
GG 93 16.2611 6.4123 0.012 3.5820 28.9402

SEX
1* 88
2 54 -6.5592 6.2725 0.298 -18.9618 5.8433

Age
per unit 142 -0.0702 0.2445 0.774 -0.5537 0.4132

Constant 142 175.4632 8.1055 0.000 159.4362 191.4901

* Reference category
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In the first table, we see that the adjusted p-value is now 0.0123, which is why it
was not shown in our previous example. In the second table, we see that both age
and sex were treated as specified. When class(varlist) is specified, qtlsnp knows to
generate indicator variables for each variable in varlist. Note that these two options will
also allow you to incorporate interaction terms into the model, although the interaction
terms must be generated beforehand.

3.6 Example: Examining SNPs using the graph option

qtlsnp’s graph option is helpful for quick examination of results. The option has the
limitation that only one quantitative trait can be plotted at a time. As an example,
using the lipid data, we plot the results for triglycerides, assuming a dominant model.

. qtlsnp SNP1-SNP114, trait(trig) graph dominant

Genetic model: Dominant
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SNP analysis for Triglycerides

In this plot, the taller the line, the more significant is the SNP. By default, a hor-
izontal reference line at p = 0.1 is drawn. The location of the reference line can be
controlled by specifying the siglev() option.

4 Comments

The two commands hwsnp and qtlsnp were designed to facilitate the rapid screening
of a large number of SNPs and quantitative traits simultaneously. The commands use
existing Stata commands and, in that sense, are not new. Via its options, the qtlsnp

command provides greater flexibility than that described in this article.
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The qtlsnp command must be used with caution. Before using this command, you
must be familiar with and verify the assumptions being made by the model that you are
planning to estimate (e.g., normality, homoscedasticity, independence, etc.) and also be
certain that you use the correct functional form of all covariates and interaction terms
(i.e., do they need to be transformed to meet linearity assumption in linear regression,
etc.) Additionally, be aware that the significant probabilities reported by qtlsnp have
not been adjusted for multiple comparisons.

5 Acknowledgments

I would like to express my appreciation and acknowledge the contributions made by Dr.
David C. Airey (Vanderbilt University) and Dr. Diego F. Wyszynski (Boston University)
to the development of this command. This work was supported in part by Cooperative
Agreement No. U50/CCU613236 from the Centers for Disease Control and Prevention
(CDC), and by a grant from the National Institute of Child Health and Human Devel-
opment (5R01 HD39054). The contents are solely the responsibility of the author and
do not necessarily represent the official views of the CDC or NIH.

6 References
Cleves, M. A. 1999. sg110: Hardy–Weinberg equilibrium test and allele frequency

estimation. Stata Technical Bulletin 48: 34–37. In Stata Technical Bulletin Reprints,
vol. 8, 280–284. College Station, TX: Stata Press.

Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th
ed. Harlow, Essex, UK: Longman.

Lui, B. H. 1997. Statistical Genomics: Linkage, Mapping, and QTL Analysis. Boca
Raton, FL: CRC Press.

About the Author

Mario Cleves is an Associate Professor at the University of Arkansas for Medical Sciences,
College of Medicine, Department of Pediatrics, and a Senior Biostatistician for the Arkansas
Center for Birth Defects Research and Prevention. His current research interests focus on
dissecting the genetic and environmental causes of major structural congenital malformations,
particularly neural tube and congenital heart defects.




