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Visualizing main effects and interactions for

binary logit models

Michael N. Mitchell
UCLA Academic Technology Services

Xiao Chen
UCLA Academic Technology Services

Abstract. This paper considers the role of covariates when using predicted prob-
abilities to interpret main effects and interactions in logit models. While predicted
probabilities are very intuitive for interpreting main effects and interactions, the
pattern of results depends on the contribution of covariates. We introduce a con-
cept called the covariate contribution, which reflects the aggregate contribution of
all of the remaining predictors (covariates) in the model and a family of tools to
help visualize the relationship between predictors and the predicted probabilities
across a variety of covariate contributions. We believe this strategy and the ac-
companying tools can help researchers who wish to use predicted probabilities as
an interpretive framework for logit models acquire and present a more comprehen-
sive interpretation of their results. These visualization tools could be extended to
other models (such as binary probit, multinomial logistic, ordinal logistic models,
and other nonlinear models).

Keywords: st0081, logistic regression, predicted probabilities, main effects, inter-
actions, covariate contribution

1 Introduction

Logistic regression models are commonly used for analyzing binary outcome variables.
While such models are more appropriate than OLS models for binary outcomes, the
interpretation of such models is much more complicated. We are aware of three inter-
pretive frameworks for such models.1

1. Logits. We can interpret the coefficients of the logit model as the degree of change
in the logit of the outcome for a one-unit change in the predictor. While this model
has the advantage of expressing the impact of the predictor in a linear scale, we
have a very difficult time intuitively understanding the logit scale for the outcome.

2. Odds ratios. The exponentiated logit coefficient can be interpreted as the factor
change in the odds of the outcome being a 1 as compared to the odds of the
outcome being a 0 for a one-unit change in the predictor. While we have met
a number of people who intuitively understand this metric, we often find that
people will confuse the term odds with likelihood or probability. Even after careful

1The authors wish to express their deep thanks to (in alphabetical order) Phil Ender, Brad McEvoy,
and Christine Wells for their thoughtful conversations, careful reviews, and warm encouragement, as
well as an anonymous reviewer for an exceptionally detailed review. We welcome correspondence
regarding this article by emailing the UCLA ATS Statistical Consulting Group at ATSstat@ucla.edu.

c© 2005 StataCorp LP st0081
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explanation, we find that people commonly mistake the odds-ratio framework for
a probability framework.

3. Probabilities. In this framework, we can examine the association between the
values of, or changes in, predictors and the predicted probabilities of the outcome
being 1. The best examples of this framework can be found in Long (1997, sec-
tion 3.7) and Long and Freese (2003, section 4.6). When using the probability
metric, one cannot express relationships in a linear fashion because the relation-
ship between the predictor and the predicted probability has a nonlinear S-curve
shape, but this metric still can be very intuitive. Our experience has been that
researchers appreciate the intuitive nature of this interpretive framework, and we
feel that by using such a framework, many are more apt to accurately interpret the
results of their analyses. Thanks to the efforts of Long and Freese (2003), such
interpretations are not only well explained and documented, but are also quite
easily obtained via the Spost suite of utilities (available within Stata by typing
findit spostado).

To further simplify the application of these methods to models involving in-
teractions, the first author developed xi3 and postgr3, the former tool being
an extension to the existing Stata xi command and the latter an extension
of the tools by Long and Freese (2003) for creating graphs of predicted values
from such models. Both of these commands are available from within Stata
via the findit command, and documentation on them is available by visiting
http://www.ats.ucla.edu/stat/stata/ and searching for xi3 or postgr3. However,
we have come to believe that the graphs created by postgr3, while accurate,
present only a small portion of the entire picture. The paper by Norton, Wang,
and Ai (2004) drew us back to some fundamental thinking about the appropriate-
ness of such graphs. As a result, we have developed tools to further extend xi3

and postgr3 for visualizing the patterns of predicted probabilities associated with
main effects and interactions and how these are influenced by additional covariates
in the model. In presenting these tools, we will first consider models with main
effects and then consider models involving interactions.

2 Logit models with main effects

2.1 Models with a single covariate

Consider a logistic regression model with a binary outcome variable named y and two
predictors x1 and x2, as shown below.

Logit(y) = β0 + β1x1 + β2x2 + ǫ (1)

The predicted values from (1), ̂Logit(y), could be graphed as a function of x1 and
x2 forming the logistic regression plane. Because this is a linear model, the plane is
completely flat. One such plane is graphed in the left panel of figure 1, where β̂1 = .786
and β̂2 = 1.031. The β̂1 coefficient determines the tilt of the plane on the x1 axis, and
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β̂2 determines the tilt of the plane with respect to the x2 axis. The slope of the x1 axis

would always be β̂1, regardless of the value of x2 (and likewise for β̂2).

The right panel of figure 1 is the same as the left panel, except that the logits have
been converted into probabilities, Pr(y) (see, e.g., Long [1997], for this conversion).
Note how the shape of the relationship between x1 and Pr(y) depends on the value
of x2. To highlight this, we have drawn three thick lines where x2 is −1.26, −.34,
and .51, corresponding to the 20th, 50th, and 80th percentiles of x2, respectively (we
will discuss our selection of these values later in the paper). When x2 is low (at the
20th percentile), the relationship between x1 and Pr(y) is attenuated by the predicted
probabilities pushing against the floor (against 0), and as x2 increases to a high value
(the 80th percentile), the strength of the relationship between x1 and Pr(y) is greater.
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Figure 1: Logistic regression surface in logit (left) and probability (right) scale

While the right panel of figure 1 is an accurate and complete representation of the
way Pr(y) varies as a function of x1 and x2, it can be difficult to create such three-
dimensional graphs, and it is not currently possible to do so in Stata; therefore, we
might want to find ways to represent this relationship in two dimensions that can easily
be graphed in Stata. While this could be done using the prgen command (part of the
spost suite of utilities [Long and Freese 2003, 99]), we illustrate how this could be done
using xi3 and postgr3 below. (We use xi3 before the logit command because it will
be followed by the postgr3 command. Note that the postgr3 output is omitted to save
space.)

. use sjvibl1, clear

. xi3: logit y x1 x2, nolog

(Some output omitted to save space)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7859427 .1864292 4.22 0.000 .4205481 1.151337
x2 1.031519 .2011148 5.13 0.000 .6373413 1.425697

_cons -.4209601 .1722116 -2.44 0.015 -.7584886 -.0834317
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. postgr3 x1, x(x2 = -1.26) gen(yhatl) // 20th percentile

. postgr3 x1, x(x2 = -.34) gen(yhatm) // 50th percentile

. postgr3 x1, x(x2 = .51) gen(yhath) // 80th percentile

. line yhatl yhatm yhath x1, sort xlabel(-3(1)3)
> legend(order(1 "x2=-1.26" 2 "x2=-.34" 3 "x2=.51") rows(1))
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Figure 2: Two-dimensional graph of logistic regression surface in probability scale

Figure 2 is a two-dimensional representation of the right panels of figure 1 graphing
the three heavy lines with x2 at the 20th, 50th, and 80th percentiles as a function of
x1.2 More importantly, the right panel of figure 1 and figure 2 convey that the shape
of the relationship between x1 and Pr(y) strongly depends on x2. If we had portrayed
this relationship with any one of the three lines alone, it would have given a misleading
impression about the nature of this relationship. If we were to report a graph showing
this kind of relationship between x1 and Pr(y), we would recommend a graph like figure 2
because it more completely conveys the nature of this relationship. However, it is not
inevitable that the relationship between x1 and Pr(y) will strongly depend on x2, as we
will see in our next example.

Consider this second example, which is based on the same model from (1) but yields

the parameter estimates β̂1 = .208 and β̂2 = .162. Like above, we will run this model
and generate a two-dimensional graph of the predicted probabilities as a function of x1
at three levels of x2 (corresponding to the 20th, 50th, and 80th percentile of x2).

2 We use x1 to refer to the first predictor in a hypothetical regression model and x1 to refer to the
name of a Stata variable.
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. use sjvibl2, clear

. logit y x1 x2, nolog

(Some output omitted to save space)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .2080826 .0856741 2.43 0.015 .0401645 .3760007
x2 .1622411 .0753504 2.15 0.031 .0145571 .3099251

_cons .3198027 .1425396 2.24 0.025 .0404302 .5991752

. postgr3 x1, x(x2=-1.43) gen(yhatl) // 20th percentile

. postgr3 x1, x(x2= .62) gen(yhatm) // 50th percentile

. postgr3 x1, x(x2= 2.47) gen(yhath) // 80th percentile

. line yhatl yhatm yhath x1, sort xlabel(-3(1)3)
> legend(order(1 "x2=-1.43" 2 "x2=.62" 3 "x2=2.47") rows(1))
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Figure 3: Logistic regression surface in probability scale, example 2

Note how in figure 2 the relationship between x1 and Pr(y) depends highly on the
value of x2, while in figure 3 the relationship between x1 and Pr(y) is largely independent
of x2. Any of the three lines shown in figure 3 would accurately portray the degree to
which Pr(y) increases as a function of x1. For results like these, it is reasonable to
portray the relationship between x1 and Pr(y) focusing on any probable value of x2,
with probably the most conventional value being the average of x2. This portrayal could
be like figure 3 but contain only a single line when x2 is held constant at the mean.
Such results could also be fairly portrayed by showing a table of selected values of x1
and the corresponding Pr(y) values. For example, we issued a series of seven prvalue

commands like the one shown below using the Spost suite of utilities (Long and Freese
2003, 67), each time changing the value of x1 from −3 to 3 in increments of 1.
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. prvalue, x(x1=-3)
(output omitted )

We then culled together the predicted probabilities from the prvalue commands
and manually constructed this table.

x1 -3 -2 -1 0 1 2 3

Pr(y) 0.443 0.496 0.548 0.598 0.647 0.693 0.735

2.2 Models with multiple covariates

Let us now extend the strategy from section 2.1 to models with multiple covariates. It
is often stated that the effects of a predictor depend on the levels of the other covariates
in the model (see Hosmer and Lemeshow [2000], Long and Freese [2003], Long [1997],
Norton, Wang, and Ai [2004]), but in this section we will begin to construct a framework
for exploring the implications of this.

Consider this model, which now has two covariates, x2 and x3
3

̂Logit(y) = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 (2)

When we had a single covariate, we used the right panel of figure 1 to visualize
the relationship between x1 and Pr(y) while taking x2 into account, but to extend this
to a model with two covariates would require a four-dimensional graph, and a model
with k covariates would require a k + 2-dimensional graph. However, regardless of the
number of covariates in the model, we can still express the relationship between x1 and
Pr(y) in two dimensions while taking the covariates into account by not considering the
contribution of each individual covariate but by considering the aggregate or collective
contribution of all of the covariates. Suppose that we rewrite (2) like this:

̂Logit(y) = β̂0 + β̂1x1 + covariate contribution (3)

where
covariate contribution = β̂2x2 + β̂3x3 (4)

When focusing on x1, the covariate contribution (which we will abbreviate as CC)
is the linear combination of the remaining predictors in the model multiplied by their
corresponding logit coefficient.4 Breaking the model up in this fashion allows us to see
that it is not so important what the individual x2 and x3 values are, and in fact there

3Note that we are focusing on the influence of x1 as a predictor and then treating x2 and x3 as
covariates, but we could just as easily focus on any of the variables in the model, thus treating the
remaining variables as covariates.

4For each variable that you would focus on, there would be a new CC. If we focused on x2, then the
CC would be bβ1x1 + bβ3x3. We do not include bβ0 in the definition of the CC since it is not a covariate,
but it still included when computing predicted probabilities.
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are numerous combinations of such values that would lead to the same CC. Regardless
of the individual x2 and x3 values, if they lead to the same CC, then their impact on
the predicted logit of y in (3) will be exactly the same. Regardless of the number of ad-
ditional predictors (covariates) in the model, we can represent the relationship between
any given predictor and Pr(y) in three dimensions while fully taking into account the
aggregate contribution of all of the remaining predictors (covariates) by replacing x2

in the right panel of figure 1 with an axis labeled CC.5 We can then reduce figure 1 to
two dimensions like we did for figure 2, except that the multiple lines would represent
multiple values selected on the CC. In figure 2, we displayed three lines corresponding to
the 20th, 50th, and 80th percentiles on x2, we could make a similar graph with respect
to the CC, presenting three lines corresponding to the 20th, 50th, and 80th percentiles
on CC. Below, we introduce a suite of tools to help us create such visualizations.

2.3 Visualizing main effects of a continuous variable

Let’s consider (2) and focus on the effect of x1 and consider x2 and x3 as covariates.
We run the logit model below.

. use sjvibl1, clear

. logit y x1 x2 x3, nolog

(Some output omitted to save space)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7489698 .1921057 3.90 0.000 .3724496 1.12549
x2 1.054486 .2064745 5.11 0.000 .6498038 1.459169
x3 1.224105 .358766 3.41 0.001 .5209366 1.927274

_cons -1.080401 .2708698 -3.99 0.000 -1.611296 -.5495062

From (4) the CC can be computed with the generate command, as shown below. We
can then use descriptive statistics commands to get an understanding of the distribution
of the CCs (e.g., summarize, tabulate, centile). Next we use the centile command
to determine the 20th, 50th, and 80th percentiles of the CC.6

5In fact, we view figure 1 as a simplified version of such a graph where the CC is represented by x2

instead of bβ2x2 (which would be the CC if x2 were the only covariate in the model).
6Given this is a new area we are exploring, we have no firm reason for picking the 20th, 50th, and 80th

percentiles. In a way, what we are doing could be viewed as analogous to the way that (Aiken and West
1991, 13) explore continuous-by-continuous interactions by examining the simple effect of one variable
at probe values for the other variable. They generally suggest probe values at the mean, one standard
deviation above the mean, and one standard deviation below the mean. Assuming a normal distribution,
this would roughly correspond to the 17th, 50th, and 83rd percentiles. We have adapted this rule of
thumb for our purposes but do not wish to make any assumption about the distribution of the CC, so
we instead directly specify the probe values as percentiles and have rounded them to the 20th, 50th, and
80th percentiles. While we are open to other ideas for probe values, we are concerned about selecting
values that are too extreme because the estimates would appear to get increasingly unstable as they
move to the frontier of the CC values and could even lead to extrapolation.
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. generate cc = _b[x2]*x2 + _b[x3]*x3 // _b[x2] is 1.05... and _b[x3] is 1.22...

. centile cc, centile(20 50 80) normal

Normal, based on observed centiles
Variable Obs Percentile Centile [95% Conf. Interval]

cc 198 20 -.9594531 -1.23664 -.6822663
50 .2416907 .0202967 .4630848
80 1.412609 1.141197 1.684021

We then can create a graph analogous to figure 2 that shows the relationship between
x1 and Pr(y) at three levels of the CC, −.96, .24, and 1.41 (corresponding to the 20th,
50th, and 80th percentiles of x2). To streamline this process, we have developed a
program named viblmgraph, which stands for visualizing binary logit models for main
effects graph. This is part of a suite of vibl tools for visualizing binary logit models.
Below we call the program specifying the intercept and the slope, and use the ccat()

option to indicate that we want to view three lines for the CCs −.96, .24, and 1.41. We
also specify that x1 can range from −3 to 3. We can (and do) add additional graph
options to the end of the command, and this produces the graph shown in figure 4.

. viblmgraph, b0(-1.08) b1(.75) ccat(-.96 .24 1.41) xmin(-3) xmax(3)
> legend(rows(1) subtitle(Covariate Contribution)) xlabel(-3(1)3)

(Output with predicted probabilities omitted to save space)
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Figure 4: Predicted probabilities as a function of x1 and CC

Examining the graph in figure 4, we can see that when the collective contribution
of x2 and x3 is low (at the 20th percentile), the relationship between x1 and Pr(y)
is flattened because the curve is pressing against the floor value of 0, but as the CC

increases to the 50th, and 80th percentiles, the relationship between x1 and Pr(y)
becomes steeper.
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In the illustration above, the CCs were generated manually, followed by viblmgraph.
We created a convenience command viblmcc to compute the CC and also provide sum-
mary statistics about the percentiles of the CC. Because we added the graph option,
the viblmgraph command is also displayed and executed, producing a graph similar to
figure 4 with the CC at three levels, at the 20th, 50th, and 80th percentiles.

. viblmcc y x1 x2 x3, gen(cc2) graph
Saving covariate contribution as cc2
Percentiles for Covariate Contribution

P1 P10 P20 P30 P40 P50 P60 P70 P80 P90 P99
-2.533 -1.443 -.9636 -.4425 -.1048 .2422 .5622 .9427 1.418 1.93 3.42
(Rest of output omitted to save space)

2.4 Visualizing main effects of a dummy variable

The previous example focused on x1 which is a continuous variable. Now let’s turn our
focus to x3, which is a dummy variable. Consider the logit model below.

. logit y x3 x1 x2, nolog

(Some output omitted to save space)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x3 1.224105 .358766 3.41 0.001 .5209366 1.927274
x1 .7489698 .1921057 3.90 0.000 .3724496 1.12549
x2 1.054486 .2064745 5.11 0.000 .6498038 1.459169

_cons -1.080401 .2708698 -3.99 0.000 -1.611296 -.5495062

We can use the viblmcc command to view the association between x3 and Pr(y)
when the CC is at the 20th, 50th, and 80th percentiles. By placing x3 in the first
position after the dependent variable, we indicate that x3 is the variable of interest and
that the rest of the variables are covariates. As before, we get percentiles for the CC,
and because we specified the graph option, the viblmgraph command is displayed and
executed, yielding the graph in figure 5. In addition, viblmgraph displays tables of the
predicted probabilities for the two levels of x3 for each of the levels of the covariate
specified in the ccat() option. These predicted probabilities in these tables correspond
to the predicted probabilities graphed in figure 5.

. viblmcc y x3 x1 x2, gen(cc3) graph
Saving covariate contribution as cc3
Percentiles for Covariate Contribution

P1 P10 P20 P30 P40 P50 P60 P70 P80 P90 P99
-3.351 -2.193 -1.558 -1.046 -.5926 -.2886 -.0218 .2396 .6343 1.179 2.567
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. viblmgraph, b0(-1.08) b1(1.224) ccat(-1.558 -.289 .634) xmin(0) xmax(1) xname(x3)
**For CC=-1.558279943466**

x3
0 1

--------------------
0.07 (A) 0.20 (B) (B-A) = 0.13

**For CC=-.2886011004448**
x3

0 1
--------------------
0.20 (A) 0.46 (B) (B-A) = 0.26

**For CC=.6343373894691**
x3

0 1
--------------------
0.39 (A) 0.69 (B) (B-A) = 0.30

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

P
r(

y
)

0 1
x3

CC=�1.558 CC=�.289

CC=.634

Figure 5: Predicted probabilities as a function of x3 and CC

Based on the output from viblmgraph, we can see that the difference in the predicted
probabilities is .13 when the CC is at −1.558 (the 20th percentile), .26 when the CC is
at −.289 (the median), and 0.30 when the CC is at .634 (the 80th percentile). In other
words, the effect of x3 is mildly attenuated when the CC is at a middle value and notably
attenuated when the CC is low. The tables shown in the output are visually depicted
in the graph in figure 5.

While figure 5 gives us some insight into how the predicted probabilities change as
a function of the dummy variable x3 and the CC, the viblmgraph command can show a
second type of graph (using the type(2) option) that shows the predicted probabilities
for the two levels of the dummy variable across a given spectrum of CCs. The ccmin()

and ccmax() options are used to indicate the span of CCs to be considered, and the
ccat() option is used to draw vertical lines at specified points (we chose the 20th, 50th,
and 80th percentiles to match the values chosen in figure 5).
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. viblmgraph, b0(-1.08) b1(1.22) ccmin(-2) ccmax(1) ccat(-1.6 -.3 .6) type(2)
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Figure 6: Predicted probabilities for x3 = 0 and x3 = 1 as a function of the CC

Besides looking at how the predicted probabilities for each level of the dummy vari-
able change as a function of the CC, we can also visualize the difference in these predicted
probabilities as a function of the CC. You can view such a graph using the type(3) op-
tion on the viblmgraph command, yielding the graph shown in figure 7. This graph
shows how the difference between the predicted probabilities grows as the CC changes
from the 20th to the 80th percentile.

(Continued on next page)
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. viblmgraph, b0(-1.08) b1(1.22) ccmin(-2) ccmax(1) ccat(-1.6 -.3 .6) type(3)
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Figure 7: Difference in predicted probabilities as a function of the CC

The three graph types illustrated in figures 5, 6, and 7 are all different ways of viewing
the same pattern of results. Each graph offers a unique vantage point to viewing the
relationship between x3 and Pr(y) while taking the contribution of the covariates into
account. However beneficial we find these graphs, they suffer from how static they are.
In section 4, we introduce a tool for dynamically viewing these kinds of graphs.

2.5 Further thoughts

The extent to which the pattern of the predicted probabilities depends on the other
covariates in the model will vary from situation to situation. For example, the results
from figure 2 show that the effect of x1 depended highly on the levels of x2; however,
figure 3 portrays a different kind of example where the effect of x1 is largely independent
of x2. While there are numerous differences between these two examples, the most
salient distinction is that the predicted probabilities in the second example were largely
confined to be between .2 to .8, while many of the predicted probabilities from the first
example were outside of this range. When the predicted probabilities are between .2
and .8 (or more conservatively .25 to .75), the relationships between predictors and
predicted probabilities are largely linear (Long 1997, 64), so the model behaves similar
to a linear model where the relationship between the predictor and outcome does not
strongly depend on the values of other predictors in the model.
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3 Logit models with dummy-by-dummy interactions

3.1 Visualizing interactions for logit models

What we have seen with respect to main effects applies equally well to interactions.
When graphing the predicted probabilities associated with an interaction, it would be
wise to explore a reasonable range of CCs. As we saw with main effects, the pattern of
predicted probabilities associated with an interaction may be similar over the range of
CCs, or the pattern might vary considerably across the range of CCs. For simplicity, we
will focus on dummy-by-dummy interactions; however, the tools we provide could be
used for dummy-by-continuous interactions, as well. We will use a hypothetical data file
named sjvibl3. Consider the logit model, which predicts y (a dichotomous outcome)
from the dummy variables x1 and x2 and their interaction named x1x2, as well as a
number of additional predictors (covariates) named x3 to x9.

. use sjvibl3, clear

. logit y x1 x2 x1x2 x3 x4 x5 x6 x7 x8 x9, nolog

(Some output omitted to save space)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7282436 .1621386 4.49 0.000 .4104578 1.046029
x2 1.29437 .2773787 4.67 0.000 .7507173 1.838022

x1x2 .9872251 .4423858 2.23 0.026 .1201649 1.854285
x3 .8052569 .0804086 10.01 0.000 .6476588 .9628549

(Output with coefficients for x4 to x9 omitted to save space)
_cons -3.099149 .6502432 -4.77 0.000 -4.373603 -1.824696

Let’s explore the effect associated with x1x2. Let’s start by computing the CC and
getting a sense of its range using the viblicc command, which is the equivalent of the
viblmcc command but for models with interactions. If we include the graph option, the
vibligraph command is displayed and executed, showing the predicted probabilities
broken down by x1 and x2 with the CC held at the median. As shown in figure 8, the
predicted probabilities increase faster across x1 when x2 is 1 than when x2 is 0. A
corresponding table of the predicted probabilities is shown broken down by x1 and x2

with the CC held at the median. This table includes the simple differences of x1 at each
level of x2, as well as the difference of differences, abbreviated as (D− C) − (B− A) (in
Norton, Wang, and Ai [2004], this was called the interaction effect). This table shows a
difference of differences of 0.13 when the CC is at the median, but the size of this value
could depend on the CC, as we saw in the main effects examples.

. viblicc y x1 x2 x1x2 x3 x4 x5 x6 x7 x8 x9, gen(cc) graph

Saving covariate contribution as cc
Percentiles for Covariate Contribution

P1 P10 P20 P30 P40 P50 P60 P70 P80 P90 P99
.2561 .9605 1.302 1.631 1.887 2.178 2.461 2.757 2.998 3.338 4.156
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. vibligraph, b0(-3.099) b1(.728) b2(1.294) b12(.987) ccat(2.178) ccmin(1.302)
> ccmax(2.998) x1name(x1) x2name(x2)

**For CC=2.177959084511**
| x1

x2 | 0 1
---------+--------------------

0 | 0.28 (A) 0.45 (B) (B-A) = 0.17
1 | 0.59 (C) 0.89 (D) (D-C) = 0.30

(D-C) minus (B-A) = 0.13
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Figure 8: Pr(y = 1) by x1 and x2 when CC is at the median

To explore the role of the CC for this interaction, let’s repeat the above vibligraph

command and use the ccat option to make a graph where the CC is set at a low value
(the 20th percentile, 1.302) and then repeat the command specifying a high CC value
(the 80th percentile, 2.998). We save each graph and show them combined together in
figure 9.

. vibligraph, b0(-3.099) b1(.728) b2(1.294) b12(.987) ccat(1.302) abcd
> title(CC low) name(g1)

**For CC=1.302**
| x1

x2 | 0 1
---------+--------------------

0 | 0.14 (A) 0.26 (B) (B-A) = 0.12
1 | 0.38 (C) 0.77 (D) (D-C) = 0.39

(D-C) minus (B-A) = 0.27
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. vibligraph, b0(-3.099) b1(.728) b2(1.294) b12(.987) ccat(2.998) abcd
> title(CC high) name(g2)

**For CC=2.998**
| x1

x2 | 0 1
---------+--------------------

0 | 0.47 (A) 0.65 (B) (B-A) = 0.18
1 | 0.77 (C) 0.95 (D) (D-C) = 0.18

(D-C) minus (B-A) = 0.00

. graph combine g1 g2
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Figure 9: Pr(y = 1) by x1 and x2 when CC is at the 20th (left) and 80th (right)
percentile

Figures 8 and 9 show that, in this example, the pattern of predicted probabilities
is very sensitive to the CC. In figure 9, the (D-C) difference is much greater than the
(B-A) difference when the CC is low, but these two differences are much the same when
the CC is high. Further inspection reveals some insight into why these differences vary
across the levels of the CCs. For example, consider the right panel of figure 9, and focus
on cells C and D. Both cells are pressing against the ceiling, but D is being influenced
more strongly. As the CC went from the 20th to the 80th percentile, the tables of the
predicted probabilities show that the (D-C) difference was attenuated considerably (.39
to .18) while the (B-A) difference actually grew somewhat (.12 to .18).

Previously we graphed the predicted probabilities of the two levels of a dummy
variable across a spectrum of CC values to illustrate its main effect, see figure 6. We
can make an analogous graph with vibligraph by adding the type(2) option to create
figure 10. We also specify multiple ccat() values corresponding to the 20th, 50th,
and 80th percentiles and specify the minimum and maximum values for the x-axis
containing the CC via the ccmin() and ccmax() options. This graph represents the
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predicted probabilities at the CC values used in figures 8 and 9 but also shows the
predicted probabilities for all of the CC values in between. The perspective in figure 10
shows how the CC affects the predicted probabilities across a spectrum of CC values, in
this case illustrating how the predicted probabilities for cell D are pressing against the
ceiling as the CC increases, leading to the attenuation of the (D-C) difference.

. vibligraph, b0(-3.099) b1(.728) b2(1.294) b12(.987) ccat(1.302 2.178 2.998)
> ccmin(1) ccmax(3) type(2)
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Figure 10: Pr(y = 1) by x1, x2, and CC with lines at the 20th, 50th, and 80th percentiles

We can also make a type 3 graph that shows the differences in (B-A) and (D-C) as
a function of the CC; see the left panel of figure 11.

(Continued on next page)
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. vibligraph, b0(-3.099) b1(.728) b2(1.294) b12(.987) ccat(1.302 2.178 2.998)
> ccmin(1) ccmax(3) type(3)
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Figure 11: Differences in Pr(y = 1) (left panel) and difference in difference (right panel)
by CC with lines at the 20th, 50th, and 80th percentiles

We can also make a type 4 graph that shows the difference in differences (D-C)

minus (B-A) as a function of the CC; see the right panel of figure 11.7

. vibligraph, b0(-3.099) b1(.728) b2(1.294) b12(.987) ccat(1.302 2.178 2.998)
> ccmin(1) ccmax(3) omitint(1) type(4)

This illustrates how the difference in differences in the predicted probabilities,
(D-C) − (B-A), depends considerably on the CC, being largest when the CC is low
and diminishing to zero when the CC is high. For this kind of result, a single graph
showing the predicted probabilities as a function of x1 and x2 at a single CC would not
be sufficient to accurately portray the results. Either multiple graphs like figures 9 and
10 or a single graph like the left or right panel of figure 11 would be needed to account
for the role of the covariates.

4 Interactive tools for visualizing binary logit models

The examples we have seen so far have used the viblmgraph command for visualizing
main effects in logistic models and the vibligraph command for visualizing interactions
in logistic models. While both commands easily draw a graph for a given set of param-
eters, these commands do not allow you to quickly and easily alter these parameters
to interactively explore the behavior of these graphs across different values of coeffi-
cients or CCs. To help you interactively visualize main effects, we created an interactive
point-and-click, dialog-box-driven program called viblmdb, which stands for visualizing
binary logit models for main effects dialogue box, and likewise created viblidb for vi-

7This is an alternative visualization strategy to that of figure 3 in Norton et al. (2004), where we
use CC instead of Pr(y) on the x-axis.
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sualizing interaction effects. Due to space considerations, these tools are not discussed
here but are discussed on the UCLA ATS web site, as described in the following section.

5 Additional online information

While the vibl suite of tools as described in this article are available from the Stata
Journal web site, you can obtain the most up-to-date version of the tools and data files
from the UCLA Academic Technology Services web site using the following commands.

. net from http://www.ats.ucla.edu/stat/stata/ado/analysis/

. net install vibl

. net get vibl

We acknowledge the brief coverage of the syntax and options available in the vibl

suite of tools. However you can access such additional details, as well as illustrations of
the interactive tools viblmdb and vibidb, by visiting our online seminar titled Visual-
izing Main Effects and Interactions for Binary Logit Models in Stata on our web site at
http://www.ats.ucla.edu/stat/seminars.

6 Conclusion

We have found that researchers are very comfortable using the Long and Freese (2003)
tools, as well as our xi3 and postgr3 commands, for interpreting the results of logit
models using a predicted probability framework. We hope that the concept of the co-
variate contribution combined with the visualization techniques provided by the suite
of vibl tools will be a useful extension to this framework by allowing researchers to
interpret main effects and interactions via the probability metric while using the covari-
ate contribution to account for the role of the covariates. In addition, we hope that the
vibl tools, especially the interactive vibl tools, would be useful for teaching logistic
regression to help students develop skills in visualizing the behavior of such models. If
the vibl suite of tools prove useful, we envision extending them to multinomial logit
models (e.g., viml tools), ordinal logit models (e.g., viol tools), and binary probit mod-
els (e.g., vibp tools) as well as other kinds of nonlinear models, such as Poisson and
negative binomial models. We would welcome collaborative efforts in this regard.
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