

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
University of Durham
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager Lisa Gilmore

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2005)
5, Number 1, pp. 46–63

Stata: The language of choice for time-series

analysis?

Christopher F. Baum
Boston College

Abstract. This paper discusses the use of Stata for the analysis of time series and
panel data. The evolution of time-series capabilities in Stata is reviewed. Facilities
for data management, graphics, and econometric analysis from both official Stata
and the user community are discussed. A new routine to provide moving-window
regression estimates—rollreg—is described, and its use illustrated.

Keywords: st0080, time-series analysis, time-series data, time-series modeling,
moving-window regression, rolling regression

1 Introduction

Over time, Stata has incorporated more and more features for effective analysis of time-
series data, either pure time series or panel data with emphasis placed on the time-series
dimension of the panel. In this context, “time-series modeling” should be taken in the
broad sense, referring to multivariate models built with data organized as time series,
rather than the narrow sense of Box–Jenkins or ARIMA univariate time-series models.
This paper considers modeling performed in only the time domain rather than in the
frequency domain.

Before Stata 6, support for time-series analysis was weak, as Stata lacked the notion
of a time-series calendar. In working with time-series data, researchers want to refer to
observations in terms of calendar time and see dates displayed on the statistical output
and in graphs. Stata 6 incorporated a time-series calendar and added a lengthy list of
date functions, which, if properly employed, can decompose dates into their components
(e.g., the calendar month associated with a particular date) and translate dates between
the supported data frequencies.

At the same time, the time-series operators (L., D., F.) were introduced, greatly
simplifying any programming involving time series and ensuring that only appropriate
computations are made. For instance, x[n-1] will always refer to the previous obser-
vation on x, which may or may not belong to the previous period and may even refer to
a different individual’s observation in a panel context. In contrast, L.x will unambigu-
ously refer to the previous period’s value. This allows you to succinctly refer to a set of
lagged (or led) values with a numlist: L(1/4).x to specify that four lags be included in
a regressor list. You can even combine the operators; e.g., the lagged second difference
in x is denoted LD2.x, while the second lag of ∆x is L2D.x.

Reliance on these housekeeping details becomes overwhelmingly important in work-
ing with panel data, when you must always stay within the bounds of an individual

c© 2005 StataCorp LP st0080

C. F. Baum 47

unit’s time series. In the context of an unbalanced panel, Stata’s approach to house-
keeping is far superior to that of a matrix language, such as GAUSS or MATLAB, and
places much less of a burden on the researcher’s keeping track of those details. Stata
refers to observations by their associated date (once a time-series calendar has been
established by tsset) rather than by their number. Therefore, users’ references to the
data may be in the more natural context of specifying calendar dates rather than cal-
culating observation numbers; e.g., regress inv L(1/4).gdp if tin(1968q4,1979q3)

will restrict the sample to that range of dates.

A second advantage from the programmer’s standpoint is that the nature of Stata’s
data transformation commands (generate, replace, egen) makes it feasible in many
instances to perform a transformation over the individual time series of a panel with
little overhead. In a number of routines discussed below, this feature has been used to
advantage to greatly simplify the code and make a routine more generally useful.

Although a number of useful features have been added, Stata’s current facilities for
managing time-series data have their limitations. It appears to be difficult for many
users to transform dates generated in some other software (e.g., Excel) to the Stata
date format without dealing with substrings, wrangling with two-digit versus four-digit
years, etc. Stata does not support business daily data, and for those in economics and
finance, it is most unfortunate to give up the advantageous features of Stata’s calendar
and time-series operators when working with this common data format.

In this paper, I will discuss a number of Stata’s capabilities in the area of time-series
modeling, including data management and graphics. I will focus on a number of user-
contributed routines, some of which have found their way into official Stata, with others
likely to follow. For brevity, there are some areas I will not cover in this discussion:
vector autoregressions and structural VARs, ARCH and GARCH modeling, cointegration
tests (now available in official Stata’s July 2004 update), and panel unit-root tests. I
concentrate on a number of features and capabilities that may not be so well known
and present some new methodologies for time-series data analysis.

2 Data management and graphics

2.1 tsmktim

First let us consider some useful data-management features. You will often import a
time series, perhaps with a spreadsheet-formatted date variable and wants to establish
a time-series calendar for these data. You must work with the existing date to bring it
into a proper Stata date variable using the date() or mdy() functions, assign a proper
format to the variable (e.g., %ty for annual, %tm for monthly, etc.), and then use tsset

to define the time-series calendar with that nicely formatted date variable. Some time
ago, Vince Wiggins and I (Baum and Wiggins 2000b) wrote a utility that handles those
three steps in one straightforward command: tsmktim, in which you need only specify
the name of a new time-series calendar variable and its start date:

48 Stata: The language of choice for time-series analysis?

. tsmktim datevar, start(1970)

. tsmktim datevar, start(1970q2)

. tsmktim datevar, start(1970m5)

. tsmktim datevar, start(1jul1970)

. tsmktim datevar, start(1970q2) seq(ind)

This routine extracts the date from the start argument, classifies the data fre-
quency, generates the appropriate series, assigns that frequency’s format, and performs
tsset datevar. The last example handles the case when there are some nonconsecutive
observations, as identified by the ind series, which will then be used to place the proper
gaps in the data.

But what if you have a panel and want to identify each unit’s time series as beginning
in 1970? A revision of tsmktim in June 2004 brought that capability; you may now type

. tsmktim datevar, start(1970) i(country)

in order to achieve that goal, having the result of tsset country datevar to define
both a panel variable and a time variable. Like most of the routines discussed here,
tsmktim is available from the SSC archive via official Stata’s ssc command and may be
located with findit.

2.2 egen functions for time series

There are also a number of egen functions that prove very useful with time-series data.
Official Stata’s egen contains the ma() function, which computes k-period centered
moving averages (where k must be odd). This is of little use if you want a one-sided
moving average. For example, you might want a weighted moving average of four prior
values, with arithmetic weights 0.4(0.1)0.1. That construct can be viewed as a filter
applied to a series in the time domain and computed with egen, filter from Nick
Cox’s egenmore package. That routine has the flexibility to compute any linear filter
(including two-sided filters) with the option of automatically scaling the weights to
unity. For instance,

. egen filty = filter(y), l(-2/2) c(1 4 6 4 1) n

specifies that a two-sided centered moving average be computed with weights 1/16, 4/16,
6/16, 4/16, 1/16. The n option specifies that the weights be normalized (dividing by
their sum of 16). As an illustration of Stata’s flexibility with time-series data, note that
egen, filter may readily be applied to panel data—those which have been defined
as a panel to Stata via tsset panelvar datevar. This same egen command could be
employed in that context, and the filter would then be automatically applied separately
to each time series within the panel.

Several other functions in Nick Cox’s egenmore package provide useful housekeeping
tools: eom(), for instance, generates a new variable with the date of the end of month for
a given month and year (which may be specified to be a weekday) and bom() provides
the same functionality for the beginning of month. Both functions allow specification
of lags and leads; e.g., adding lag(3) to the eom() function returns the Stata date

C. F. Baum 49

for the last day of the third month prior. These functions are often very useful in
working with financial data, and analogues could readily be constructed to provide
similar functionality with quarterly or weekly data. Another function that is often
useful in working with individual panel data is the record function, i.e.,

. egen maxtodate = record(wage), by(id) order(year)

. egen hiprice = record(share price), by(firm) order(quote date)

where the first example identifies the highest wage to date in a worker’s career (related,
perhaps, to her “reservation wage”), while the second identifies the highest price received
to date for each firm’s shares.

2.3 tsspell

A last utility routine that might be just the trick for many users’ needs is Nick Cox’s
tsspell. Beyond the notion of spells of illness, spells of unemployment, etc., you may
often wish to identify spells in which some characteristic is present, e.g., a period during
which a share price does not decline. Spells may be used to advantage when defined
on the presence of changes in a variable (e.g., the Bank of England changing the base
rate); by the occurrence of a particular event (such as a general election, or a natural
phenomenon such as an earthquake); or by the presence of some condition (e.g., the
period during which Labour forms the government, or those quarters in which the sign
of the change in real GDP is positive). Like the current version of tsmktim, tsspell
automatically handles data that have been defined as a panel, generating spells for each
unit in the panel.

2.4 tsgraph

Let us now consider a graphics tool of primary interest to those still relying on Stata
version 7. In the days of Stata 7, it seemed overly tedious to produce a “time-series
line graph”—a simple line plot of one or more time series on the y-axis versus time,
appropriately labeled, on the x-axis. Those of us who work with time-series data find
this to be a rather common task, and Nick Cox and the author wrote tsgraph as an
answer to that need. The routine automatically produces a line graph with connected
points and no markers and, by default, (for use on the printed page) selects up to four
different line styles, enabling the legend to be more useful than the default multicolored
graph. Considerable effort was also made in this routine to generate “nice” time-axis
labels, that is, those that correspond to natural units, such as quinquennia for annual
data, first quarters for quarterly data, etc. The routine also intelligently considers that
if the data are tsset as a panel, up to four units’ time series of a single varname will
be automatically plotted when that single varname is specified as the y-variable.

The new graphics command tsline, added to Stata after the release of version
8.0, is capable of doing all this and a great deal more. Indeed, using invest2.dta

from the Stata Cross-Sectional Time-Series Reference Manual, tsline investment

income consumption produces a more stylish graph than tsgraph investment income

50 Stata: The language of choice for time-series analysis?

consumption. The graph produced by tsline will contain dashed line types if a
monochrome style is chosen, and it appears to construct “nice” date labels automati-
cally. If you use Stata 8, tsline is probably a more useful tool than tsgraph. For those
using Stata 7 and those interested in dissecting a simple Stata program to determine
how the code has been written, tsgraph might be of some interest. As an illustration:

* tsgraph_X.do 07sep2004 CFBaum
* Program illustrating use of tsgraph v tsline
use http://www.stata-press.com/data/r8/invest2.dta, clear
* In Stata 8, could do
* webuse invest2, clear
tsset company time
drop if company>4
tsgraph invest market stock if company==1
more
tsline invest market stock if company==1
more
* illustrate automatic use on panel
tsgraph invest, ti("Investment expenditures by firm")

I turn now to discussion of a number of statistical/econometric capabilities for time-
series modeling. Some additional examples of time-series modeling are provided in
Baum (2004).

3 Statistics/econometrics

3.1 Capabilities of arima

A frequent participant in the Statalist listserver will appreciate that reading the fine
manuals (RTFM) is a rarely practiced art. One of those gems that can only be gleaned
by RTFM, though, is a proper appreciation of one of Stata’s most powerful time-series
commands, arima. The difficulty here is actually semantic in nature. Given Stata’s late
arrival in the domain of econometric software for time-series analysis (versus TSP, RATS,
eViews, PC-GIVE, and the like), researchers in this area imagine that a command named
arima does exactly that, providing for the fitting of univariate ARIMA(p,d,q) models or
Box–Jenkins models with an AR(p) autoregressive component, a MA(q) moving aver-
age component, and requiring dth order differencing to achieve covariance stationarity.
Naturally, Stata’s arima command performs that estimation. However, it is not widely
appreciated that Stata’s arima command does this and much more. I can appreciate
the difficulty of documenting such a wide array of features (arima is perhaps one of
Stata’s most complex commands in terms of its user interface) and the desire to have
a single command that opens the door to fitting a wide range of models rather than
a long list of alternative commands. This logic is the same rationale underlying many
of the xt commands, such as xtreg or xtgee. It should be noted that the use of the
term arima for this command seems to result in many users overlooking its potential
usefulness for a wide variety of time-series modeling tasks.

C. F. Baum 51

For instance, the arima command may be used to fit an ordinary regression model—
of y on a set of regressors X—in which the disturbances are modeled as an ARMA(p,q)
process. Unlike prais, which only fits a regression model with AR(1) errors, arima

is capable of fitting a general error structure to any regression model, including those
containing one or more lags of the dependent variable, via maximum likelihood and the
Kalman filter.

Also worthy of note is that arima provides the ability to compute dynamic forecasts
of a regression model that contains a lagged dependent variable. In the context of a
regression model with strictly exogenous regressors (that is, those whose distributions
are independent of the error process), ex ante or out-of-sample predictions may be
calculated via predict for any postsample period for which the regressors are available.
If the regression model contains a lagged dependent variable, an ex ante prediction may
only be made for the period for which the dependent variable is available, and predict

will compute a one-step-ahead static forecast, that is, ŷτ = Xτ β̂, where one of the
columns of X is yτ−1. For many purposes, a sequence of static forecasts is appropriate.
For instance, if we want to mimic the decisions of economic agents at each point in
time over the forecast horizon where their information set contains all variables dated
T + τ and earlier, we should forecast yT+τ+1. However, if we are building a dynamic
model for y, we may want to simulate the performance of that model over a horizon
(T +1) . . . (T +κ), where the initial conditions include information dated T and earlier,
and the further evolution of y over the forecast period is purely determined by the
model (possibly inclusive of stochastic shocks in a stochastic simulation). To construct
the dynamic, or recursive, forecasts of y implied by this mechanism, we must fit the
model with arima—even if we do not wish to specify an ARMA(p,q) error structure—and
use the dynamic() option on the subsequent predict command. To compare the two
forecasting strategies, consider

* arima_X.do 10sep2004 CFBaum
use http://www.stata-press.com/data/r8/friedman2.dta, clear
* in Stata 8, could do
webuse friedman2, clear
arima pc92 L.pc92 L(0/1).m2 if tin(,1981q4)
* static (one-step-ahead) 20-quarter forecast
predict consump_st if tin(1982q1,1986q4)
* dynamic (recursive) 20-quarter forecast
predict consump_dyn if tin(1982q1,1986q4), dynamic(q(1982q1))
label var pc92 "Actual"
label var consump_st "one-step forecast"
label var consump_dyn "dynamic forecast"
* graphics could be produced in Stata 7 via tsgraph
tsline pc92 consump_st consump_dyn if tin(1982q1,1986q4), ///
ti("Actual and predicted real consumption")
graph display, xsize(4) ysize(3) scheme(s2mono)

52 Stata: The language of choice for time-series analysis?

yielding the estimated equation and figure:

. arima pc92 L.pc92 L(0/1).m2 if tin(,1981q4)

(setting optimization to BHHH)
Iteration 0: log likelihood = -392.09822
Iteration 1: log likelihood = -392.09822

ARIMA regression

Sample: 1959q2 to 1981q4 Number of obs = 91
Wald chi2(3) = 58210.57

Log likelihood = -392.0982 Prob > chi2 = 0.0000

OPG
pc92 Coef. Std. Err. z P>|z| [95% Conf. Interval]

pc92
pc92

L1 1.01849 .0134459 75.75 0.000 .992137 1.044844
m2

-- 1.022222 .378699 2.70 0.007 .2799852 1.764458
L1 -1.074798 .3888382 -2.76 0.006 -1.836906 -.3126889

_cons .8652995 20.18578 0.04 0.966 -38.6981 40.4287

/sigma 17.99031 .9378816 19.18 0.000 16.15209 19.82852

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

1982q1 1983q1 1984q1 1985q1 1986q1 1987q1
time

Actual one�step forecast

dynamic forecast

Actual and predicted real consumption

Figure 1: Static and dynamic forecasts with arima

In this example, it may be seen that, although the model generates reasonable one-
step-ahead forecasts (underpredicting slightly), the dynamic, or recursive form of the
model is quite unsatisfactory, leading over a 20-quarter forecast horizon to an unrea-
sonably low level of predicted real personal consumption expenditure.

C. F. Baum 53

3.2 ivreg2

There are a number of features in the latest version of ivreg2 (Baum, Schaffer, and
Stillman 2003; 2004) that are relevant for the analysis of time-series and panel-data
models. The version of ivreg2 published in the Stata Journal and presented by Mark
Schaffer at the 2003 UK Stata Users Group meeting implemented instrumental variables
and a generalized method of moments (GMM) estimator that efficiently fitted IV-style
models with arbitrary heteroskedasticity. In the latest update of the software (available
from SSC), we have added a number of features: notably, the ability to utilize GMM

estimation to deal with arbitrary departures from independence of the errors (e.g.,
serial correlation), both in conjunction with the heteroskedasticity-robust (“White”)
component and in stand-alone form. The former capability allows ivreg2 to efficiently
fit models with HAC (heteroskedasticity and autocorrelation consistent) standard errors.
In fact, since ivreg2 can fit models without any instrumental variables, it may be used
to reproduce any model estimable with official Stata’s newey.

Two aspects of these extended ivreg2 capabilities are worth mentioning. In com-
puting a robust covariance matrix, you may want the robust-to-AC correction without
applying the robust-to-H correction. The computation of the “White piece” of a robust
covariance matrix involves estimation of fourth moments of the estimated residuals, and
if there is no cause to question the assumption of homoskedasticity, you should apply
the Newey–West component without the “White” or “sandwich” correction for arbi-
trary heteroskedasticity. The new version of ivreg2 allows for that by decoupling those
as separate options, which is something that newey cannot do. Indeed, although “HAC

standard errors” computed by the Newey–West formula are routinely reported in the
literature, it must be noted that the choice of the Bartlett kernel in that formula is an
arbitrary smoothing of the empirical autocorrelation function. All that is required is an
empirical autocovariance matrix that is guaranteed to be positive definite, and a num-
ber of kernels can achieve that goal. Just as with any application of kernel estimation,
you may want to choose a different kernel. The new version of ivreg2 allows for the
specification of the kernel from a list of eight choices (with Bartlett, à la Newey–West,
as default). Because some of those kernels do not involve an integer truncation point,
ivreg2 uses a bandwidth (bw()) option rather than the lag() option of newey. For
kernels with an integer truncation point (such as Bartlett), the bandwidth is one greater
than the number of lags (thus bw(1) specifies that no lagged values of the residuals are
to be included; bw(2) = lag(1), etc.). Of course, the use of kernel() and bw() options
allows ivreg2 to be used to fit instrumental variables models with AC or HAC errors,
which cannot be achieved with newey.

The revised ivreg2 also contains a number of other new features: the ability to
fit LIML (limited-information maximum likelihood) models, perform general k-class es-
timation, and compute a number of diagnostics for “weak instruments”. A pscore()

option has been added to maintain comparability with official ivreg.

54 Stata: The language of choice for time-series analysis?

3.3 Unit-root tests

dfgls

The dfgls command, a user-written routine in Stata 7 (Baum and Sperling 2000),
was adopted by StataCorp developers and is now part of official Stata. Indeed, its
methodology, the “DF–GLS”, Dickey–Fuller generalized least squares, approach of Elliott,
Rothenberg, and Stock (1996) is preferred by many time-series econometricians to the
“first-generation” more widely-known tests of Dickey and Fuller (dfuller) or Phillips
and Perron (pperron). Inferences drawn from the DF–GLS test are likely to be more
robust than those based on the first-generation tests, and dfgls should be your unit-root
test of choice.

kpss and other fractional integration tests

As an interesting alternative to the Dickey–Fuller style methodology underlying the first
generation tests as well as dfgls, we might consider the KPSS test (Kwiatkowski et al.
1992). This test, implemented some time ago for Stata (Baum 2000), utilizes the perhaps
more natural null hypothesis of stationarity, or I(0), rather than the Dickey–Fuller style
null hypothesis of I(1) or nonstationarity in levels (difference stationarity). The dfgls

and KPSS tests may both be applied, with hopes that the verdict of one will confirm
that of the other. The KPSS test (command kpss) is also often used (in conjunction
with, e.g., dfgls) to detect “long memory” or fractional integration: a noninteger value
of the integration parameter, which implies that the series is neither I(0) nor I(1), but
I(d), 0 < d < 1. A number of other user-written routines examine this prospect for
single (and in some cases multiple) time series: e.g., gphudak, modlpr, and roblpr

(Baum and Wiggins 2000a). Full details are available from the STB articles cited.

Unit-root tests allowing for structural change

A well-known weakness of the Dickey–Fuller style unit-root test with I(1) as a null
hypothesis is its potential confusion of structural breaks in the series as evidence of
nonstationarity. Many econometricians have attempted to deal with this confusion by
devising unit-root tests that allow for some sort of structural instability in an otherwise
deterministic model. As an illustration, consider a time series driven by a deterministic
trend (perhaps subject to breaks in the mean of the series, or breaks in trend) rather
than following the stochastic trend of a unit-root process.

One test of this nature was devised by Andrews and Zivot (1992) and presented
in their article analyzing the “Great Crash” of the 1930s and oil price shocks of the
1970s in terms of their effects on unit-root test behavior. This test allows for a single
structural break in the intercept and the trend of the series, as determined by a grid
search over possible breakpoints. Subsequently, the procedure conducts a Dickey–Fuller
style unit-root test conditional on the series inclusive of the estimated optimal breaks.
The author has made the zandrews test, translated from RATS code, available in Stata.
By default, the test allows for a break in intercept. Alternatively, a trend break or

C. F. Baum 55

both intercept and trend breaks may be considered by employing the break(string)

option. As in all Dickey–Fuller style tests, the degree of augmentation with additional
lags of the dependent variable may have an impact on the power of the test by ensuring
that the residuals are sufficiently whitened. zandrews provides four different methods
for lag selection in the lagmethod(string) option. For example, you may specify the
number of lags desired, rely on the AIC or BIC criteria, or allow for a sequential t-test to
detect the optimal lag, similar to the method implemented in dfgls. A graph option
is also provided to allow visual scrutiny of the unit-root test statistics for alternative
breakpoints. The zandrews routine may be applied to single time series within-panel
data. It requires Stata 8.0 or later.

As an illustration:

* zandrews_X.do 16jul2004 CFBaum
webuse turksales,clear
* contrast with Dickey-Fuller test
dfuller sales
zandrews sales, graph
zandrews sales, break(trend)
zandrews sales, break(both) trim(0.10)
zandrews sales, lagmethod(BIC)
zandrews D.sales, graph
* work with single time series of panel
webuse grunfeld, clear
zandrews invest if company==3, break(trend) graph

One obvious weakness of the Zivot–Andrews strategy, relating as well to similar
tests proposed by Perron and Vogelsang (1992), is its inability to deal with more than
one break in a time series. For instance, the trade-weighted value of the US dollar
versus trading partners’ currencies followed a V -shaped pattern over the 1980s and 1990s
so that a single break in intercept and trend could not have dealt satisfactorily with
the evolution of this series. Addressing this problem, Clemente, Montañés, and Reyes
(1998) proposed tests that would allow for two events within the observed history of a
time series, either additive outliers (the AO model, which captures a sudden change in
a series) or innovational outliers (the IO model, allowing for a gradual shift in the mean
of the series). This taxonomy of structural breaks follows from Perron and Vogelsang’s
work (1992). However, in that paper the authors only dealt with series including a
single AO or IO event. The double-break additive outlier AO model as employed in
Baum, Barkoulas, and Caglayan (1999) involves the estimation of

yt = µ + δ1DU1t + δ2DU2t + ỹt

where DUmt = 1 for t > Tbm and 0 otherwise, for m = 1, 2. Tb1 and Tb2 are the
breakpoints to be located by grid search. The residuals from this regression, ỹt, are
then the dependent variable in the equation to be estimated. They are regressed on
their lagged values, a number of lagged differences, and a set of dummy variables needed
to make the distribution of the test statistic tractable:

ỹt =

k∑

i=1

ω1iDTb1,t−i +

k∑

i=1

ω2iDTb2,t−i + αỹt−i +

k∑

i=1

θi∆ỹt−i + et

56 Stata: The language of choice for time-series analysis?

where DTbm,t = 1 for t = Tbm + 1 and 0 otherwise, for m = 1, 2. No intercept is
necessary, as ỹt is mean zero. This regression is then estimated over feasible pairs of
Tb1 and Tb2, searching for the minimal t-ratio for the hypothesis α = 1; that is, the
strongest rejection of the unit root null hypothesis. The value of this minimal t-ratio is
compared with critical values provided by Perron and Vogelsang (1992), as they do not
follow the standard Dickey–Fuller distribution.

The equivalent model for the innovational outlier (gradual change) model expresses
the shocks to the series (the effects of δ1, δ2 above) as having the same ARMA represen-
tation as other shocks to the model, leading to the formulation

yt = µ + δ1DU1t + δ2DU2t + φ1DTb1,t + φ2DTb2,t + αyt−1 +

k∑

i=1

θi∆yt−i + et

where again an estimate of α significantly less than unity will provide evidence against
the I(1) null hypothesis.

In each of these models, the breakpoints Tb1, Tb2 and the appropriate lag order k are
unknown. The breakpoints are located by a two-dimensional grid search for the maximal
(most negative) t-statistic for the unit-root hypothesis (α=1), while k is determined by
a set of sequential F -tests.

The Stata routines clemao2 and clemio2 implement the AO and IO models for two
structural breaks, respectively. If their estimates show that there is no evidence of a
second break in the series, the original Perron–Vogelsang techniques should be used to
test for a unit root in the presence of one structural break. For convenience, the single-
break routines are also provided in this package as routines clemao1 and clemio1.
In applying Dickey–Fuller tests in time series that may exhibit structural breaks, you
should consider the results forthcoming from the clem AO or IO routines. If these
estimates provide evidence of significant additive or innovational outliers in the time
series, then results derived from dfuller, pperron, or dfgls are placed in doubt, as
this is evidence that the model excluding structural change is clearly misspecified by the
omission of relevant explanatory variables. Like zandrews, the clem AO or IO routines
may be applied to single time series within panel data. They require Stata 8.2.

To illustrate:

* clem_X.do 16jul2004 CFBaum
* Program illustrating use of Clemente, Montanes, Reyes
* structural break unit-root tests
webuse m1gdp, clear
label var ln_m1 "log(M1), SA"
label var t "calendar quarter"
clemao1 ln_m1, graph
more
clemio1 D.ln_m1, graph
more
clemao2 ln_m1 if tin(1959q1,2002q3), trim(0.10) maxlag(6) graph

We reproduce the output and graph below from the first test conducted in the
program above—that for the (log) level of M1, the US money supply. We note that

C. F. Baum 57

the break detected by the test roughly corresponds to the timing of the 1987 US stock
market crash. Despite the structural break, we cannot reject the null hypothesis of a
unit root in this series.

. clemao1 ln_m1, graph

Clemente-Monta~nés-Reyes unit-root test with single mean shift, AO model

ln_m1 T = 157 optimal breakpoint : 1987q3

AR(1) du1 (rho - 1) const

Coefficient: 1.32622 -0.04842 5.58624
t-statistic: 20.073 -2.530
P-value: 0.000 -3.560 (5% crit. value)

� .020.02.0
4

D
.l
n
_
m

1

1960q1 1970q1 1980q1 1990q1 2000q1
calendar quarter

D.ln_m1

� 2.5� 2� 1.5� 1� .5
0

b
re

a
k
p
o
in

t
t

� statistic

1960q1 1970q1 1980q1 1990q1 2000q1
calendar quarter

Breakpoint t�statistic: min at 1987q3

in series: ln_m1

Clemente�Montañés�Reyes single AO test for unit root

Figure 2: Unit-root test with additive outliers

3.4 Calculating statistics from moving-window samples

A natural concern in the presence of structural change might be the degree to which
descriptive statistics of a particular series be time-dependent. Covariance stationarity
of a time series requires that the mean and variance of the series be time-invariant
and that the remaining elements of the autocovariance function of the time series be

58 Stata: The language of choice for time-series analysis?

constant over time. A strict notion of stationarity requires that the entire distribution
function be time-invariant; e.g., the degree of skewness or kurtosis present in the series
should also be fixed over time.

Although Stata contains a command to compute statistics for subsamples, tabstat,
it cannot deal with overlapping subsamples. That is, tabstat works like any Stata
command prefixed with by: if you define each twelve months of a monthly series as one
element of a by-group, tabstat will handle the task of computing annual statistics very
nicely. On the other hand, it will not deal with computing statistics from a sequence
of by-groups that are formed by a “moving window” with, for example, eleven months
overlap. The mvsumm routine of Baum and Cox deals with this task. It will compute any
of the univariate statistics available from summ, detail and generate a time series con-
taining that statistic over the defined time-series sample (requiring prior use of tsset).
You may specify the window width (the number of periods included in the statistic’s
computation) as an option, as well as the alignment of the resulting statistic with the
original series. This routine is especially handy for many tasks in financial research, in
which some measure of recent performance—the average share price over the last twelve
months, or the standard deviation (volatility) of the share price over that interval—is
often needed as a regressor. The mvsumm routine automatically will operate separately
on each time series of a panel if it detects that a panel calendar has been established by
tsset. This added flexibility was incorporated in its logic in a June 2004 update.

Similar to the underlying summarize, mvsumm will handle only a single time se-
ries. How might a moving correlation be generated? By a trivial set of modifications
to mvsumm, producing mvcorr. This routine allows you to compute a moving-window
correlation between two series; this is useful in finance, where the computation of an
optimal hedge ratio involves the computation of just such a correlation. For instance,
you might want to calculate the moving correlation between spot and future prices of a
particular commodity. The mvcorr routine requires tsset, thus supporting time-series
operators, and it will allow the computation of moving autocorrelations. For example,
mvcorr invest L.invest, win(5) gen(acf) end will specify that the first sample au-
tocorrelation of an investment series should be computed from a five-period window,
aligned with the last period of the window (via option end) and placed in the new
variable acf. Like mvsumm, mvcorr will operate automatically on each time series of a
panel. It requires Stata 8.2.

C. F. Baum 59

As an example of its use:

* mvcorr_X.do 24jun2004 CFBaum
* Program illustrating use of mvcorr
webuse grunfeld, clear
drop if company>4
mvcorr invest mvalue, win(5) gen(rho)
forv i=1/4 {
tsline rho if company==‘i’, nodraw ti("Firm ‘i’") name(comp‘i’,replace)
local g "‘g’ comp‘i’"
}
graph combine ‘g’, ti("Investment vs Market Value: Moving Correlations by Firm")

3.5 Moving-window regression estimates

Last we consider the creation of a Stata time-series routine to compute moving-window
regression estimates. Parallel to the rationale for mvsumm, you may indeed compute re-
gression estimates for nonoverlapping subsamples via official Stata’s statsby. However,
that command cannot deal with overlapping subsamples, as that would correspond to
the same observation being a member of several by-groups.

The challenge in devising such a routine is not in the necessary computations or in
the programming, but rather in providing a user interface that will allow the researcher
to specify, in some comprehensible form, what she or he would like calculated for each
crank of the window. The new routine rollreg provides that functionality with logic
borrowed heavily from a RATS routine originally authored by Simon van Norden at the
Bank of Canada (and available from the web-based SSC archive in RATS format).

The first concern with a moving-window estimation routine: how should the window
be designed? One obvious scheme would mimic mvsumm and allow for a window of fixed
width that is to be passed through the sample, one period at a time: the move(#)

option. (Imagine something like a 12-month window that is to be advanced to end-
of-quarter months, but that could be achieved by merely discarding the intermediate
window estimates.) There are also applications in which an “expanding window” is
desired; that is, starting with the first τ periods, compute a set of estimates that consider
observations 1 . . . (τ +1), 1 . . . (τ +2), and so on. This sort of window corresponds to the
notion of the information set available to an economic agent at a point in time and to
the scheme used to generate instruments in a dynamic panel data model (cf. xtabond).
Thus, rollreg also offers that functionality via its add(τ) option. For completeness,
the routine also offers the drop(τ) option, which implements a window that initially
takes into account the last τ periods and then expands the window back toward the
beginning of the sample. This sort of moving-window estimate is useful in considering
the usefulness of past information in generating an ex ante forecast, using a greater or
lesser amount of that information in the computation. One of these three options must
be provided when executing rollreg.

A further choice must be made: a moving-window regression will generate sequences
of results corresponding to each estimation period. From the design standpoint, should
those sequences be stored in columns of a matrix (which perhaps make them easier

60 Stata: The language of choice for time-series analysis?

to present in tabular format) or as additional variables in the current dataset (which
perhaps make them easier to include in computations, or in graphical presentations à
la tsgraph or tsline)? The latter, on balance, seems handier and is implemented in
rollreg via the mandatory stub(string) option, which specifies that new variables
should be created with names beginning with string.

As an illustration:

* rollreg_X.do 07sep2004 CFBaum
* Program illustrating use of rollreg
webuse wpi1, clear
g t2 = t^2
rollreg D.wpi t t2, move(24) stub(wpiM) graph(summary)
more
rollreg D.wpi t t2, add(24) stub(wpiA) graph(summary)
more
rollreg D2.wpi LD.wpi LD2.wpi t, move(48) stub(wpiM2) robust graph(full)

All the features of rollreg are accessible in a panel-data context when applied to a
single time series within the panel via an if or in qualifier. However, rolling regressions
certainly have their uses in a panel context. For instance, a finance researcher may
want to calculate a “CAPM beta” for each firm in a panel using a moving window of
observations, simulating the information set utilized by the investor at each point in
time. Therefore, rollreg has been enhanced to operate properly on a panel of time
series, where the same sequence of rolling regressions are computed for each time series
within the panel. In this context, graphical output is not available. Although rollreg

does not produce graphics when multiple time series are included from a panel, it is
straightforward to generate graphics using the results left behind by the routine. For
instance, we may use the following code to produce figure 3:

* rollreg_X2.do 09sep2004 CFBaum
* Program illustrating use of rollreg on panels
webuse invest2, clear
tsset company time
rollreg market L(0/1).invest time, move(8) stub(mktM)
local dv ‘r(depvar)’
local rl ‘r(reglist)’
local stub ‘r(stub)’
local wantcoef invest
local m "‘r(rolloption)’(‘r(rollobs)’)"
forv i=1/4 {
qui reg ‘dv’ ‘rl’ if company==‘i’
local cinv = _b[‘wantcoef’]
tsline ‘stub’_‘wantcoef’ if company==‘i’ & ‘stub’_‘wantcoef’<., ///
ti("company ‘i’") yli(‘cinv’) yti("moving beta") ///
name(comp‘i’,replace) nodraw
local all "‘all’ comp‘i’ "
}
graph combine ‘all’, ti("‘m’ coefficient of ‘dv’ on ‘wantcoef’") ///
ysize(4) xsize(4) col(2) ///
t1("Full-sample coefficient displayed") saving("‘wantcoef’.gph",replace)

C. F. Baum 61

4
6

8
1
0

1
2

m
o
v
in

g
 b

e
ta

10 12 14 16 18 20
Last obs. of sample

company 1

4
6

8
1
0

1
2

m
o
v
in

g
 b

e
ta

10 12 14 16 18 20
Last obs. of sample

company 2

0
2

4
6

8
1
0

m
o
v
in

g
 b

e
ta

10 12 14 16 18 20
Last obs. of sample

company 3

� 5051
0

m
o
v
in

g
 b

e
ta

10 12 14 16 18 20
Last obs. of sample

company 4

Full�sample coefficient displayed

MOVE(8) coefficient of market on invest

Figure 3: Rolling regression estimates

It is interesting to note that companies 1 and 2 have broadly similar trajectories,
as do companies 3 and 4, and are quite different from the former pair. A clear under-
standing of the temporal stability of the coefficient estimates is perhaps more readily
obtained graphically.

4 Final thoughts

The question I posed in the title of this paper—could Stata be considered the language
of choice for time-series analysis?—remains an open question. Relative to more spe-
cialized time-series packages, Stata lacks some very useful features, such as nonlinear
systems estimation, multivariate GARCH, and simulation of a nonlinear model, as well
as some of the graphics tools useful for time-series work (such as likelihood-profile plots
from a model fitted via maximum likelihood). On the other hand, most users find it
difficult to work effectively in several packages’ differing syntax, and competing packages
generally do not possess Stata’s flexibility in handling non-time-series applications, data
management, and the like. The most encouraging trend, in my mind, is that official
Stata’s developers have committed significant resources toward making Stata a com-

62 Stata: The language of choice for time-series analysis?

petitive time-series package and that many user-programmers have chosen to develop
and share their Stata code implementing a number of useful tools for time-series tasks
lacking from official Stata. The last several years of development and the rapid pace of
innovation in the Stata community bode well for those who would like to rely on Stata
for a very sizable fraction of their research computing in the analysis of time series and
panel data.

5 Acknowledgments

I am very grateful to Dr. Mustafa Caglayan and the Department of Economics at the
University of Leicester for their hospitality. Much of the invited lecture underlying this
paper was prepared in Leicester during a visit to the department in May and June 2004.
I am also indebted to Paula N. Arnold, Nicholas J. Cox, and an anonymous reviewer
for editorial suggestions and participants in the 10th UK Stata Users Group meeting for
their comments.

6 References
Andrews, D. and E. Zivot. 1992. Further evidence on the Great Crash, the oil price

shock, and the unit-root hypothesis. Journal of Business and Economic Statistics 10:
251–270.

Baum, C. F. 2000. sts15: Tests for stationarity of a time series. Stata Technical Bulletin
57: 36–39. In Stata Technical Bulletin Reprints, vol. 10, 356–360. College Station,
TX: Stata Press.

—. 2004. A review of Stata 8.1 and its time-series capabilities. International Journal
of Forecasting 20: 151–161. Available as Boston College Economics Working Paper
No. 581, http://fmwww.bc.edu/ec-p/wp581.pdf.

Baum, C. F., J. T. Barkoulas, and M. Caglayan. 1999. Long memory or struc-
tural breaks: Can either explain nonstationary exchange rates under the cur-
rent float? Journal of International Financial Markets, Institutions, and Money
9: 359–376. Available as Boston College Economics Working Paper No. 380,
http://fmwww.bc.edu/ec-p/wp380.pdf.

Baum, C. F., M. E. Schaffer, and S. Stillman. 2003. Instrumental variables and GMM:
Estimation and testing. Stata Journal 3(1): 1–31. Available as Boston College
Economics Working Paper No. 545, http://fmwww.bc.edu/ec-p/wp545.pdf.

—. 2004. Software updates: Instrumental variables and GMM: Estimation and testing.
Stata Journal 4(2): 224.

Baum, C. F. and R. Sperling. 2000. sts15 1: Tests for stationarity of a time series. Stata
Technical Bulletin 58: 35–36. In Stata Technical Bulletin Reprints, vol. 10, 360–362.
College Station, TX: Stata Press.

C. F. Baum 63

Baum, C. F. and V. Wiggins. 2000a. dm81: Utility for time-series data. Stata Technical
Bulletin 57: 2–4. In Stata Technical Bulletin Reprints, vol. 10, 29–30. College Station,
TX: Stata Press.

—. 2000b. sts16: Tests for long memory in a time series. Stata Technical Bulletin 57:
39–44. In Stata Technical Bulletin Reprints, vol. 10, 362–368. College Station, TX:
Stata Press.

Clemente, J., A. Montañés, and M. Reyes. 1998. Testing for a unit root in variables
with a double change in the mean. Economics Letters 59: 175–182.

Elliott, G., T. Rothenberg, and J. H. Stock. 1996. Efficient tests for an autoregressive
unit root. Econometrica 64: 813–836.

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin. 1992. Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are we that
economic time series have a unit root? Journal of Econometrics 54: 159–178.

Perron, P. and T. Vogelsang. 1992. Nonstationarity and level shifts with an application
to purchasing power parity. Journal of Business and Economic Statistics 10: 301–320.

About the Author

Christopher F. Baum is an associate professor of economics at Boston College. He is an
associate editor of Computational Economics and Stata Journal and serves on the Advisory
Council of the Society for Computational Economics. Baum founded and manages the Boston
College Statistical Software Components (SSC) archive at RePEc (http://repec.org) and has
developed a number of Stata commands for data management and time-series analysis. His
recent research has focused on the effects of uncertainty on international trade flows, bank
lending behavior, and firms’ cash holdings and use of leverage.

