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Abstract

Most previous research on post-harvest grain storage by farmers has assumed risk-neutral behavior and/or
made restrictive assumptions about underlying price probability distributions. In this study we solve the
optimal post-harvest storage problem for arisk averse farmer under more general assumptions about
underlying price distributions. The resulting modd is applied to Michigan corn farmers and results show
that, contrary to the sdl all-or-nothing risk-neutral rule, risk averse farmers will spread sales out over the
storage season. The optimal pattern for sales by Michigan corn farmersis to sdll approximately 50% of
corn at harvest in November (a risk-reduction strategy) and approximately 40% in May (a return-
enhancing strategy).
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OPTIMAL POST-HARVEST GRAIN STORAGE BY RISK AVERSE FARMERS

Many farmers store al or part of their grain at harvest in an attempt to profit from expected price
increases over the storage season (Sartwelle et al.). On-farm storage provides flexibility in choosing the
timing of sales and can provide increased returns to farmers selling at theright time (at arelatively high
price) versus the wrong time (at arelatively low price). But while on-farm storage can increase expected
returnsit also increases risk. A farmer who sdlls at harvest has no remaining price risk but one who stores
grain for future sale faces the risk that prices will move lower over the storage season. Some of this risk
could be managed by using futures or options but this entails transaction costs and might also diminate
some of the potential reward if prices move higher.

Most studies of on-farm grain storage do not account for farmer risk aversion. Early research
evaluated the performance of essentially arbitrary a priori, fixed marketing strategies to see how they might
influence the mean and variability of returns (seethereview by Zulauf and Irwin). This approach has the
advantage of not having to assume anything about farmer behavior or risk preferences. The obvious
disadvantage, however, is that while an arbitrary storage strategy may generate positive expected returns,
thereis no way to determine if such a strategy is optimal given a well-specified farmer objective function.
On the other hand, studies of optimal on-farm storage have found it difficult to incorporate farmer risk
aversion.

In arecent study, Fackler and Livingston (FL) develop a simple dynamic programming solution to
the optimal post-harvest grain storage problem in a useful framework that is relatively easy to implement.
In particular, one advantage of FL isthat they impose a non-negativity constraint (farmers cannot buy back
grain into storage once it has been sold) and a short sdlling constraint (farmers cannot sell more grain than
they havein storage). These seem like reasonable restrictions to impose for on-farm storage because
transaction costs generally preclude such behaviors and, indeed, such behaviors are rarely observed in

practice. However, FL also assume farmers are risk neutral which causes the solution to take the form of



an optimal stopping rule—at each point in time it is optimal to either wait and sell nothing or to liquidate
all stocks and stop the process. These features are at odds with observed on-farm storage behavior because
farmers appear to berisk averse and to spread grain sales out over the storage season (USDA). Other
studies that have examined various aspects of optimal grain storage decisions assuming risk neutral storage
behavior include Tronstad and Taylor, and Lence, Kimle, and Hayenga.

A few researchers have incorporated risk aversion into optimal on-farm storage models. For
example, Berg allows for farmer risk aversion in his dynamic programming study of on-farm wheat storage
inthe EU. Berg findsthat partial sales (i.e. spreading sales out over the storage season) can be optimal for
risk averse farmers. However, Berg assumed triangular probability distributions for prices, and that price
probahility distributions in any one period are completely independent of price outcomes in past periods.
These seem like very restrictive assumptions given what we now know about the probability structure of
moast grain price movements (e.g. Yang and Brorsen; Baillie and Myers; Wang, e al.).

The objectivein this study is to develop optimal strategies for post-harvest grain storage assuming
risk averse farmers and more realistic assumptions about price probability distributions. Stochastic
dynamic programming in a discrete-time framework is used to derive optimal post-harvest marketing
decisions under these conditions. The results extend FL’srisk neutral mode by incorporating farmer risk
aversion. Inour modd an optimal partial selling ruleis derived, as opposed to the sdl-all-or-nothing rule
developed by FL. This meansit is optimal to spread sales out over the storage season, asis more
commonly observed in practice. The resulting optimal storage rules are applied to the post-harvest storage
problem faced by Michigan corn producers. Results provide empirical support for spreading sales out over
the storage season as a risk management strategy. Sensitivity analysis is conducted to investigate how
various factors influence the optimal timing of sales. Finally, the performance of the optimal storage rules

are evaluated and their economic value is measured using a willingness-to-pay concept.



Theoretical M odel

Consider arisk-averse farmer with on-farm storage facilities who intends to store harvested grain
to profit from an expected increase in cash price during the storage season. The storage season begins at
the current harvest, ends before next year's harvest, and is divided into T equal-sized decision nodes. At the
beginning of each decision node, the farmer has a current stock level s, observes the current market price
p;, and chooses an amount of the commaodity g, to sell in the spot market. We follow FL and impose the
restriction 0 < g, < s, to ensurethat sales must be non-negative (no re-purchase of grain allowed) and
less than or equal to the current storage level (no short selling allowed). These assumptions are because
transaction costs would generally preclude such behaviors. We also assume no storage hedging on futures
markets. This simplifies the modd and is consistent with the fact that few farmers make extensive direct
use of futures and options, with nearly two-thirds of all grain marketed directly through cash sales (M usse,
Patrick and Eckman; Sartwelle et al.).

Each period the producer pays a storage cost of o > 0 per unit of stock to carry storage into the

next period. By definition, storageis subject to the transition equation:

1) S =S~ G

We assume farmers are interested in the compounded cash flows from their storage operations which will

be called "wealth", w;. At any period wealth satisfies the transition equation:

(2) \Nt+1 = (1 + r)[Wt + ptqt - OC(SI - qt)]

wherer is the (assumed constant) interest rate and initial wealth, w, is given.



The farmer is assumed to choose a sequence of sales { g} tTol to maximize the expected utility of

terminal wealth:

max E,U (w;)
CAN

)

subject to the transition equations (1) and (2), the constraint 0 < g, < s, and a Markov probability
process for prices j,,, ~ f,(p.,,| P, Z) wheref, isthe probability density function for the cash price
at t+1 conditional on the current cash price p, and a vector of current information variablesz. The U ()
function is an increasing and concave von Neumann-Morgenstern utility function representing farmer risk
preferences.

The problem can be solved using discrete time stochastic dynamic programming (Bertsekas,
Miranda and Fackler). Defining x, = (W, S, P, Z) asthestate vector and v,(x,) as the value function,

Bedlman's equation for the problem is given by:

(4.9) V() = U(wy)

(4.) vi(x) = max Efv,,(x,)} fort =0,1, ., T-1

G

subject to the transition equations (1) and (2) and the constraint 0 < ¢, < s. Itisshown inthe appendix

that necessary conditions for a solution are:

(5.9) Gr-1 = Sr-g



vV (x)  Iv(x)

- A <0 fort=0,1, .., T-2
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- -Al=0 fort=0,1, .,T-2
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(5.d) A -5 =0 fort=0,1,.,T-2

and g, > 0, A, > O,and s, - ¢, > 0. Here, A, isthe shadow value of relaxing the short sdlling
constraint that requires g, < s,.

At the last decision node T - 1 the optimal decisionisclearly toset g;_, = s;_, (sl everything
|left in storage, if any) whenever p;_; > 0. Thisis because stocks have no valuein the final period T but
wesalth does. This ensures that bins are emptied before the next harvest. At all periods prior to T -1 the
farmer faces a trade-off—either sdll all or part of total stocks now (if any is left) and receive p,, or sl
nothing and wait to seeif pricesrise. Therearefour cases to consider.

First, supposethat s is zero (thereis no storage lft). In this case the (trivial) optimal strategy isto
s&t g, = O becausethisis the only choicein the opportunity set.

Second, suppose that current stocks are positive (s, > 0) and the optimal choiceis still to sell

nothing and wait (g, = 0). Then g, < s and A, = 0. Furthermore, from (5b) and (5c) we have



Vv, (x) IV, (x)
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In this case the marginal value (in terms of expected utility of terminal wealth) of sdling thefirst bushe of
grain out of storage must be less than or equal to the marginal value (in terms of expected utility of
terminal wealth) of keeping that bushe of grainin storage. So the farmer chooses not to sdll anything and
if (6) is satisfied with strict inequality would actually buy grain to store except for the constraint g, > O.
Third, suppose that current stocks are positive (s, > 0) and the optimal choiceisto sell

everything (g, = s). Then A, > 0 and (5b) and (5¢) imply

Vv, (%) § v, (%)
0 T

In this case the marginal value (again in terms of expected utility of terminal wealth) of sdling the last
bushe of grain is greater than or equal to the marginal value of keeping that bushd of grainin storage. If
(7) is satisfied with strict inequality the farmer would like to sell more if he/she had it but is constrained
by g, < s.

Fourth, suppose the optimal strategy satisfies 0 < g, < s,. Then 4, = 0 and (5b) and (5¢) imply

that

Vv, (%) v, (%)
(8) W Py = o5, .

t




Thefarmer isindifferent between sdlling or keeping the marginal bushd of grain. The concavity of U(-)
ensures that v, (x,) is concave in g, which implies there may be a wide range of conditions (price, storage
costs, risk preferences, etc.) under which there are interior solutions satisfying 0 < g, < s,.

It is the existence of an interior solution (case four) that distinguishes this modd from the onein
FL. Thelinearity of the (risk neutral) FL modd leads to a "sdll all or nothing" rule whereas the (risk
averse) modd here provides an incentive to spread sales out over the storage season. Of course, if current
prices get high enough everything will be sold and if current prices get low enough nothing will be sold. At
some intermediate range of current prices, however, therisk averse farmer will sell some grain and keep

somein storage.

An Application

In order to implement the theoretical mode of the previous section and investigate the partial sales
phenomenon empirically we need to make a number of assumptions and solve the modd numerically. Here
we apply the model to the optimal post-harvest storage problem faced by corn farmersin Michigan.

Assume Michigan corn farmers make their first marketing decision at harvest (which we define as
the first week of November) when they decide how much to sdl right away and how much to store and sl
later. We then break the storage season up into five additional decision nodes (the first weeks of January,
March, May, July and September). At each of these six decision nodes (harvest plus the five through the
storage season) the farmer can sell some or al of hissher corn. Any storage left over at the first week of
September is automatically sold to make way for the coming new crop.

The control and state spaces for this problem might best be viewed as continuous but we use a
discrete approximation to facilitate a discrete state and control space solution technique. The control space
is specified as a proportion of the total harvest, s,, sold in any period. The proportion of the harvest sold

at any decision node is assumed to take on one of eleven possiblevaluesq, € { 0, 0.1, 0.2, 0.3, 0.4, 0.5,



0.6,0.7,0.8, 0.9, 1.0} . The state spacefor current stocks is also specified as a proportion of the total
harvest and so abviously consists of these same eeven possible proportions. The state space for sdlling
prices was specified as 15 possible price states ranging from $1.60 to $4.40 per bushd in 20 cent
increments. Each pricein the state spaceis viewed as the mid-point of the underlying continuous price
interval. The upper bound price state of $4.40 per bushd represents the price interval of $4.30 or above
while the lower bound price state of $1.60 per bushe represents the price interval of $1.50 or below.

Wedlth is also expressed as a proportion of thetotal harvest. We assumed an initial wealth state of
zero and computed the state space for wealth as all possible feasible combinations of wealth per unit of
total harvest that could come from any combination of feasible price and marketing (sales) strategies over
the entire time horizon of the storage season. Aninitial wealth state of zero implicitly assumes the storage
operation is viewed as separable from other farm production and consumption decisions, and so the storage
decision only depends on wealth generated by that decision. To compute the wealth states we need to make
assumptions about interest rates (the rate of return on accumulated wealth) and storage costs. To examine
the solution's sensitivity to interest rate and storage cost assumptions we used annualized interest rates of r
= 5%, 10%, and 15% and monthly storage costs of « = 0, 1, and 2 cents per bushel. Benefits of specifying
the wesalth states to conform with all feasible price outcomes and sales decisions are that specification of
the value function does not require interpolation (a discrete value function value can be computed for every
current state in the state space), and it is efficient because infeasible wealth outcomes do not need to be
evaluated.

The final assumptions required to operationalize the mode are a utility function and a set of
transition probabilities for transitioning from one price state to another. We assumed a constant relative
risk aversion (CRRA) utility function U (w;) = le'b/(l - b), b > 0 where w; istheterminal wealth
per bushd of initial harvest .! The parameter b denotes the coefficient of relative risk aversion and is set to

one of two possible values in order to compare results for near risk neutrality (b = 0.0001) with those from



risk averse behavior (b = 5).> Computation of the price transition probabilities required some detailed

empirical analysis.

Computation of Price Transition Probabilities

The probability density functions for corn prices faced by the farmer at each decision node, t, are
represented by a set of discrete-time transition probability matrices which map the stochastic price states
across the marketing periods. The underlying stochastic structure is estimated using weekly cash corn
closing prices each Wednesday at Saginaw, Michigan starting the first week in October of 1975 and ending
the last week in September of 1996. The estimated price process is represented by an autoregressive
seasonal modd for the conditional mean of the logarithmic price changes, and a generalized autoregressive
conditional heteraskedastic t-distribution modd (GARCH-t) with seasonality for the conditional variance of
the innovations (Fackler, Bollerslev). These specifications have been found to do a good job of
representing the probability structure of weekly grain price movements (Yang and Brorsen). After
investigating several alternative models for goodness of fit a preferred mode was chosen and estimated
(table 1). Weekly Saginaw corn prices were found to be nonstationary and the conditional mean and
variance of price changes appear to vary over time as a result of both stochastic and seasonal factors. The
Ljung-Box Q-statistics show the modd is well specified in terms of removing autocorreation from both the
errors and squared standardized errors of the changein log prices.

The estimated price model can be used to generate transition probabilities that correspond to the
fifteen possible price states in the price state space. These transition probabilities are then used to solve the
mode and determine the optimal marketing rules. We allow the transition probabilities to be different at
each decision node, t, and so we actually compute five different sets of transition probabilities. The
transition probabilities are generated from the estimated weekly price modd (table 1) using simulation

techniques.



The simulation process begins by going to the first decision node (the harvest period specified as
the first week of November). Then thefirst possibleinitial price state ($1.60) is selected. Using this price
state as a starting point, the weekly econometric mode is simulated eight to nine weeks ahead to get one
random draw for the price state in the first week of January (the next decision node). The simulation of this
one random draw is abtained by making random draws on a sequence of eight to nine €; values and tracing
through the price and variance outcomes using the econometric model (seetable 1). In the absence of any
information about theinitial value of the conditional variance of €;, an estimate of the unconditional
variance of €; is used to initialize the simulation of o7

After this process is complete we now have one random draw on the price for the first week of
January given that the price during the first week of November is $1.60. Now repeat this process 10,000
times using a random number generator for the €; and check the rdlative frequency with which the price
outcomes fall into each of the priceintervalsin the price space. These rdative frequencies are used as the
transition probabilities for transitioning from the initial price state $1.60 in the first week of November to
each of the alternative price states in the state space in the first week of January.

To generate the entire matrix of transition probabilities we repeated this process for every possible
initial price state at the harvest period in the first week of November, {$1.60, $1.80, $2.00, $2.20, $2.40,
$2.60, $2.80, $3.00, $3.20, $3.40, $3.60, $3.80, $4.00, $4.20, $4.40}. This provides the entire matrix of
transition probabilities for transitioning from the first week of November to the first week of January. To
generate a transition probability matrix for every decision node we repeated this whole procedure for
transitioning between all decision nodes (November-January, January-March, March-May, May-July, July-
September). This gives us five different transition probability matrices that can be input into the dynamic
programming algorithm.

To validate these transition probabilities, and make sure they are a reasonable approximation to the

underlying probability distribution of prices, we conducted a number of experiments. In one of these

10



experiments we set theinitial price in November equal to its historical data mean of $2.24 and simulated
this price forward over the entire storage season using 10,000 replications. The resulting relative
frequencies for the price outcomes in each month are shown in figure 1. As expected, theinitial price has a
big impact on the mean of future price distributions. That is, thereis a high probability that prices will
remain around $2.24, especially in the early part of the storage season. Notice, however, that the
probahility distributions tend to shift to the right as the storage season progresses (higher probability of
prices increasing than decreasing), as well as becoming more spread out (prices at the end of the storage
season more uncertain than prices at the beginning). Towards the end of the storage season in September,
however, there appears to be a higher probability that prices will be lower compared to immediately
preceding decision nodes. This seasonal pattern of price movements can be seen more clearly by
comparing actual historical average prices for each week over the storage season with the associated
average simulated price (again using 10,000 replications and starting all of the simulations from the
historical average harvest price of $2.24 per bushel). A graph of these historical and simulated weekly
averagesis shown in figure 2. Prices clearly have a tendency to rise throughout the storage season until
about June when prices begin to fall in anticipation of the coming harvest. Thisisthekind of pattern we
would expect and the simulated average prices do a good job of tracking the actual historical average
weekly prices, though the path of simulated average prices is smoother (as expected). This should provide
some confidence that the calculated transition probabilities are generating outcomes that are consistent with

the underlying probability structure of actual corn price movements over the storage season.

Dynamic Programming Algorithm

The algorithm used to solve the storage modd is a discrete time, discrete state and control dynamic

programming algorithm based on the approach of Miranda and Fackler and programmed and solved in
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GAUSS. The algorithm proceeds by evaluating the value function at every (discrete) point in the state and

control space and so can take a long time to solve (in this case several hours on a personal computer).

Results

We first solved the model for the case of arisk neutral farmer (b = 0.0001). Thisleads to the same
"sdl all or nothing" marketing strategy derived in FL (as expected). Hence, in this case the optimal
marketing strategy is defined by a cutoff price for each decision node, such that if the current priceis above
the cutoff price sdl everything and if it is below then sdl nothing.

The cutoff prices at each decision node for the risk neutral case (b = 0.0001) are presented in table
2. Using the base case (thefirst column) as an example, for the month of November the cutoff priceis
$4.10 per bushel. Hence, if the cash pricein the first week of November is $4.10 per bushel or higher it is
optimal to sdll everything in storage; otherwise, the optimal marketing strategy is to retain the entire stock.
The results show the optimal cutoff price starts with a rdatively high value at the beginning of the
marketing season and decreases as the end of the marketing season approaches. This is because at the
earlier stages of the marketing season there are more future time periods in which prices might rise. The
cutoff prices for different assumptions about storage costs and interest rates are also presented in table 2.
Theresults show the cutoff price declines as storage cost increases. This is intuitive because storage cost
is a negative income incurred when holding the grain. An increase in storage costs suggests a decreasein
the value of waiting to sdl stocks in the future, which makes storage less desirable, and lowers the current
cash price needed to compensate for the foregone benefits of future sales. Similarly, an increasein interest
rates triggers a lower cutoff price because the potential increase of interest income represents an increased
opportunity cost of holding the grain, which makes storage less attractive.

Moving to the case of risk aversion (b = 5) the optimal marketing strategy for the harvest period

(first week of November) is represented graphically in figure 3 for the base case of 10% interest rate and
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storage cost of $0.01 per bushel per month. Because thisis thefirst decision node the unique storage state
is 100% of thetotal harvest and the uniqueinitial wealth stateis zero. Therefore, the optimal marketing
strategy depends only on the current price. The results show that if prices are at or above $4.10 at harvest
the optimal strategy isto sdl everything and if it is $1.70 or below the optimal strategy isto sell nothing
and wait. At intermediate prices, however, there are partial sales. If the current priceis between $1.70 and
$1.90 the optimal strategy is to sl 50% of the crop at harvest; if it is between $1.90 and $3.70 the optimal
strategy isto sell 60% of the crop at harvest, and so on. Risk aversion creates a clear incentiveto sel at
least some of the harvest right away and not storeit.

The optimal marketing strategy for this samerisk averse (b = 5) farmer in January is more difficult
to represent because the state space has many more dimensions (the possible storage and wealth states are
no longer unique). To demonstrate the rule using two-dimensional graphs we construct three separate
graphs for three different wealth states—high wealth (in which previous sales were made at relatively high
prices), middle wealth (in which previous sales were made at intermediate prices) and low wealth (in which
previous sales were made at relatively low prices). For each of these wealth levels there can still be any
one of 11 possible storage states, s €{ 0, 0.1, ..., 1.0}, depending on how much corn was sold in
November. The optimal strategy for s= 0 is simply to sdl nothing (because all of the corn has already
been sold). The other 10 possible storage states are each represented by a different linein each pane of
figure 4, with each of the panels representing a different wealth (previous price) levd.

Optimal strategies for January are more complex and less intuitive than for November. Results for
January are consistent in the sense that very low prices lead to no sales while very high prices lead the
farmer to sdl everything. At intermediate prices there may be partial sales. Notice, however, that in some
cases, particularly when thereis alot of storage left (minimal sales in November) the optimal strategy is to
sdl less at intermediate prices than at low prices (see the negative slope of some of the decision rulesin

figure 4 over some regions of the price space). Thereason for thisis that the current price state not only
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represents the benefits of immediate sale but is also a signal determining the probability of prices going
higher in the future. Therefore, a higher current price encourages more sales because it allows risk-free
collection of ardatively high return, but it may also signal a higher probability of priceincreases in the
future which would discourage current sales. |If the latter effect dominates the former then a higher current
price may lead to less current sales.

Theresultsin figure 4 also show that, for a given storage level and current price, the optimal
marketing strategy at high wesalth states is to sdl lessin the current period than in low wesalth states. This
is consistent with the CRRA utility function because absolute risk aversion decreases with anincreasein
wealth and so the farmer is more willing to take the gamble of waiting to seeif prices rise the higher is
his'her wealth level (the more money he/she has already received from previous sales).

Optimal storage rules for the other decision nodes in March, May, and July were also computed
but results are not shown hereto conserve space. These results show that partial sales may be optimal at
each decision node (except the last) when farmers arerisk averse, and that the price required to encourage
sales falls as we move through the storage season (as expected). One way to summarize these results is to
use the estimated transition probabilities and optimal storage rules to compute the likelihood of sales
occurring in various months under both risk neutrality and risk aversion, using the base case of r = 10%
and storage costs of $0.01 per bushd per month. These results are summarized in figure 5. Under risk
neutrality optimal salesin any given year will always occur in one month only (sdl all-or-nothing rule), but
the figure shows the expected distribution of those sales over repeated samples (years). Theresulting
distribution is unimodal with sales occurring in May 83% of the time and sales occasionally occurring in
March, July, and September as well. Under risk aversion the expected distribution of optimal sales over
the storage season is bi-modal with 52% of sales occurring right at harvest, 39% of salesin May, and other

sales occasionally occurring in other months, Clearly, the optimal strategy under risk aversion isto spread
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sales out over the storage season but most of the sales will occur either at harvest (arisk reduction strategy)

or in May (an expected profit generating strategy).

Performance of the Optimal Storage Rule

One way to evaluate the performance of the optimal storage rules isto compare outcomes in these
cases to what would have happened if all corn was sold at harvest (no storage). Using the transition
probability matrices and simulation results the mean and unconditional variance of final wealth was
computed under three scenarios—sdl everything at harvest, apply the optimal risk neutral storage rule, and
apply the optimal risk averse storagerule. Results are provided in the first two lines of table 3 using an
interest rate of 10% and a storage cost of $0.01 per bushe per month. Selling everything at harvest
generates the lowest mean wealth and the highest unconditional wealth variance. On average, pricesrise
enough over the storage season so that selling at harvest generates the lowest mean return.  Nevertheless, if
all cornissold at harvest thereis no risk of future price declines so, from this perspective, sdling
everything at harvest is arisk minimizing strategy. The unconditional variance measure indicates the year-
to-year variability in final wealth and should not be misconstrued as a measure of short-termrisk. This
unconditional variance measure shows that, even though selling at harvest is arisk minimizing strategy
because it liminates the risk of experiencing price declines during the storage season, from a long-run
perspective this strategy still generates considerable year-to-year variation in returns.

The optimal storage strategy for arisk neutral farmer generates the highest mean wealth but also
the highest risk because sales rarely occur at harvest under this strategy, and so farmers are usually fully
exposed to therisk of price declines over the storage season. Nevertheess, the unconditional variance
estimate shows that long-run, year-to-year variability in returns under this storage ruleis slightly lower

than for the case of sdlling everything at harvest.
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The optimal storage strategy for arisk averse farmer generates a mean return that is higher than
sdling at harvest but lower than applying the optimal risk-neutral strategy. Risk is reduced because some
sales usually occur at harvest, but not completely eliminated because some corn is usually put into storage
for later resale as well. Long-run, year-to-year variahility in returns is reduced considerably by using this
“diversification” strategy.

Another way of looking at performance is to compute the farmer's willingness to pay (WTP) for
the optimal marketing strategy and use this as a quantitative estimate of the economic value of the
marketing decision rule. We define WTP as the maximum certain monetary amount the farmer is willing to
pay for the right to apply the optimal marketing strategy rather than sdl all production immediately at

harvest. WTP values are calculated by solving the equation

9 UM + WTP(L + 1)T] = EjU(wy)

using the bisection method. In equation (9), w; is the terminal wealth under the optimal storage rule, W
is the terminal wealth under a sdl everything at harvest rule, and the probabilities for computing the
expectation are calculated using the relative frequencies of the historical harvest period prices together with
the transition probability matrices computed earlier.

Results for WTP are reported in the last line of table 3, again using an interest rate of 10% and a
storage cost of $0.01 per bushel. The economic value of the optimal marketing strategy for arisk neutral
farmer ($0.138 per bushd) is greater than the value for arisk averse farmer ($0.042 per bushel) because
the risk averse farmer sells some corn at harvest even when he/sheis following the optimal (risk averse)
storage strategy, while therisk neutral farmer would generally not sdll anything at harvest when he/sheis
following the optimal (risk neutral) strategy. Thereforetherisk averse farmer does not get as much value

out of being able to apply hig’her optimal strategy as the risk neutral farmer does (compared to the case of
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sdlling everything at harvest). Of course, the WTP figurefor therisk neutral case only estimates what a
risk neutral farmer would be willing to pay to usethis storagerule. If the farmer was actually risk averse
he/she would be willing to pay less to use the optimal risk neutral rule than he/she would be willing to pay
to be able to use the optimal risk averserule.

These dollar per bushd WTP amounts for Michigan corn farmers translate to between 5% and
15% of net farm income, which might be considered economically significant, thus highlighting the

importance of a good marketing strategy.

Conclusions

This study extends the risk neutral farm storage model of FL to the case of arisk averse farmer in
adiscretetime, discrete state and control space framework. Results provide both theoretical and empirical
support for the optimality of partial sales over the storage season, as opposed to the simple sel everything
or sdl nothing strategy derived in FL. This partial sales behavior is more consistent with what we actually
observe farmers doing when they make their storage decisions. The optimal distribution of sales over the
storage season depends on the degree of farmer risk aversion, as well as storage costs, interest rates, and
the underlying probability distribution of prices.

An application of the modd to farm storage of corn in Michigan shows that risk averse farmers
will sdl a proportion of their corn crop early (generally right at harvest) unless harvest prices are extremdy
low. They do this even though it reduces their expected terminal wealth (since they cannot then gain from
the expected risein prices over the storage season) because it also reduces risk. This result shows that risk
aversion is capable of explaining the observed behavior of partial sales over the storage season without
assuming that farmers are somehow myopic or failing to optimize.

The economic value of optimal storage rules for corn in Michigan was estimated by computing the

farmer's WTP for the optimal marketing rule, as opposed to just sdling all corn at harvest. WTP estimates

17



correspond to about 5%-15% of average net farm income to farmers in Michigan, depending on their
degree of risk aversion. This might be considered an economically significant amount, thus highlighting the

importance of farmers implementing good post-harvest grain marketing strategies.
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Footnotes

Because sales and current stock levels are expressed as a proportion of thetotal harvest, wealth
levels must be scaled by the total harvest aswell. Thus a "wealth" level of 1.351 would indicate
total wealth would really be $1.351 times the amount of the initial harvest in bushéls. It can be
shown that, in the case of a CRRA utility function this transformation has no affect on the optimal
decision rule because the CRRA is homogeneous of degree 1-b (Varian). Hence, the use of this
transformation is innocuous and is only used to make the results easier to interpret.

The CRRA utility function is not defined under exact risk neutrality so we set b = 0.0001 (near
risk neutrality) to approximate the optimal risk-neutral strategy. Henceforth, this case will be

simply described as “risk neutral.”
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Tablel. Corn Price Modd Estimates

2
k . k
Ap. = vyAp. , + d.cos@n—) + d,sn(2n—)] + €.
p| Y p|—2 Jg; [ ]_J ( 52/1) 2J ( 52/1)] i
€[Q, ~ t(0, o},V)

o7 = w + oceiz_l + Boiz_l + Y, c08(2mk/52) + Y, (sin(2mk/52)

Par ameter Estimate p-Value Par ameter Estimate p-Value
Y 0.0506 0.0488 A 1.6255 0.0078
d, -0.5776 0.0000 o 0.0934 0.0013
d,, -0.3893 0.0007 B 0.7658 0.0000
d, -0.0021 0.4929 U, 0.6222 0.0614
d,, 0.3211 0.0029 U, -1.1059 0.0000
vl 0.1913 0.0000
Statistics
LR = 74.9968

Ljung-Box Q-statistics

Q) = 36719  (0.2991) Q¥5) = 1.1303 (0.7698)

Q(15)=13.1055  (0.4397)  QX(15) =12.8787 (0.4572)

Q(20)=17.9130  (0.4614)  Q*20) =16.3879 (0.5655)

Notes. p; isthelogarithm of cash price at Saginaw, Michiganinweek i. Likeihood ratio tests were
used to determine the order of the seasonal functions in mean and variance, k is the observation
number in the season which corresponds to the current i (k=1, 2, ... 52), and LRisthe
likelihood ratio test statistic for GARCH(1,1) with conditional normal errors (1/v = 0) against
conditional t-distributed errors (/v > 0). Q(l) isatest for I-th order serial corrdation in the
residuals; and Q(1) is atest for I-th order serial corrdation in the squared standardized residuals.
The values in parentheses following each Q test statistic are the corresponding p-values for that
test.
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Table 2. Cutoff Pricesfor Different Storage Costs and I nterest Rates for Nearly
Risk Neutral Producers

Base Case Changesin Changesin
Month Storage Costs I nterest Rates
r=10% o« =3$0.01 «=%0.02 o=%0 r =15% r=5%

November $4.1 $3.9 $4.1 $3.9 .1
January $4.3 $4.1 $4.3 $4.1 $4.3
March $4.1 $4.1 $4.1 $4.1 $.1
May $1.9 $1.7 $2.9 $1.9 $3.1
July $1.7 $1.7 $1.7 $1.7 $1.7
September 0 0 0 0 0

28



Table 3. Performance of Alternative Storage Rules

Perfor mance Sdl Everything Optimal Storage Under Optimal Storage
Measure at Harvest Near Risk Neutrality Under Risk Aversion
Expected Wesalth/Bushel $2.237 $2.375 $2.301
Unconditional Variance of
Weslth/Bushel 0.494 0.454 0.101
Willingness to Pay/Bushe $0 $0.138 $0.042
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Appendix

Derivation of the Optimality Conditions

The state vector for our problemis defined as x, = (W, S, p,, z) and Bellman's equation can be

written:
(A.139) V(X)) = U(wy)
(A.1b) V(%) = max E{v,,, (%, )} , =01, .,T-1

G

where the maximization is subject to the transition equations:

(A.29) W,, =@+ nw+pg -—a(s-q) ; t=12.,T

(A.2b) S. =S~ G t=01, ., T-1

and the feasibility constraints:

(A.2¢) a,

v
o
—+

I

o

Lo
0
H

(A.2d) o

IA
o

I
o
Lo
0
H

We solve the problem by iterating on Bellman's equation.
At thefinal decision period t = T-1 the constraint (A.2d) is clearly binding because, from (A.1a) and

(A.2a), stocks have no value in the terminal period T but wealth does. Hence, the solutionatt = T-1 is
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Or., = S;_,. Inal prior periods the necessary conditions for solving Bellman's equation subject to the

transition equations and feasibility constraints are given by:

(A.33) E, M a + r)(pt + ) - L(X“l)} - )”t <0
aVvt+l ashl

(A.3b)

t

Et{avﬂﬂ @+ +a) - M}_ At] -

aVvt+1 ashl

(A.3c) A, -s) =0

and g, > 0, A, > O,and s, - ¢, > 0. Here, A, isthe shadow value of relaxing the short sdling

constraint. It will also be useful to note that from the envelope theorem:

(A4) th(Xt) _ —06(1 " r) Et{avt+l(xt+1)} . Et{avt+1(xt+1)} , and
83[ aVvt+l ashl
avt(xt) _ + aVt+]_(Xt+]_)
(A5) R (L +r) Et{—a%1 }

Now using (A.4) and (A.5), (A.3) can be expressed

IV, (%) ) IV, (%) )
t

h s

(A.63) A <0

t
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Vv, (x) ) v, (x) )

A.6b
(A.60) % aw, ds,

Al=0

t

(A.60) A(g, - 8) = 0.

These are the conditions given in the text.
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