
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
University of Durham
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2005)
5, Number 1, pp. 83–91

Further processing of estimation results: Basic

programming with matrices

Ian Watson
ACIRRT, University of Sydney
i.watson@econ.usyd.edu.au

Abstract. Rather than process estimation results in other applications, such as
spreadsheets, this article shows how easy it is to process them inside Stata by
undertaking some basic programming with matrices. Spreadsheet visualization
helps define the task, but the steps are all core Stata: macros, loops, and matrices.
The programming challenge is only a modest one for novices, while the benefits of
converting do-files into ado programs can be considerable.

Keywords: pr0015, matrices, programming, estimation results

1 Introduction

Many of Stata’s commands are able to leave their results behind in matrices. This
applies to simple descriptive statistics, such as those produced by tabulate, through to
the more complex estimation results produced by procedures like regress and logit.
It makes sense for those Stata users who wish to further process their results to become
acquainted with the basics of programming with matrices. For those already familiar
with Stata’s macros and loops, the next step into matrices is only a few keystrokes away.
Even for novices, the task of programming with matrices is very accessible. Indeed, this
article is pitched at those Stata users who do not think of themselves as programmers at
all, but who would benefit from processing their results inside Stata, instead of copying
and pasting them into other applications, such as spreadsheets.

Before I came to Stata, I used SPSS and routinely copied and pasted the SPSS output
from my logistic regressions into a spreadsheet in order to produce predicted probabili-
ties. I used one column for the coefficients, the next column for the values—sometimes
means, sometimes specific values, sometimes a combination of both—and a third col-
umn for some formulas to multiply the two other columns together. Finally, there would
be a cell with a formula to convert the result to a probability. This approach had many
shortcomings: a change to the model specifications, and the whole copy and paste pro-
cedure needed to be repeated. Within Stata, this type of exercise was unnecessary: the
adjust command did all of this and more (see [R] adjust). Despite its shortcomings,
the spreadsheet exercise did have a positive side. By creating predicted probabilities
manually, I was forced to make sure I knew what I was doing. I had to visualize plugging
particular values into an equation and calculating a result.

I came to see spreadsheets as a useful starting point for planning further processing
of estimation results, but not as a solution. Where a Stata command did not already

c© 2005 StataCorp LP pr0015

84 Further processing of estimation results

exist for the task at hand, manipulating Stata’s matrices became the best solution.
So while spreadsheets could help with visualizing the goal, the best approach entailed
adopting a definite Stata mindset.

This mindset involves some specific Stata conventions. Stata does not use arrays,
the grid-type containers favored by many programming languages. It offers matrices
instead. But a warning: this article does not discuss the kinds of matrix operations
familiar to statisticians, such as matrix multiplication. Rather, this article deals with
the much simpler task of multiplying one element in an array (matrix) by another
element in an array (matrix). It is this kind of multiplication that is central to the
further processing of estimation results and that mimics multiplying the cells in one
column by those in another column within a spreadsheet.

Two other Stata conventions are macros and loops. Like Stata’s matrices, macros
serve as containers. In the example used in this article, they are the tools for looping and
for storing final results. In many cases scalars could be used, but for simplicity, macros
are employed. The looping processes are managed with Stata’s forvalues command
(see [P] forvalues).

A simple example will be used to illustrate the basics of programming with matrices.
It is a poor person’s adjust in which the mean values of the variables in a regression are
plugged into the regression equation to produce a predicted outcome, similar to the SPSS

example mentioned earlier. To visualize this in terms of a spreadsheet: the estimation
results are a column of coefficients. Next to them is another column, populated with
means, and then in a third column is a set of calculations, the product of the coefficient
and the mean. Finally, there will be a cell at the bottom which sums the products and
provides a prediction.

To convert this spreadsheet visualization into a Stata program entails a number of
steps:

1. obtaining the estimation data;

2. storing it in a useful form;

3. stepping through the data to do some calculations on it;

4. displaying the results; and

5. abstracting the code to make it more generalizable.

In this article, I will illustrate this program as a do-file and then at the end, turn it
into an ado-file. I will use Stata’s full names for commands to make it more compre-
hensible, although most programmers use the abbreviated command names. Similarly,
some of the macro names are longer (and more readable) in the do-file example. I will
also carry out some of the steps in a long-winded fashion but will include more efficient
code at the end of the article.

I. Watson 85

2 Obtaining the data

The starting point is a simple regression:

. sysuse auto
(1978 Automobile Data)
. regress price weight length foreign

(partial output)
Source SS df MS

Model 348565467 3 116188489
Residual 286499930 70 4092856.14

Total 635065396 73 8699525.97

price Coef. Std. Err. t P>|t|

weight 5.774712 .9594168 6.02 0.000
length -91.37083 32.82833 -2.78 0.007
foreign 3573.092 639.328 5.59 0.000

_cons 4838.021 3742.01 1.29 0.200

When you ask for the results from this regression, using ereturn list, you obtain
quite a lot of information, but the key piece you need is the matrix of coefficients e(b),
and it is this which you obtain and place in a matrix.

. ereturn list ([P] page 149)

scalars:
e(N) = 74

e(df_m) = 3
e(df_r) = 70

e(F) = 28.38811943068356
e(r2) = .5488654690386703

e(rmse) = 2023.080852875841
e(mss) = 348565466.5125227
e(rss) = 286499929.6090988
e(r2_a) = .5295311319974705

e(ll) = -666.2612504003735
e(ll_0) = -695.7128688987766

macros:
e(depvar) : "price"

e(cmd) : "regress"
e(predict) : "regres_p"
e(model) : "ols"

matrices:
e(b) : 1 x 4
e(V) : 4 x 4

functions:
e(sample)

. matrix coeffs=e(b)

. matrix list coeffs

coeffs[1,4]
weight length foreign _cons

y1 5.7747117 -91.37083 3573.0919 4838.0206

86 Further processing of estimation results

The column of coefficients is displayed horizontally as a row vector. To recast it in
the more familiar Stata output form and to match the spreadsheet visualization, you
need to flip it around. The matrix transpose operator does this:

. matrix coeffs = coeffs’ ([P] page 269)

. matrix list coeffs

coeffs[4,1]
y1

weight 5.7747117
length -91.37083

foreign 3573.0919
_cons 4838.0206

The next step involves preparing your “containers”—the imaginary spreadsheet
columns into which you will place the means and your calculations. There are var-
ious ways to do this, some more efficient than others. For heuristic purposes, I will
create two new column vectors, although in practice I would probably work with one
matrix made up of two columns. (This is the approach shown in the sample ado-file at
the end of the article.)

I create each vector with the same number of rows as the coefficient vector, using
the handy J() function, which creates a matrix of specified dimensions and contents. I
also obtain the names of the rows to be used for calculating the means.

. local varnames : rownames(coeffs) ([P] page 293)

. local k = rowsof(coeffs) ([P] page 275)

. matrix means = J(‘k’,1,1) ([P] page 271)

. matrix calcs = J(‘k’,1,1)

. matrix list means

means[4,1]
c1

r1 1
r2 1
r3 1
r4 1

3 Stepping through

At this stage, the data have been captured from the regression, and the “containers”
are set up, ready to be filled. The next part of this example consists of stepping through
the second vector and filling it with means, and stepping through the third vector and
filling it with the product of the calculations. The forvalues loop is used for these
stepping processes. Because this is probably the most complicated part of the process,
I have broken it into two stages. Normally, for efficiency, you would combine obtaining
the means and multiplying them by the coefficients into one stage (this is illustrated in
the sample ado-file).

I. Watson 87

. local k1 = ‘k’-1

. forvalues r = 1/‘k1’{
2. local varnm: word ‘r’ of ‘varnms’
3. quietly sum ‘varnm’ if e(sample)
4. local varmn = r(mean)
5. matrix means[‘r’,1] = ‘varmn’
6. }

. matrix list means

means[4,1]
c1

r1 3019.4595
r2 187.93243
r3 .2972973
r4 1

There are two issues worth noting here. First, the independent variable names (which
were captured earlier) are stored in varnames and are used to retrieve the means using
the summarize command. The meanonly option is specified because it produces faster
code.

Second, it is only the independent variables that are used at this stage—the constant
is left out—and this is done by using one row fewer than the total number of rows. This
entails using the macro k1 rather than k. Leaving the constant in would produce an
error message from Stata’s summarize command when it tried to find a variable called
cons.

The next stage involves stepping through the third vector and carrying out the
calculations at each step. The running total will be stored in a macro, total. Notice
that this time the stepping involves all four rows, using k rather than k1. This is done
in order to pick up the constant. Because the value of its ‘mean’ has been left at 1,
the result in the calculations vector is simply the value of the constant in the coefficient
vector. If you were doing a different kind of calculation, which involved transforming
the constant in some fashion, you would need to modify either this stage, or the earlier
stage when it was left out. (A useful device is to set the value of empty matrices—see
the J() function used earlier—to some value, such as −1, that you can test against
during these loops.)

. forvalues r = 1/‘k’{
2. matrix calcs[‘r’,1] = coeffs[‘r’,1]*means[‘r’,1] ([P] page 277)
3. local total = ‘total’+calcs[‘r’,1]
4. }

. matrix list calcs

calcs[4,1]
c1

r1 17436.508
r2 -17171.542
r3 1062.2706
r4 4838.0206

. display ‘total’
6165.2568

88 Further processing of estimation results

It is essential to check your results manually when you first start programming
matrices. You can either do this in a spreadsheet or make use of one of Stata’s own
commands (if available). In this case, there is adjust:

. adjust weight length foreign

Dependent variable: price Command: regress
Covariates set to mean: weight = 3019.4595, length = 187.93243, foreign = .2972973

All xb

6165.26

Key: xb = Linear Prediction

4 Displaying results

Displaying the results depends on your purposes. If you just need to check your results,
you will probably find the matrix list command suits, as well as display for any of
your macro results. The results from this example are spread across three vectors, so
they need to be combined into one matrix (called final in this example) for display
purposes. This is shown below, and it is worth noting that the new matrix inherits
the row names from the first matrix, although you can choose to rename these rows
using matrix rownames. You can also name the columns with meaningful labels, using
matrix colnames. Finally, you can display the single combined matrix, and the macro
with the running total:

. matrix final = coeffs,means,calcs ([P] page 269)

. matrix colnames final = Coeffs Means Calcs ([P] page 293)

. matrix list final, format(%9.3f)

final[4,3]
Coeffs Means Calcs

weight 5.775 3019.459 17436.508
length -91.371 187.932 -1.72e+04

foreign 3573.092 0.297 1062.271
_cons 4838.021 1.000 4838.021

. display "Prediction: " %9.3f ‘total’
Prediction: 6165.257

If your goal is to craft an ado program for continuing use, you might improve the
presentation of the results. The Stata display command has many neat features and,
when combined with SMCL, can produce more pleasing output. The ado code at the
end of this paper illustrates this approach.

I. Watson 89

5 Abstraction—generalizing your code

At this stage, you still have a do-file, which essentially replicates what you would have
done in a spreadsheet, but more efficiently. Turning it into an ado file involves just a few
more steps. First, you need to add a header (program spreadsht) and a footer (end),
and rename the file from spreadsht.do to spreadsht.ado. You might also strip out
the various matrix list commands so that you are not displaying unnecessary output.

The more important steps, however, involve making your code more abstract so that
it can deal with different variables. This entails passing arguments from the command
line in Stata to the code in your ado-file so that it executes your code against whatever
particular variables it suits you to use. You might also want to incorporate weighting
and if and in conditions. All of these are demonstrated in this final section. Code
similar to the following needs to be inserted at the top of your file:

program spreadsht

version 8.2
syntax varlist [if] [in] [fweight aweight iweight] ([P] syntax)
tempvar touse
mark ‘touse’ ‘if’ ‘in’ ([P] mark)
regress ‘varlist’ if ‘touse’ [‘weight’ ‘exp’]

and so on ...

end

Dealing with the if and in conditions is handled by the mark command. First, the
code creates a temporary variable and stores the name in the macro touse. Next, mark
fills this variable with 0s and 1s, depending on whether the observation is to be included
or not, that is, whether it meets the conditions specified by if and in. Marking the
sample in this way ensures that if and in conditions are maintained throughout the
program by establishing the relevant sample at the outset. This is one of the reasons
for using Stata’s very useful syntax statement: it captures the if and in conditions
that the user types and stores them in the macros ‘if’ and ‘in’. These macros are
then used in conjunction with the mark command to ensure that only the appropriate
observations are included in the touse macro.

Now all that you need to do later is to issue your command with the expression
if ‘touse’ attached to the command name and you can be sure that the appropriate
sample specified by the user is used in all subsequent processing (in this case, regress).

Weighting is also simple. Again, by making use of the syntax statement you can
retrieve what the user entered. The macro ‘weight’ (which contains the weight type)
and the macro ‘exp’ (which contains the equals sign, a space and the expression) can
be combined within your code as [‘weight’ ‘exp’]. When your program runs, this
expression gets expanded to something like [aweight = wt].

More often than not, your program will have bugs, and you will need to debug it.
Usually the cause is quite simple: a typo; a missing ‘ or ’ around a macro; a missing
brace; or a failure to include a string quote (") where needed. To make life somewhat
easier for programmers, Stata provides some useful tools. You can issue a set trace on

90 Further processing of estimation results

command, run your program, and then watch to see if it performs as you intend. It is
worth issuing a set tracedepth 1 command at the beginning, as this stops Stata going
too deeply into its own code. When you are developing your program, sprinkle mat

list mymatname commands liberally through your code so that you can check on the
contents of the matrices. You will obviously remove these statements when the program
is debugged.

My intention in this article has been to emphasize the advantages of spreadsheet
visualization, followed by matrix programming, to carry out the further processing of
estimation results. Further progress on building ado programs can be pursued with
Stata’s excellent programming manual or by simply peering under the bonnet of the
numerous user ado-files available.

6 Acknowledgment

This article has benefited considerably from the comments of Nicholas J Cox.

7 Sample do-file

sysuse auto, clear
regress mpg weight length foreign
ereturn list
matrix coeffs = e(b)
matrix list coeffs
matrix coeffs = coeffs’
matrix list coeffs
local varnames : rownames(coeffs)
local k = rowsof(coeffs)
matrix means = J(‘k’,1,1)
matrix list means
matrix calcs = J(‘k’,1,1)
local k1 = ‘k’-1
forvalues r = 1/‘k1’{

local varname: word ‘r’ of ‘varnames’
quietly sum ‘varname’ if e(sample), meanonly
matrix means[‘r’,1] = r(mean)

}
matrix list means
local total = 0
forvalues r = 1/‘k’{

matrix calcs[‘r’,1] = coeffs[‘r’,1] * means[‘r’,1]
local total = ‘total’ + calcs[‘r’,1]

}
matrix list calcs
display ‘total’
adjust weight length foreign
matrix final = coeffs, means, calcs
matrix colnames final = Coeffs Means Calcs
matrix list final, format(%9.3f)
display "Prediction: " %9.3f ‘total’

I. Watson 91

8 Sample ado-file

program spreadsht

version 8.2
syntax varlist [if] [in] [fweight aweight iweight]

tempvar touse
mark ‘touse’ ‘if’ ‘in’

regress ‘varlist’ if ‘touse’ [‘weight’ ‘exp’]

mat coeffs = e(b)
mat coeffs = coeffs’
local varnms : rownames(coeffs)
local k = rowsof(coeffs)
mat results = J(‘k’,2,1)
local total = 0
forval r = 1/‘k’{

local varnm: word ‘r’ of ‘varnms’
if ‘r’ < ‘k’ {

quietly sum ‘varnm’ if e(sample) [‘weight’ ‘exp’], meanonly
mat results[‘r’,1] = r(mean)

}
mat results[‘r’,2] = coeffs[‘r’,1] * results[‘r’,1]
local total = ‘total’ + results[‘r’,2]

}
mat final = coeffs, results
di
di "{title:Results of calculations}"
di
di as text "{hline 13}{c TT}{hline 40}"
di as text "{ralign 12: Variable} {c |} {ralign 13: Coefficient}" /*

*/ "{ralign 12: Mean} {ralign 13: Calculation}"
di in text "{hline 13}{c +{}hline 40}"
forval r = 1/‘k’ {

local varnm: word ‘r’ of ‘varnms’
local varnm=abbrev("‘varnm’",15)
di as text "{ralign 12:‘varnm’} {c |} {col 20}" /*

/ as result %9.3f final[‘r’,1] "{col 32}" /
/ as result %9.3f final[‘r’,2] "{col 46}" /
*/ as result %9.3f final[‘r’,3]

}
di as text "{hline 13}{c BT}{hline 40}"
di
di as text "Prediction: " as result %9.3f ‘total’

end

About the Author

Ian Watson is Senior Researcher at the Australian Centre for Industrial Relations Research
and Training (ACIRRT), University of Sydney.

