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The greatest challenge in forecasting food production and agricultural prices year to year has been

predicting crop yields.  During the growing season, many resources are devoted to monitoring crop

development in order to establish some parameters on the size of the prospective crops. The U.S.

Department of Agriculture (USDA) publishes monthly estimates for production of major crops in the

U.S. and throughout the world (U.S. Department of Agriculture, 1999).  But until definitive

information is available, crop production per acre or per hectare is routinely projected by past trends. 

These extrapolated estimates have been accepted as the best available well into the growing season. 

For U.S. corn and soybeans, for example, the USDA relies on trend yields until August 1, about two-

thirds of the way in the development of these crops.

While yield forecasts are generated independently of and earlier than the USDA assessments, analysts

have had little success in predicting yields even just prior to the normal planting season.  This, of

course, relates to the extreme difficulty in forecasting weather accurately for the upcoming  growing

season.  Nevertheless, even marginal improvement in accuracy of weather forecasting six months to a

year in advance of harvest would enhance planning and policy directives substantially.

An evaluation in 1984 of long-range weather forecasting by an Australian meteorologist was not highly

optimistic about major improvements (Nicholls, 1985).  Neville Nicholls made these observations and

cited another analyst:

“Unfortunately, the record of meteorological services and individuals who have attempted to
predict climate variations is not very good (Nicholls, 1980).  Such predictions are usually no
more accurate than chance.  Recent work (Madden) suggests that fluctuations of climate from
year to year, in many parts of the world, are essentially random and inherently unpredictable. 
Thus, development of a successful and widely usable climate prediction technique seems
unlikely.”

Nicholls hastened to add:
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“There is, however, at least one exception to this bleak prospect: the El Niño-Southern
Oscillation phenomenon......This relatively well-defined life cycle sometimes allows the
prediction of anomalous meteorological and oceanic behavior associated with the phenomenon
some months in advance.”

Popularly known as “El Niño”, this cycle has been given increased attention in recent years as a means

to forecast world weather patterns several months into the future.  El Niño refers to abnormal warming

of the sea surface in a large area of the equatorial Pacific ocean.  This area about matches the size of the

contiguous United States.  “El Niño”, Spanish name for “The Boy Child”, refers to Jesus Christ, a label

given to the warming by Peruvian fishermen who noted the phenomenon tended to develop around

Christmas time.  Fishermen were sensitive to El Niño because it affected their catch.

Just as there are warm anomalies in sea surface temperatures in the tropical Pacific, cold anomalies

called “La Niña” (girl) are also observed.  Both El Niño and La Niña affect weather patterns and are

given the common name, “El Niño/Southern Oscillation” (ENSO).

Recognition of the importance of the effect of ENSO on crop yields and agricultural prices has been

growing over the past quarter of a century.  Early attention was triggered in the 1972-73 crop year as

El Niño depleted the catch of anchovies off the coast of Peru.  This reduced the production of fish meal

for livestock feed in a year oilseed meal supplies were particularly tight.  U.S. soybean meal prices

reached a peak of $400 per ton (Decatur, IL) and averaged $229 per ton for the season. Weather

problems in the U.S. Corn Belt in 1974, 1983 and 1988 followed strong El Niño years.

Current interest in ENSO can be traced to the observation that the intensity has increased over time. 

The El Niño which began in March 1997 reached a level exceeded in only one past month (January

1983) since detailed records have been compiled.  This is illustrated in Figure 1 for sea surface

temperatures in a combination of Regions 3 and 4 in the equatorial sector of the Pacific Ocean.  The

National Oceanic and Atmospheric Administration (NOAA) maintains detailed records of sea surface

temperatures in four regions of the Pacific and calculates anomalies as shown in Figure 1 (NOAA,

5/8/99).  These anomalies, which represent departures from monthly seasonal averages, are graphed as

degrees Celsius.  The combination of Regions 3 and 4, labeled 3.4 is preferred by NOAA for analyzing

ENSO’s impacts.
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Figure 1

Major efforts have been directed by meteorologists in tying ENSO to current and future weather

patterns around the world.  Measurement of ENSO has concentrated on sea surface temperatures

but also atmospheric pressure in the tropical Pacific has been monitored.  A key series which has

been tracked as early as the late 1800s is the difference in atmospheric pressure at sea level between

Tahiti and Darwin, Australia, called “Southern Oscillation Index”, (SOI).  This data base was

derived from the extensive records kept by ship captains over the years.

References on Weather Patterns

Many studies have been directed toward relating ENSO to weather patterns, both globally and to

specific local areas and regions.  Methodology has varied widely.  Ropelewski and Halbert were not

the first to examine global impacts but they did provide one of the more comprehensive analyses of

recent years (Ropelewski and Halpert, 1986; 1987; 1989).  They concluded that ENSO had

significant effects on precipitation in 19 “core” regions around the world.  These areas included the

central and western tropical Pacific; northern, eastern and south eastern Australia; India; eastern

equatorial and southeastern Africa; north Africa and western Mediterranean; north east South
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America; Argentina; the Caribbean; the Gulf and Mexican region of North America; and the Great

Basin of the U.S.  

Kiladis and Diaz found similar sensitive regions for ENSO and added other areas including

Southeast Asia, western Australia, far western and central Europe, western Africa, western South

America, Brazil, Canada, eastern U.S. and east central U.S. (Kiladis and Diaz).  Both of these

studies related precipitation and temperature to specific years judged to be significant departures

from normal.  In other words, the relationship was not scaled to the level of departure of sea

surface temperatures (SST) or the Southern Oscillation Index (SOI) from normal.

A global view of sensitive areas defined by the Climate Prediction Center on NOAA is described as

follows (NOAA, 12/6/98):

“Warm episodes (El Niño) result in abnormally dry conditions over northern Australia,
Indonesia, and the Philippines in both (winter and summer) seasons.  Drier than normal
conditions are also observed over southeastern Africa and northern Brazil during the
northern winter season.  During the northern summer season, the Indian monsoon rainfall
tends to be less than normal, especially in northwest India where crops are adversely
affected.  Wetter than normal conditions during warm episodes are observed along the west
coast of tropical South America and at the subtropical latitudes of North America (Gulf
Coast) and South American (southern Brazil to central Argentina).

During cold episodes (La Niña) ......”wetter than normal conditions develop........over
northern Australia and Indonesia during the northern winter and over the Philippines during
the northern summer.  Wetter than normal conditions are also observed over southeastern
Africa and northern Brazil, during the northern winter season.  During the northern summer
season, the Indian monsoon rainfall tends to be greater than normal, especially in northwest
India.  Drier than normal conditions during cold episodes are observed along the west coast
of tropical South America and at subtropical latitudes of North America (Gulf Coast) and
South America (southern Brazil to central Argentina) during their respective winter
seasons.” 

A cold episode winter “favors the build-up of colder than normal air over Alaska and
western Canada, which often penetrates into the northern Great Plains and the western U.S. 
The southeastern U.S., on the other hand, becomes warmer and drier than normal.”

Other studies have focused on specific nations or regions of nations.  An analysis of the contiguous

U.S. found ENSO related to the frequency of occurrence of heavy rainfall in the Southeast, Gulf

Coast, central Rockies and the general area of the Mississippi- Ohio river valleys (Gershinov and

Barnett).  Also, extreme warm temperature frequencies were associated with ENSO in southern
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and eastern U.S.  Another study found significant precipitation anomalies in several regions of the

central and eastern North America (Montroy, Richman and Lamb).  

Several researchers have directed their efforts toward southern Africa, identified as a region

especially susceptible to ENSO influences (Hastenrath, Greichar and Van Heerden; Jury). Other

regions receiving attention include Australia (Evans and Allan; Stone and Auliciems) and India

(International Research Institute for climate prediction).  These studies confirm that ENSO related

variables do impact weather patterns in those areas.

References on Crop Yields

Less numerous are studies which relate ENSO to crop yields, and, as with meteorological research,

the methods have varied widely.  Handler related El Niño to U.S. droughts and corn yields

(Handler).  He found no relationship in 1910 to 1950, but for the period of 1961 to 1988, corn

yields in Illinois, Iowa and Indiana registered the strongest association with El Niño, with negative

correlations throughout the six quarters prior to planting, but slightly positive during the growing

season and strongly positive for a few months after harvest.

A 1992 study by the Economic Research Service of the U.S.D.A. found departures from a normal

distribution on coarse grain yields in the Corn Belt and Great Plains in El Niño years, with evidence

the departure was to the upside (Stephanski).  For two years following El Niño, no significant

departures could be discerned.  El Niño years were defined as when El Niño began.

In another study, corn yields in Iowa, Illinois, Indiana, Missouri and Ohio were related to SOI for

the period from 1900 to 1994 (Carlson, Todey, and Taylor).  The analysts found a tendency for

yields to be highest in the low phase of SOI which corresponds to El Niño and lowest during the

high phase which corresponds to La Niña. 

Mjelde, et. al. examined the lagged relationship between SOI in one year and rainfall in the fall of

that year through the growing season of the next year in east-central Texas (Mjelde, et.al.,1997). 

Then, they applied this information to production functions on corn and sorghum which

incorporated rainfall variables.  Only in October of year t to March of year t+1 (preseason) were

SOI variables significant in explaining rainfall.  For the period of 1894 to 1992, 24 “ENSO event

years” and 17 “cold event years” were identified.  ENSO event years, captured by a zero-one
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dummy variable, tended to add to preseason rainfall while the cold event years tended to reduce

preseason rainfall.  They concluded that ENSO information could enhance profits somewhat on

corn by modifying inputs, but not on sorghum.  

Using a similar SOI model (zero-one variables lagged) to forecast yields directly, Mjelde and

Keplinger found that warm events are correlated with increases in winter wheat yields in Texas and

cold events are correlated with lower yields (Mjelde and Keplinger, 1998).  For sorghum,  the signs

in most cases were correct (same as wheat) but the coefficients were not uniformly significant. 

They observed that significant correlations between SOI events and yields do not necessarily

translate into more accurate forecasts.  Including SOI events in forecasting yields decreased the

forecast mean squared error for winter wheat, but had no significant impact on sorghum forecasts.

In a project to evaluate the potential economic gains from improved long range weather

forecasting, analysts established that, for southern, central and southeastern U.S., non-irrigated

crop yields were positively related to La Niña and negatively related to El Niño (Adams, et. al.)

They defined ENSO anomaly years as beginning in October and ending in September of the

following year.  Their analysis covered 1948-1987.  They assumed that the accuracy of yield

forecasts from ENSO was about 60 percent.  An improvement to 80 percent would add about $145

million to $265 million in social welfare (producer and consumer) in the area, equal to about 2-3

percent of the farm-gate value of total crop production.

In another study of ENSO effects on major crops in Southeast U.S. (Florida, Alabama, Georgia and

South Carolina), University of Florida researchers examined not only yields but also areas harvested

and prices (Hansen, Hodges and Jones).  Little influence was detected on prices.  Crop yields

tended to be higher than trend in La Niña years and lower than trend in years immediately following

La Niña events.  The warm phase two years prior to harvest influenced areas of soybeans, cotton

and peanuts harvested.

Relatively little research has been directed to associating ENSO with crop yields outside of the U.S. 

In a study of crop yields in Australia, Nicholls concluded that changes in sea-surface temperatures

around northern Australia appear to offer a simple means for predicting crop fluctuations well in

advance of harvest and even prior to the main planting season (Nicholls).  These temperatures

relate to ENSO.
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A study of corn production in Zimbabwe found yields correlated more closely with ENSO than did

rainfall (Cane, Eshel and Buckland).  The researchers found more than 60 percent of the variance in

yield correlated with ENSO.  Their approach was to evaluate a model to predict ENSO and thereby

forecast yields, a process they assessed as accurate.

Purpose and Relevance of This Study

The purpose of this study is to examine how ENSO/SOI have affected crop yields in a global

perspective.  The focal question is, “Can the information from ENSO/SOI improve the accuracy in

forecasting crop production and prices in major segments of the world?”  This includes the question

of whether such information can provide an improved definition of the probability distribution on

yields.  An ancillary objective was to determine whether further research, especially in establishing

meteorological linkages, is warranted.  

For individual states and districts of nations, the possible impact of ENSO/SOI is, of course,

important to those areas.  Such research is imperative.  However, in a broader sense, to producers

and consumers alike around the world, a more relevant concern is the global impact.   ENSO/SOI

would be expected to have positive as well as negative effects on crop yields from region to region. 

What needs to be determined is the net impact on production and the implication to world

agricultural and food prices.  To make such an evaluation,  crop production in ENSO/SOI sensitive

areas must be aggregated into some type of global agricultural model which can generate price

effects.  Implications to prices depends on the world supply-demand situation,  particularly as

related to stock levels.  When stocks of agricultural commodities are low, prices can be quite

volatile in responding to variations in production or even changing forecasts of production. 

Nations/Regions and Crops

Two sets of nations/regions were examined in this study.  One set targeted the major agricultural

nations and two aggregations of nations.  The U.S. and four aggregations of nations comprised the

second set designed to fit into the requirements for an econometric/simulation model of world

agriculture, called AGMOD (Ferris, 1997).  The first set was as follows:
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United States European Union

Canada India

Argentina China

Brazil Republic of South Africa

Australia Rest of the World

The second set included:

United States

Major grain exporters (Argentina, Australia, and Canada)

European Union

Major soybean and soybean product exporters (Argentina and Brazil)

Rest of the World

A separate analysis was undertaken of grain yields in the Former Soviet Union but no linkages to

ENSO could be established.

The crops selected were coarse grain, wheat, and oilseeds.  Rice was not included since much of

the production is under irrigation and less susceptible to variation in precipitation than are other

crops.  Coarse grain includes corn, sorghum grain, oats, barley, millet, and mixed grains.  On coarse

grain, corn was examined separately for the U.S. and the Republic of South Africa.  On oilseeds,

soybeans were analyzed for the U.S., Argentina, and Brazil.  For the European Union (E.U.),

oilseed yields were collectively tabulated.  No analysis was directed toward oilseed yields outside of

these nations.

The relative importance of these crops in the selected nations and regions is illustrated in Figures 2

to 4.  On coarse grain production, the U.S. represented nearly 30% of the world’s total in 1995-97

(Figure 2).  This was followed by China (15%), E.U. (12%), and India (4%).  Outside the U.S., the

major exporting nations of Argentina, Australia , and Canada represented only about 5% of the

total, with the Republic of South Africa about 1%.  The rest of the world accounted for about a

third of coarse grain production.



9

SHARE OF WORLD COARSE GRAIN PRODUCTION

U.S.  29%

Argentina  2%
Australia  1%

Canada  2%

E.U.  12%

India  4%

China  15%
R. of S. Africa  1%

R.O.W.  34%

Figure 2

In the U.S., corn predominates coarse grain output at nearly 90% in 1995-97; sorghum production

was about 7% in the same period.  In Argentina, corn represented about 80% of the coarse grain

output and in the Republic of South Africa, about 93% in 1995-97.

As shown in Figure 3, the U.S. produced only 11 percent of the world’s wheat output in 1995-97,

about the same as India, but less than China (19%) and the E.U. (16%).  These nations were

followed by Canada (5%), Australia (3%) and Argentina (2%).  The rest of the world accounted

for nearly a third of the global output.
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SHARE OF WORLD WHEAT PRODUCTION

U.S.  11%

Argentina  2%
Australia  3%

Canada  5%

E.U.  16%

India  11% China  19%

R.O.W.  32%

Figure 3

Soybean production in the U.S., Argentina, and Brazil coupled with oilseed production in the E.U.

accounted for about 45% of the world’s oilseed output in 1995-97 (Figure 4).  The U.S. alone

represented about a fourth of the global total.    

                       

                                                    Analytical Procedures

Several alternative formulations were explored in relating ENSO/SOI to crop yields.  While the

Southern Oscillation Index (SOI) has the advantage of a data base which extends back to the late

1800s, ENSO provided stronger statistical linkages to crop yields in the period since 1950. The 

ENSO data base begins in 1950.  At the suggestion of NOAA,  sea surface temperatures (SST) in

the combination of Regions 3 and 4, labeled Region 3.4 were selected for the analysis.  No further

analysis of the effects of SOI was pursued.  Since SST exhibit a seasonal pattern, the base data

were the anomalies (departures) from the seasonal averages.  The decision was made to incorporate

both positive values (El Niño)  and negative values (La Niña).  For this reason, subsequent

references will be to the entire cycle, that is ENSO.

The anomalies calculated by NOAA have been based on 30 year averages of SSTs for each month

from 1950 to 1979.  These averages were subtracted from the actual SSTs for each month to

derive the anomalies.  



11

SHARE OF WORLD OILSEED PRODUCTION*

U.S.  24%

Argentina/Brazil  15%

E.U.  5%

R.O.W.  55%

Figure 4

 

The SSTs have increased over the 1950 to 1998 period, significantly so since the late 1970s.  For

Region 3.4, the average across all months in 1980 through 1998 was 27.14 degrees Celsius

compared to 26.84 degrees in 1950 to 1979, the base used by NOAA.  Initial exploration with a

1950 to 1998 base revealed only minor differences in the results so the decision was made to

incorporate NOAA’s anomalies.

Observation of Figure 1 would reveal that the ENSO anomalies are not normally distributed.  This

was confirmed by a Jarque - Bera normality test which indicated a skewness of .403 and kurtosis of

3.425 (Bera and Jarque).  These values portray a distribution in which the positive peaks of El Niño

are greater than the negative peaks of La Niña and the tails are somewhat thicker than normal.

Alternative frequencies were explored before the decision was made to use calendar year averages. 

Two variables were constructed.  The El Niño variable, SSTAW, is the calendar year average of

the anomaly if positive and zero if negative.  The La Niña variable, SSTAC, on the other hand, is

the calendar year average of the anomaly if negative and zero if positive.  These variables are

plotted in Figure 5 for 1950 to 1998.  Four ENSO variables were candidates as independent

variables in linear regressions to forecast crop yields, SSTAW, SSTAC, SSTAW(-1), and SSTAC(-

1). SSTAW(-1) and SSTAC(-1) represent one year lags of SSTAW and SSTAC.
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Figure 5

A number of studies have used zero-one type variables, usually to designate which years can be

defined as El Niño years.  Normally, only those years in which the positive anomaly exceeds some

prescribed level are analyzed relative to other years.  Similar procedures were used to define La

Niña years.  Whether the procedure described above for this study is superior or not may be

debatable but it does involve scaling, that is levels of departure from the norm are included in the

measurement.  Questions related to whether the warm and cold episodes are symmetric in their 

impacts on crop yields can be determined.  Degrees of freedom are expanded in that all years are

included in the measurement procedure.  One of the limitations of ENSO research has been the

limited number of observations when only clearly El Niño years or La Niña years are enumerated.

The formulation of the monthly data series into calendar year averages was somewhat arbitrary.

The first approach was to: (1) separate crop year averages for the northern and southern

hemispheres and (2) separate 6 month growing season averages for both hemispheres.  The results

were generally less satisfactory than with the calendar year averages even though conceptually such

orientations seemed logical.  For example, a current calendar year average in the northern
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hemisphere would include a period following harvest in which ENSO would not appear to be

relevant to that year’s yield.  For consistency and to accommodate aggregations of nations across

both hemispheres, only the results using calendar year averages for the anomalies are reported. 

Comments accompany the discussion where the alternative formulations provided the stronger

relationship.  Even in these cases, the results were similar to the application of calendar year

averages. 

The crop yield variable was the percent deviation of annual crop yields from trends based on double

exponential smoothing (DES). Yield data were obtained from the USDA’s “Production, Supply

and Distribution” series (U.S. Department of Agriculture, 1998).

The formula for single exponential smoothing is:

Ft=�At-1+(1-�)Ft-1

            where:

F=forecast

A=actual values

The value of � is usually small (less than .1) and indicates how much weight to give to the most

recent actual observation versus the forecast for the previous period.  In the software program,

MicroTSP,  the analyst can either set the value or have the program find the value that minimizes

the sum of squared forecast errors within the sample (Hall, Jackson and Lilien).  In double

exponential smoothing, the single smoothed data is smoothed again, i.e.:

F’t=�Ft-1+(1-�)F’t-1

A trend is included in the forecast and is extended into the future beyond the sample period in line

with the most recent past trend.

The application of double exponential smoothing to corn yields in the U.S. for 1950-97 is

illustrated in Figure 6.  The deviations of actual yields from the DES derived trends in terms of

percentages were then calculated and plotted in Figure 7.  The same procedure was applied to other

crops to generate the dependent variables for the linear regression analysis.  Attention was given to

correlations between crops.  If the correlation was relatively high, yield deviations for one crop

were included, as an independent variable, in the equation for the second crop.
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Figure 6

Figure 7
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Standard ordinary least square procedures were employed in the analysis.  Assumed was a linear

relationship between the independent variables and the dependent variables.  While not tested in this

endeavor, future research should check for non-linearities which very well may be prevalent.

Routinely, all four ENSO anomalies were initially included as independent variables in the equations

and then screened out based on statistical properties.  In only a few cases were all four variables

retained. While the lagged ENSO variables, SSTAW(-1) and SSTAC(-1), provided direct means to

forecast yields, current ENSO variables, SSTAW and SSTAC would have to be forecast

themselves, particularly for the northern hemisphere and fall planted crops in the southern

hemisphere.  Except for fall planted crops in the north, the anomalies for only part of the current

year would need to be forecast prior to planting.  Even so, this analysis over-estimates the

forecasting accuracy of those equations which include  the current averages.  But in support of the

rationale to incorporate current averages, the Climate Prediction Center of NOAA has been

forecasting sea surface temperatures in the tropical Pacific experimentally since September 1992

and officially since December 1994 (NOAA, 5/1/99).  As this program evolves and establishes a

tracking record, their 15 month forecasts can be incorporated into the crop yield equations.  

In the first step of the screening process, variables were eliminated if the coefficients were not

significantly different from zero, that is their “t” values were less than an absolute value of “2.” 

However, in this process, it was noted that the residuals usually did not display “white noise”. This

means that likely some weather cycle remained in explaining yield patterns not related to ENSO.  

For that reason, the procedure was changed in which time series analysis was combined with the

standard statistical analysis to establish what independent variables should be incorporated.  The

criteria for inclusion were “t” values, R-squares and evidence of “white noise” in the residuals. 

However, a number of ENSO variables were retained for comparison purposes even though the

absolute “t” values on their coefficients were less than two.

If the residuals appeared to lack “white noise,” some pattern remained unmeasured which could

contribute to the explanation of yield deviations.  For this reason, autoregressive  (AR) and moving

average (MA) procedures called ARMA were applied to the residuals.  The assumption was made

that weather cycles would not extend more than 5 or 6 years into the past.  Empirical evidence

indicates that deviations of yields from trends, with or without ENSO considerations,  typically are

not “white noise.”
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Global Yield Equations

The results of the linear regression analysis are summarized in Table 1.  The data period was from

the mid 1950s to 1997 on U.S. crops and early 1960s to 1997 on crops outside the U.S. (The

beginning crop years are indicated in Table 2.).  For each crop, coefficient and “t” values are listed

for the independent variables representing the ENSO anomalies and “t” values are listed for the

ARMA terms.  The numbers in parentheses ahead of the “t” values for the ARMA terms represent

the number of previous years included in the formulations.   Where yields were correlated with a

second crop, footnotes indicate what crops were involved and what the coefficient and “t” values

were on those variables.  Negative signs on the SSTAW variables mean a negative effect on yields. 

A negative sign on the SSTAC variables indicates a positive effect since the SSTAC variable carries

a negative sign.  The “t” coefficients with absolute values greater than “2" were considered

statistically significant. The Ljung-Box probability statistic listed for each equation is a measure of

the presence of “white noise” in the residuals (Ljung and Box).  The addition of the ARMA terms in

each equation was conducted in such a way to provide reasonable assurance of “white noise” in the

residuals,  indicating that most predictive elements had been captured.

United States

El Niño lagged one year, i.e., SSTAW(-1),  and SSTAC were particularly significant in cutting U.S.

corn yields.  One might attribute this to the tendency for a strong La Niña year to follow a strong El

Niño year, which happened 4 times in 1951 to 1998.  However, the correlations from year to year

among the sea surface temperature anomalies were very small.   Soybean yields were similarly

affected by ENSO as were corn yields, considering the strong correlation with corn yields as noted in

Footnote #5 in Table 1.   On coarse grain other than corn, the correlation with corn yields made

these crops in the aggregate also susceptible to lagged El Niño, current La Niña and also to lagged

La Niña.  Somewhat surprising is that SSTAC(-1)  tended to affect U.S. crops other than corn

negatively.

.

In two years of the data base, corn yields were low for reasons other than dry weather — blight in

1970 and flooding in 1993.  Using dummy variables for those years in the corn equation, no

significant results emerged to indicate that these years should be eliminated.  
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R2

Table 1.  Results of Linear Regression Analysis on the Effect of ENSO Anomalies and ARMA Models on Percent Deviations of
Crop Yields from Trends1     

Nation/
Region

and Crop

Coefficients and “t” Values2 “t” Values3 R2

Ljung-Box
Probability

SSTAW
(-1)

SSTAW SSTAC
(-1)

SSTAC AR MA

UNITED STATES

Corn -9.75
(-4.19)

11.51
(3.58)

(1)-3.16
(4)3.37

(4)25.86 .48
.41

.87

Coarse
Grain4

1.74
(.85)

5.55
(2.12)

(4)-12.38
(5)17.32

.78

.75
.55

Wheat 1.53
(.78)

5.11
(1.79)

(4)-3.71 (2)5.25
(4)12.51
(5)-7.08

.48

.40
.54

Soybeans5 -.92
(-.57)

3.53
(1.61)

(2)2.76 .67
.63

.77

ARGENTINA

Coarse Grain -5.02
(-1.28)

25.08
(4.18)

(2)-4.28 .39
.33

.67

Wheat 7.16
(2.27)

(5)-4.53 (5)10.13 .32
.25

.92

Soybeans6 10.55
(2.50)

-38.36
(-5.50)

16.91
(2.90)

(3)-1.76 .76
.70

.90

BRAZIL

Soybeans 3.88
(.81)

-8.38
(-.96)

(1)1.42 .12
.03

.82

AUSTRALIA

Coarse
Grain7

-7.20
(-1.88) (3)-2.72

.84

.82
.81

Wheat 16.03
(2.10)

-13.14
(-1.85)

(2)-1.62
        

.29

.20
.97

CANADA

Coarse
Grain8

(1)3.06 (4)-10.53 .76
.74

.94

Wheat 17.46
(3.03)

(5)29.09 .54
.51

.48

EUROPEAN UNION

Coarse Grain -3.86
(-1.94)

4.10
(2.25)

9.39
(3.03)

-12.42
(-3.95)

(3)-2.55 .38
.27

.77

Wheat9 -2.59
(-2.22)

(2)2.85
(3)2.99

(1)5.11
(3)-13.43

.71

.65
.94

Oilseeds -9.64
(-2.96)

9.86
(1.76)

(4)-2.03
(5)-3.38

(4)34.47 .63
.55

.79

Table 1.  (Continued)
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R2

Nation/
Region

and Crop

Coefficients and “t” Values2 “t” Values3 R2

Ljung- Box
Probability

SSTAW
(-1)

SSTAW SSTAC
(-1)

SSTAC AR MA

INDIA

Coarse
Grain 

8.63
(2.97)

          (5)-11.82
        

.47

.43
.95

Wheat 6.41
(4.10)

-13.65
(-4.60)

11.70
(4.49)

(5)-6.89 (4)-23.35 .74
. 69

 .70

CHINA

Coarse
Grain

4.82
(2.04)

-3.87
(-1.75)

(2)-2.13 .32
.25

.60

Wheat 1.68
(.36)

-6.76
(-.93)

.02
-.03

.93

REPUBLIC OF SOUTH AFRICA

Corn 13.27
(1.72)

-20.53
(-2.92)

(2)2.75 (2)-9.30 .38
.30

.9996

Coarse
Grain10

34.88
(3.07)

(3)-2.20 .56
.52

.60

Wheat 10.70
(1.44)   

-23.50
(-1.95)

(5)15.51 .29
.23

.42

REST OF THE WORLD

Coarse
Grain11

1.56
(1.44)

-2.40
(-1.37)

(3)-2.50 (4)-7.84 .78
.75

.84

Wheat 6.77
(2.03)

-18.82
(-3.49)

(2)3.03
(3)-4.81

.56

.48
.99

1 Trends in yields were derived from double exponential smoothing (DES).  See Table 2 for the crop years involved.
2 SSTAW refers to the positive sea surface temperature anomaly in region 3.4 of the Pacific and SSTAC the

negative anomaly, calculated as annual averages based on quarterly data.  The (-1) refers to the previous year. “t”
values are in parentheses..  

3 The (i) for AR (auto-regressive) and MA (moving average) relates to lags in years.
4 Other than corn.  Equation also included yield deviations on corn with a coefficient of .74 and a t value of 9.00.
5 Equation included yield deviations on corn with a coefficient of .49 and a t value of 6.25.
6 Equation also included yield deviations on coarse grain with a coefficient of .67 and a t value of 5.01.
7 Equation also included yield deviations on wheat with a coefficient of .61 and a t value of 10.85.
8 Equation also included yield deviations on wheat with a coefficient of .35 and a t value of 8.82.
9 Equation includes yield deviations on coarse grain with a coefficient of .92 and a t value of 9.07.
10 Other than corn.  Equation also included yield deviations on corn with a coefficient of .61 and a t value of 5.12.
11 Equation also included yield deviations on wheat with a coefficient of .57 and a t value of 11.04.
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The “t” values on the ARMA terms for U.S. crops provide strong indication of the lack of “white

noise” in the residuals from the ENSO variables alone.  The R2s and R-bar2s were relatively high on

coarse grain other than corn and on soybeans because deviations from trend yields on corn were 

independent variables in those equations.  The level of R2s and R-bar2s on corn and wheat (.40-.48)

reflect that much of the variability in crop yields are due to factors outside ENSO and influences

captured by ARMA techniques.  The Ljung-Box statistic provided reasonable indications of “white

noise.”

South America

The current year’s ENSO has had more impact on coarse grain, soybean and wheat yields in

Argentina than in the U.S. as indicated in Table 1.  Of course, the growing season in the southern

hemisphere for corn and soybeans  is mostly from October (t) to March (t+1), and partially lags the

current ENSO variables.  Soybean yields in Argentina were also affected adversely by current ENSO,

particularly by SSTAC as related to the correlation with coarse grain yields and directly in addition. 

Also, soybean yields were positively enhanced by SSTAC(-1).  The positive effect of SSTAW(-1)

was diminished by the correlation with coarse grain yields.

In Brazil, neither the influence of ENSO nor ARMA appeared to be significant in explaining

deviations of soybean yields from trends.  Only current ENSO variables had some influence, with

both SSTAW and SSTAC positive.  When the data for the  ENSO variables during the current

growing season (quarter 4 of year t and quarter 1 of year t+1) were substituted for SSTAW and

SSTAC,  the t values and R-bar squares increased, but the t values remained insignificant and the R-

bar squares remained low. 

Australia

Both wheat yields and coarse grain yields (as a function of wheat yields) have been enhanced by El

Niño in the previous year (Table 1).  While not significant, El Niño in the current year has been a

negative influence on wheat and coarse grain yields, and current La Niña has been a 

positive effect on coarse grain.  Substituting the current growing season ENSO for the calendar year

ENSO lowered the impact of lagged El Niño on wheat yields but increased the absolute value of the

t statistic and R-bar square from current El Niño (to -2.95 on t and .29 on R-bar square). The

coefficient on the warm episode was about the same as with the calendar year SSTAW.  ARMA

models contributed to the explanation of yield variability although not significantly on wheat.
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Canada

In Canada, the strongest influence on coarse grain and wheat yields was La Niña in the current year,

combined with ARMA models.  On wheat, these influences generated a relatively high R-square of 

.54 and an R-bar square of .51.  The R-squares on coarse grain are attributed to the correlation with

wheat yields and an ARMA contribution.  

European Union

In the E.U., both lagged El Niño and lagged La Niña tended to reduce coarse grain yields, and

because of the strong correlation between coarse grain and wheat yields, wheat yields were similarly

affected.  On the other hand, current ENSO , both SSTAW and SSTAC, had positive effects on

coarse grain yields — wheat also except that the effect of SSTAW was diminished.

Oilseed yields were depressed by both lagged El Niño and La Niña.  ARMA models were significant

in all the E.U. yield variations.

India

India’s wheat yields were significantly and positively affected by lagged El Niño and La Niña and

negatively affected by the current La Niña.  In combination with MA(5) and AR(4), the ENSO

variables “explained” about 74% of the variation in wheat yields, i.e., an R-square of .74 and an R-

bar square of .69.  The most significant impact on coarse grain yields was a positive effect of lagged

El Niño.

China

The effect of ENSO in China was similar to that in India except that only lagged El Niño was

significant in positively affecting coarse grain yields.  Current El Niño had a negative impact on

coarse grain yields.  ARMA was not very helpful.  

Republic of South Africa

The strongest influence on corn yields in the Republic of South Africa was a negative influence from

El Niño in the current year.  Lagged El Niño influenced yields positively but not significantly so.  The

most promising equation not shown in Table 1 included the current warm episode values in the

growing season (October t to March t+1) and the ARMA variables in Table 1 (MA(2) and AR(2)). 

The coefficient on the ENSO variable was -22.3 and the t value was -4.26. The ARMA coefficients

were significant at 23.1 and -5.1 respectively and the R-bar square was .33.  Yields of coarse grains
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other than corn were significantly tied to corn yields and negatively affected by La Niña.  Wheat

yields were not significantly affected by ENSO but were responsive to MA(5).

Rest of the World

In the broad geographic and important sector of the “rest of the world”, wheat yields were positively

and significantly affected by lagged La Niña and lagged El Niño.  MA(3) and MA(4) also contributed

to the equation which was associated with 56% of the variation in wheat yields from trends (R-bar

square at .48).  Coarse grain yields were positively correlated with wheat yields.  In combination

with insignificant ENSO relationships and significant ARMA influences, the coarse grain equation

“explained” about 78% of the variation in yields from trends (R-bar square at .75).  Since the results

from an analysis of the Former Soviet Union revealed no significant linkage to ENSO, this

aggregation can be considered the rest of the world outside FSU.

Correspondence with Weather Linkages to ENSO

In comparing the results of the equations which significantly relate ENSO to crop yields and the past

research linking weather patterns to ENSO, what conclusions might be reached?  Based on

meteorological research, the ENSO sensitive areas tend to be in the tropical and subtropical regions

of the world.  The U.S. Corn Belt, an important agricultural region,  was not highlighted by a

number of  meteorological studies as an area susceptible to ENSO influences (although some did),

yet significant relationships were detected on crop yields. Similar results were found in the E.U., not

on every list of  ENSO sensitive areas.  Somewhat disappointing was that the target area of Australia

did not reveal strong ties to ENSO related to crop yields.  Neither did Brazilian soybeans.

On the other hand, results in other regions of the world backed the meteorological findings, with

linkages in crop yields to ENSO in Argentina, India and the Republic of South Africa.  The lack of

effects can also be noted in China and the Former Soviet Union, consistent with meteorological

research on ENSO.   

Theil Evaluation

Traditional ways to forecast crop yields include extrapolation of linear trends and smoothing

techniques such as the application of DES used in this analysis.  With yield forecasts by DES as a

standard, an evaluation of the performance of the combination of DES, ENSO variables, and ARMA

was conducted.  To generate yield forecasts by this combination, the forecast percentage deviations

from trend were applied to yield trends based on DES.  Following is an example on corn:
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YCNF=YCNP*(DRYCNF+100)*.01

where:

YCNF is the forecast of corn yields

YCNP is the trend yield based on DES

DRYCNF is the forecast percentage deviation from trend

A method to evaluate forecasts developed by Henri Theil was applied to the crop yields (Theil).  The

formula, known as Theil’s “Inequality Coefficient U2", is:

where:  Ft  is the forecast value in year t 

 At is the actual value in year t

A feature of this formula is that an analyst can evaluate whether an equation can outperform a naive

model in which the forecast is equal to the actual value in the most recent past period.  A U2 value of

0 represents perfect forecasts and 1 (or 100 percent) represents the equivalent of 

using the actual value in the previous period as a forecast.

The performance of the yield equations based on Theil’s U2 (in percent) is presented in Table 2.  The

yield equations essentially represent a combination of DES, ENSO,  and ARMA variables.  The DES

equations generated the trends around which the percentage deviations were calculated for the

ENSO and ARMA analysis.  Since crop yields tend to trend upward over time, a stronger test for the

yield equations would be a comparison with strictly DES forecasts.  Theil coefficients for both the

DES/ENSO/ARMA forecasts and the DES forecasts are tabulated.  In the last column of Table 2 is

the difference between the Theil coefficients from DES/ENSO/ARMA and the coefficients from

DES.
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Table 2.  Performance of DES/ENSO/ARMA Yield Equations Based on Theil’s U2 Inequality Coefficients, Crop Years through 1997.

Nation/Region

and Crop

Crop Years

Beginning

Forecast Based On: Coefficient of

DES/ENSO/ARMA

less the DES  Coefficient
DES/ENSO/ARMA DES

U.S. Coefficient Coefficient Difference

Corn 1955 45.5 68.4 -22.9

Coarse Grain other than corn 1955 53.9 78.2 -24.3

Wheat 1955 64.4 87.2 -22.8

Soybeans 1954 47.9 67.9 -20.0

ARGENTINA

Coarse Grain 1960 69.9 88.4 -18.5

Wheat 1965 66.6 84.4 -17.8

Soybeans 1971 56.2 82.2 -26.0

BRAZIL

Soybeans 1965 80.1 85.8 -5.7

AUSTRALIA

Coarse Grain 1968 59.6 69.4 -9.8

Wheat 1968 60.2 71.4 -11.2

CANADA

Coarse Grain 1961 68.3 78.1 -9.8

Wheat 1965 61.0 88.0 -27.0

E.U.

Coarse Grain 1963 57.0 74.6 -17.6

Wheat 1965 60.6 77.8 -17.2

Oilseeds 1969 60.8 97.7 -36.9

INDIA

Coarse Grain 1964 58.3 80.9 -22.6

Wheat 1965 46.6 78.8 -32.2

CHINA

Coarse Grain 1962 71.6 84.4 -12.8

Wheat 1960 93.6 91.1 +2.5

REPUBLIC OF SOUTH AFRICA

Corn 1962 56.4 73.7 -17.3

Coarse Grain other than corn 1963 79.2 92.0 -12.8

Wheat 1962 66.4 77.9 -11.5

REST OF THE WORLD

Coarse Grain 1963 68.1 79.7 -11.6

Wheat 19631 60.0 86.7 -26.7

1 The 1975 crop year was excluded
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The forecast evaluations in Table 2 represent the performance relative to a one year ahead time

frame.  That is, given what is known (or can be forecast, i.e. SSTAW and SSTAC)  in year t-1, the

evaluation is in terms of how close the forecasts are to the actual yields in year t.  The equations in

Table 1 which included yield deviations of other crops were give special treatment in Table 2. 

Rather than incorporating the actual values of the yield departures from trends, the forecast values

of these other crops were employed in generating the yield forecasts for the indicated crops.

In all cases, the DES/ENSO/ARMA models and the strictly DES models outperformed the naive

models (which forecast no change from year to year).  That is indicated by the Theil coefficients all

being less than 100 percent.  Since crop yields almost universally trend upward with improved

varieties and cultural practices, this was not much of a challenge for the two models.  A more

appropriate comparison is whether a combination of DES, ENSO, and ARMA can generate smaller

errors than DES which does track upward trends closely.

The negative numbers in the last column of Table 2 indicate that the yield equations from a

combination of DES/ENSO/ARMA generated smaller errors than did DES with one exception.. 

Only for wheat in China did the application of DES/ENSO/ARMA result in larger errors.  The

strongest case for DES/ENSO/ARMA was for oilseeds in the E.U.; wheat in India, Canada, and the

Rest of the World; and soybeans in Argentina --- all with at least a 25 percentage point margin over

DES.  All of the crops in the U.S. registered at least a 20 percentage point margin from

DES/ENSO/ARMA over DES alone.  But as stated earlier in this paper, current ENSO variables in

crop yield equations must be at least partially forecast.  For this reason, the accuracy level of these

equations is over-stated.

Selected Aggregates of Nations

Tables 3 and 4 present similar statistical data as in Tables 1 and 2, but for aggregates of nations

which are compatible with the econometric/simulation model, AGMOD.  Obviously, equations to

predict crop yields in  aggregations of nations will result in different statistical properties than for the

component nations.  The broader the geographic region being examined, the more offsetting weather

factors tend to be.  For both “Exporting Nations” and the “Rest of the World”, nations in the

southern hemisphere are being combined with nations in the northern hemisphere, spanning a very

wide area.
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R2

As indicated in Table 3, coarse grain and wheat yields in the Exporting Nations are clearly negatively

related to the current La Niña and significantly related to weather cycles as captured by ARMA. 

Coarse grain and wheat yields are also correlated with each other.

Table 3. Results of Linear Regression Analysis on the Effect of ENSO Anomalies and ARMA Models on

Percent Deviations of Crop Yields, from Trends in Selected Aggregates of Nations.1

Region
and

Crop 

Coefficients and “t” Values2 “t” Values3

ARMA Models R2 Ljung-Box
Probability

SSTAW
(-1)

SSTAW SSTAC
(-1)

SSTAC AR MA

EXPORTING NATIONS4

Coarse
Grain5

9.87
(3.74)

(4)3.97
       

.50

.45
.50

Wheat 13.54
(2.70)

(2)-2.70
(4)-3.83

.31

.24
.90

REST OF THE WORLD6

Coarse
Grain

2.36
(1.94)

-2.60
(-2.16)

(5)2.45 (5)-
22.53

.42

.34
.99

Wheat7 5.28
(2.99)

-8.24
(-3.02)

8.75
(4.00)

(5)-
22.55

.73

.68
.51

ARGENTINA AND BRAZIL

Soybeans -10.73
(-2.34)

(3)-1.98 (1)4.68
       

.37

.30
.96

1  Trends in yields were derived from double exponential smoothing (DES).  Crop years were 1964-1997 for
Exporting Nations, 1965-1997 for Rest of the World and 1967-1997 for soybeans in Argentina and Brazil.

2 See Footnote 2 in Table 1.
3 See Footnote 3 in Table 1.
4 Argentina, Australia and Canada
5 Equations included yield deviations on wheat in exporting nations with a coefficient of .25 and a t value of

3.09.
6 Nations except U.S., Exporting Nations and the European Union.
7 Equation included yield deviations on coarse grain with a coefficient of 1.06 and a t value of 6.25.
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Table 4. Performance of DES/ENSO/ARMA Yield Equations Based on Theil’s U2 Inequality Coefficients,

for Selected Aggregates of Nations, Crop Years through 1997.

Forecast Based On: Coefficient of

DES/ENSO/ARMA

less the DES

Coefficient

Region and Crop Crop Years

 Beginning

DES/ENSO/ARMA DES

Coefficient Coefficient Coefficient

Exporting Nations1

Coarse Grain

Wheat

1964

1964

62.3

58.5

78.8

71.5

-16.5

-13.0

Rest of the World2

Coarse Grain

Wheat

1965

1965

51.9

51.9

67.6

75.1

-15.7

-23.2

Argentina and Brazil

Soybeans 1967 79.3

 

87.1  -7.8

1 Argentina, Australia and Canada

2 Nations except U.S., Exporting Nations and the European Union

For the “Rest of the World”, both coarse grain and wheat yields were positively related to lagged El

Niño and to each other.  In addition, wheat yields were positively correlated with lagged El Niño and

negatively related to the current La Niña.  ARMA factors were important for both wheat and coarse

grain.

On soybeans in Argentina and Brazil, the most notable relationship with ENSO was a positive tie

with lagged La Niña but not a strong one with a t value of -2.34.  ARMA techniques contributed

bringing the R-square to .37 and the R-bar square to .30.

Performance of these equations relative to DES is indicated in Table 4.  The equations on coarse

grain in the Exporting Nations and wheat in the Rest of the World displayed the smallest errors

relative to DES.  
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Normality Tests

One of the hopes in applying DES/ENSO/ARMA equations to crop yields was to generate residuals

which were not only “white noise” but which also approached a normal distribution.  This would

facilitate use of existing software programs which routinely incorporate random number generators

to produce normal distributions.   Also, efforts to determine the appropriate distribution to represent

yield variability would be simplified.

In Tables 5 to 7, statistics developed by Bera and Jarque evaluate how closely the residuals from the

yield equations for the U.S. and E.U. in Table 1 and the aggregations in Table 3 approach a normal

distribution (Bera and Jarque).  Yield variations around DES derived trends tend to be skewed to the

left indicated by the minus signs in Table 5.  In other words, yields tend to be more negatively

affected by unfavorable growing conditions than they are positively affected by favorable conditions. 

The addition of ENSO and ARMA reduced skewness in most cases, particularly for those crops with

high skewness coefficients.

Table 5. Skewness Test for Percent Deviations of Crop Yields from Trends (DES) and for Residuals in
DES/ENSO/ARMA Models of Yields in Selected Regions of the World.

Nation/Region and Crop
Skewness

DES DES/ARMA DES/ENSO/ARMA

U.S.
Corn
Coarse Grain other than Corn
Wheat
Soybeans

-1.05
-.09
 .68
-.51

-.27
-.16
.24
.20

.20

.49
-.13
-.25

Exporting Nations1

Coarse Grain
Wheat

  
-.41
-.20

-.21
-.40

.37 
.27

European Union
Coarse Grain
Wheat
Oilseeds

-.40
1.24
-.19

-.13
.10
-.04

.30

.12

.20

Rest of World
Coarse Grain
Wheat

-.02
-.33

.37
-.67

.06

.01

Argentina and Brazil
Soybeans -.39 -.58 -.34

1 Argentina, Australia and Canada
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Table 6. Kurtosis Test for Percent Deviations of Crop Yields from Trends (DES) and for Residuals in 
DES/ENSO/ARMA Models of Yields in Selected Regions of the World.

Nation/Region and Crop
Kurtosis

DES DES/ENSO/ARMA

U.S.
Corn
Coarse Grain other than Corn
Wheat
Soybeans

3.72
2.93
4.82
3.62

2.94
2.89
2.44
2.54

Exporting Nations1

Coarse Grain
Wheat

3.01
2.43

2.44
2.44

European Union
Coarse Grain
Wheat
Oilseeds

3.55
6.12
2.04

2.21
2.29
1.86

Rest of World
Coarse Grain
Wheat

2.09
2.35

2.42
2.21

Argentina and Brazil
Soybeans 3.13 2.57

1 Argentina, Australia and Canada
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Table 7. Normality Test for Percent Deviations of Crop Yields from Trends (DES) and for Residuals in
DES/ENSO/ARMA Models of Yields in Selected Regions of the World.

Jarque - Bera Normality Test Statistic

Nation/Region and Crop DES DES/ENSO/ARMA

Percent

U.S.
Corn
Coarse Grain other than Corn
Wheat
Soybeans

1.3
96.4
0.1
27.2

86.8
41.7
71.1
65.3

Exporting Nations1

Coarse Grain
Wheat

61.7
70.7

54.1
64.8

European Union
Coarse Grain
Wheat
Oilseeds

50.3
0.0
52.9

49.0
68.3
41.2

Rest of the World
Coarse Grain
Wheat

56.7
55.4

78.4
64.8

Argentina and Brazil
Soybeans 66.5 65.6

1 Argentina, Australia and Canada

Kurtosis relates to the thickness of tails in a distribution, with normalcy associated with a value of

3 based on Jarque-Bera measures.  The crop yields tabulated in Table 6 did not display consistent 

tendencies above and below normal thickness of tails around DES trends.  The addition of ARMA

and ENSO brought kurtosis values closer to 3 in only about half of the cases.

The Jarque-Bera normality test was applied to the two yield models as shown in Table 7.  Yield

deviations around DES based trends were clearly not normal on corn and wheat in the U.S. and

wheat in the E.U. — and possibly on soybeans in the U.S.  For DES/ENSO/ARMA equations

relative to DES, higher probabilities were registered on just half of the crops.  Even so, the

application of ENSO and ARMA consistently added to the normality scales on crops which

scored low on the Jarque-Bera test statistic.  Only on coarse grain other than corn in the U.S. did

the residuals from the DES/ENSO/ARMA model rate appreciably lower than the residuals from

the DES equations.
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Concluding Comments

This very empirical analysis of the relationship of ENSO and weather cycles to crop yields around

the world suggests further research is warranted,  particularly in linking ENSO to climatic

variation and, in turn, climatic variations to yields.  Yield departures from trends typically do not

exhibit “white noise”.  Patterns exist in the residuals which can be captured by the application of a

combination of ENSO variables and ARMA techniques.  The resulting residuals do score

significantly higher on “white noise” tests.  Yield variability around trends which are clearly not

normal tend to approach normality after ENSO and weather cycle effects are introduced into yield

equations.

However, ENSO/ARMA models can explain little more than about 40% of the variation in crop

yields around trends for most of the crops analyzed.  While many of the coefficients on ENSO

variables were statistically significant, the lack of significance on some crops in nations which are

identified as ENSO sensitive by meteorologists was somewhat puzzling.  Also, to be noted is that

response of crop yields to ENSO was found in regions not mapped as ENSO sensitive by

meteorologists.

    

Regardless,  long-range weather forecasting and the possible role of ENSO in this endeavor is so

important to world food security and predicting agricultural commodity supplies and prices that

increased resources toward that objective is justified.  Such predictions will remain probabilistic

but can be very useful information for risk management.  The next step will be to integrate these

stochastic yield forecasts into AGMOD, an econometric/simulation model of U.S. agriculture.
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