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farm investment{
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A farm portfolio model is speci¢ed with two risky enterprises and a risk-free asset
which may be held short or long by the farmer. The model is solved numerically
using a genetic algorithm. It is shown that the assumption of competitive
adaptation leads to a violation of normative e¤ciency. Those who survive are not
the most e¤cient in a normative sense.

1. Introduction

Genetic algorithm (GA) models have been used in a number of disciplines
in the last two decades with applications in physics, electrical and chemical
engineering, and the biological and behavioural sciences including
economics. In general, they are used for two purposes. First, as a
methodological tool to maximise functions that are either highly non-linear
or very large in terms of number of control variables. Second, GA models
are used in the social sciences to test speci¢c behavioural hypotheses. In
economics, GA models have been used in both these contexts with
applications in monetary theory, index design, dynamic cobweb and stock
market behaviour, optimisation under imperfect competition, and as learning
models (Arifovic 1994; Arifovic 1995; Farley and Jones 1994; Holland and
Miller 1991; Marks 1992). In this article, a GA model is used to examine
farm investment.
Szpiro (1997) examined investment behaviour using a GA model of a

stock market and found that when ¢rms were selected against on the basis of
poor pro¢t performance, they developed caution in their investment
strategies. The results are interesting since they re£ect an alternative
approach to risk behaviour based on competitive adaptation rather than
maximising certainty equivalent value. In our study, we use a similar
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approach to examine farm investment. The goals in our study were, ¢rst, to
adapt Szpiro's model to resemble a farm rather than a stock market and,
second, to augment the model so that a test for normative e¤ciency could be
undertaken. The purpose of this article is not to present an alternative
optimisation technique for farm managers, but rather to raise important
questions concerning the risk attitudes that are likely to evolve under
alternative institutional arrangements, as they a¡ect the risk exposure of
producers.
In the following section we develop a simple economic model consisting

of agents who borrow and use their capital to produce a mix of two crops.
The implementation of the model within a genetic algorithm (GA)
framework is described in section 3. A set of experiments designed to study a
number of questions is described in section 4. The behaviour of the GA
model is analysed in detail, and the results of the optimisation (or
evolutionary) process are presented in sections 5 and 6, the later section also
containing a test of the Separation Theorem. The ¢nal section presents
discussion and conclusions and identi¢es some unresolved issues.

2. Farm model and economic environment

A portfolio investment model was speci¢ed with constant returns to scale,
two crops, s and w, and the possibility of either borrowing or lending. The
expected return from farm capital is ra:

ra � psrs � pwrw �1�

where rs and rw are expected returns from s and w, respectively and ps and
pw are proportions of farm capital allocated to s and w. It is assumed ps and
pw are non-negative, rs and rw are independent so Cov�rs; rw� � 0 and there
is an additivity restriction, pw � 1ÿ ps.
The farmer borrows or lends at `risk-free' rate rb so the expected return

to equity, re, is:

re � para � pbrb �2�

where pa is the ratio of farm value to equity and pb is the ratio of borrowing
or lending to equity. Hence, 0 � pb � 1 if the farmer is a lender and pb < 0
if the farmer is a borrower. Thus, pa is non-negative to prevent `shorting' of
farm capital and the additivity restriction is pa � 1ÿ pb. With limited
borrowing ÿbmax � pb � 1, where bmax is the borrowing limit.
Farm income is de¢ned as return to equity by assuming one unit of equity

capital and, after substituting the two additivity restrictions and equation 1
into equation 2, re becomes:
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re � pbrb � �1ÿ pb��psrs � �1ÿ ps�rw�: �3�

The farmer chooses both the crop mix and the amount of borrowing or
lending, hence the decision variables are pb and ps. Returns to s and w are
independent and subject to separate market and production shocks, u1j and
u2j� j � s or w), respectively:

rj � eu1j�u2j ÿ cj �4�

where uij � N�mij;sij� �i � 1; 2; j � s;w� and cj > 0 is a constant. Hence,
returns from both crops have three-coe¤cient, bivariable lognormal
distributions bounded below by cj and unbounded above. It is further
assumed production risk is correlated across farms and that farmers,
collectively, are price makers with Corr�u1j; u2j� � r12j � 0 (Anderson, Dillon
and Hardaker 1977, pp. 171^2).

3. The genetic algorithm

There are many di¡erent types of GA models. Their de¢ning characteristic
is that they contain the elements of evaluation, selection, crossover and
mutation (Goldberg 1989). These elements are explained below in terms of
the farm model.
The numerical model consists of a population of 100 farmers (agents) with

identical technology and facing the same risks. Each agent is assigned
starting values for two `genes', pb and ps, which are drawn randomly from a
uniform distribution with bounds ÿbmax � pb � 1 and 0 � ps � 1, where
bmax, the maximum debt allowed, was assigned a value of 5. The starting
values for ps are consistent with the non-negativity constraint preventing
shorting of farm capital and the additivity restriction, ps � 1ÿ pw. Each gene
is represented by a ten-character binary string, which maps into the set of
integers 1ÿ 210. The real-valued parameters pb and ps are mapped into this
discrete space, which contains 1024 points, resulting in sampling intervals of
5:86� 10ÿ3 for pb and 9:77� 10ÿ4 for ps.
The agents undertake borrowing or lending and invest by allocating

capital between s and w over k periods according to their assigned starting
values for pb and ps. Investment occurs in a stochastic environment resulting
from the distributions of rs and rw as speci¢ed in equation 4. Di¡erent values
of rj� j � s;w� are obtained for each period based on u1j and u2j which, in
turn, are drawn from a bivariate normal distribution with correlation r12 j.
At the end of the k-th period, the investment performance of each agent

is evaluated using a value function calculated by summing return to equity
over the investment horizon:
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Ri �
Xk

1

reik �5�

where reik for agent i in period k is estimated by equation 3. A ¢tness function
is then calculated by subjecting the value function (5) to linear scaling as
described by Goldberg (1989, pp. 76^9), so that the agent with the highest
`raw ¢tness' (R) score produces an expected two o¡spring, whereas the
`average' agent produces one expected o¡spring per generation. Scaling may
prevent two problems: premature convergence early in a run, and slow
convergence in later generations. Agents are then selected for reproduction
using classical roulette wheel selection, where the probability of selection is
proportional to the ¢tness of the individual relative to the rest of the
population (Mitchell 1997, pp. 166^7). Genes belonging to agents who are
not selected for reproduction disappear from the population.
After selection, crossing over occurs with each pair producing two

o¡spring and then disappearing, leaving population size in the second
generation the same as in the ¢rst. Crossover allows transmission of genes
from one generation to the next and facilitates evolution of agents better
adapted to their stochastic environment. The crossover operation makes
copies from the genes of the two parents using the `bit string swapping'
mechanism described in Goldberg (1989) and elsewhere. The probability of
single-point crossover occurring was set at 0.6, which means that there was a
0.4 probability of o¡spring being identical to their parents.
Unlike in Szpiro (1997), there is no inheritance of wealth. Only expertise

is inherited and each generation starts out with the same technical
possibilities and level of equity capital.
Pairing and crossover ensure two important things happen in the GA

model. The ¢rst is, based on the value function (5), poor performers are
removed from the population so, eventually, only the ¢ttest survive. The
second is, because pairing involves the whole population, inferior genes can
survive, albeit in proportions decreasing with each generation, and hence the
model has a `genetic memory'. If the environment changes then an inferior
gene may cease to be inferior and become dominant within a few
generations. However, a gene eventually disappears if it does not contribute
to overall population ¢tness.
A small proportion of the new generation may undergo random mutation

of one or more of their genes. Mutation consists of £ipping a random bit
(i.e. a zero changes to a one and vice versa) in the binary representation of
the parameter, with the probability of a bit £ipping in our model being 0.01.
As this evolutionary process moves through time, the genetic make-up of
the population converges to values of pb and ps which provide the best
survival value for the given parameters rb;mij; sij; r12 j; cj and k.

308 O. Cacho and P. Simmons

# Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishers Ltd 1999



4. Experimental design

A series of experiments were run, each consisting of 200 generations with a
population of 100 agents. The base case was designed to determine whether
the stochastic environment would cause agents to evolve risk-averse
behaviour, since one of the objectives of the study was to examine
competitive adaptation under di¡erent assumptions about risk. There is a
number of ways to adjust risk in the GA framework. One approach is to
increase the period of evaluation (investment horizon k) which reduces the
variance of the value function. A second approach is to vary the severity of
the selection process by adjusting the probability of survival. These
variations were tested in the experiments described below.

4.1 Experiment 1: standard environment

Values for fourteen coe¤cients were chosen for the experiments as shown
in table 1. This meant that rs and rw had expected values of 9.227 and 8.684
and standard deviations of 7.486 and 4.722, respectively. Treatments within
each experiment consisted of values of the risk-free rate (rb) ranging from 8
to 10. This range contains the critical value at which a risk-neutral individual
would switch from borrowing to lending, this critical value (rcrit) is equal to
9.227, the expected return of the most pro¢table crop. This scenario was
taken to represent the `standard' environment and is denoted by S.

4.2 Experiment 2: harsh environment

The severity of selection was increased by reducing the ¢tness value of agents
who had negative wealth at the end of the investment horizon (this could
represent an unforgiving creditor). This was implemented as an arbitrary
`debt penalty' which was imposed on individuals who were in debt at the end

Table 1 Parameter values used in experiments

Parameter Value Description

k 3 investment horizon
bmax 5 borrowing limit
rb 8^10 risk-free rate
m1w � m2w 1.28 mean of price and yield shocks for crop w
s1w � s2w 0.25 standard deviation of price and yield shocks for crop w
cw 5 cost of producing crop w
m1s � m2s 1.38 mean of price and yield shocks for crop s
s1s � s2s 0.31 standard deviation of price and yield shocks for crop s
cs 8 cost of producing crop s
r12w � r12s ÿ0:1 price-yield correlation
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of the investment horizon. The penalty consisted of cancelling out the raw
¢tness score of the worst-performing individual (thereby preventing its
reproduction) and interpolating linearly for the remaining debtors. Speci¢cally:

di � �Ri < 0�:jRij �6�
where di is the penalty, the term in brackets assumes a value of one if true
and zero if false, a scaling factor (w) is then de¢ned as:

wi � 1ÿ di

max�d� �7�

and the ¢tness function is:

Fi � �b0 � b1Ri�:wi �8�
where the bs are linear scaling parameters estimated as in Goldberg (1989)
to obtain the desired number of o¡spring from the ¢ttest individual. This
scenario was taken to represent a harsh environment and is denoted by H.

4.3 Experiment 3: mild environment

Increasing the investment horizon (k) is equivalent to reducing hostility in
the environment and is hypothesised to make farmers less cautious. Hence,
in the third experiment, k was increased from three to 15 periods. This
allowed agents to o¡set losses in poor periods against gains from favourable
periods prior to evaluation and selection. This experiment represents a mild
environment and hereafter is denoted by M.

5. Model behaviour

The GA model was run under the assumptions described above and average
values for pb and ps were obtained. The model was ¢rst run in a deterministic
environment to ensure that it would behave as predicted by theory. The
model was then run in stochastic mode. The results of these tests are
described below.

5.1 Deterministic environment

The model was solved for three values of rb (8, 9.3 and 10) in a deterministic
environment, simulated by setting all sij to zero and adjusting the mij

parameters to yield the same expected values as with the stochastic model
described in table 1 (m1s � m2s � 1:423 and m1w � m2w � 1:308). The GA
converged rapidly to corner solutions (¢gures 1A and 1C) for pb and ps. For
all three values of rb, convergence was accompanied by a rapid drop in
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genetic variability as represented by the standard deviations (SD) of pb and
ps (¢gures 1B and 1D). This was achieved as the genes of the ¢ttest
individuals took over an increasing proportion of the population.
Convergence occurred within 16 to 30 generations depending on the value of
rb (¢gure 1). Convergence was slower when rb was close to the critical value
of 9.227, a result of selection pressure on speci¢c genes being weaker. By the
30th generation, variability had decreased to negligible values, with a small
amount of noise remaining from ongoing mutation.
Results were as expected. With the risk-free rate below the farm return
�rb � 8�, agents borrow as much as possible (¢gure 1A) and invest all
available capital on the crop with the highest expected return (¢gure 1C).
When rb > E�rs�, no production occurs and agents lend all their capital and,
under these conditions, the value of ps is irrelevant.

5.2 Stochastic environment

The concept of the ¢ttest individual becomes somewhat blurred within a
stochastic environment. Whereas in the deterministic case individuals with

Figure 1 Results from deterministic runs at three values of the risk-free rate
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the `right' parameter values always perform better than the population
average, in the stochastic case a set of genes which performs well in one
period may perform poorly the next. `Performance' depends on prevailing
and not just average prices and yields. This is illustrated in ¢gure 2 where the
`best' individual (the one which accumulated the most wealth) in any given
generation varies sharply through time.
A convergence of sorts occurs in the stochastic model and individuals

which have evolved over 200 generations exhibit risk-averse behaviour in the
sense that they borrow less than the maximum allowed and invest only part
of their capital on the high-risk, high-return crop (¢gure 2). In the standard
environment (S) convergence occurred at pb � ÿ4:34 and ps � 0:36 which
implies that pw � 0:64 (¢gures 2A and 2B). In the harsh environment (H),
convergence occurred at pb � ÿ1:82 and ps � 0:37 (¢gures 2C and 2D). Thus
individuals that evolved under harsher conditions borrowed less and might
be viewed as more risk averse. The similar values of ps indicate that as the

Figure 2 Behaviour of GA under stochastic conditions with rb � 8

Note: A and B standard environment, C and D harsh environment. Dotted lines represent the best indi-
viduals of each generation and solid lines represent the average of the population.
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environment became harsher, agents responded by adjusting borrowing
rather than their cropping mix. This is relevant to the Separation Theorem
which is discussed later.

5.3 Convergence and the role of mutation

Convergence in a GA can be declared when the entire population has
evolved to the same genetic make-up, within the desired tolerance. Strictly
speaking, convergence never occurs in the GA described here; the presence
of a stochastic environment means that genes that are dominated in a given
generation may be dominant in the next; and the probability of mutation
means that new genes may emerge at any time. An illustration of the role of
mutation in preventing early convergence is presented in ¢gure 3. With
rb � 9:23 the GA had practically converged to ÿ2:0 by the 70th generation,

Figure 3 Results with rb � 9:23 in standard environment

Note: Figure A shows the mean value of pb for a population of 100 individuals, ¢gure B shows the
standard deviation.
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until a large mutation occurred in the 120th generation and redirected the
algorithm to converge to the true optimum. The mutation caused a large
increase in the variability of pb (¢gure 3B), and a rapid change in the average
values of pb (from ÿ2 to 1.0) over a period of 15 generations (¢gure 3A).
The fact that the initial population is drawn from a uniform distribution

has two e¡ects: initial average parameter values occur close to the centre of
the feasible zone, and initial variability among individual agents is high (see
¢gure 1). A plot of the initial population in parameter space would have
points randomly scattered throughout the feasible area. But, after being
subject to selection pressure over 200 generations, the parameter values of
surviving agents are concentrated within a small area in the feasible space
(¢gure 4), whose location depends on the environment in which the agents
evolved. The movement away from risk-neutrality is illustrated by the shift,
upwards and to the left, from area a to c and d (¢gure 4). Area b is shown
simply to illustrate that convergence was reached in the lending sense but not
in the crop mix sense when rb > E�rs�; this is because no production occurs.

Figure 4 Spread of surviving agents in parameter space under alternative assumptions

Note: a: rb � 8, deterministic; b: rb � 10, deterministic, c: rb � 8 standard environment, stochastic;
d: rb � 8, harsh environment, stochastic. Each marked area contains 100 points.
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The results presented in this section provide insight into the behaviour of
the GA, but they provide no conclusive evidence. These results represent the
outcome obtained from a single numerical experiment, one element within
an in¢nite possible set of price and yield realisations. The analysis is now
extended to include replication in the context of Monte Carlo experiments.

6. Monte Carlo experiments

Monte Carlo experiments were performed by solving the GA in a 4� 3
factorial design. Four values of rb (8, 9.2, 9.3 and 10) were tested in each of
the three environments (M, S, H). Treatments are denoted by their
environment-rb combination (i.e. M-8 or S-9.2). One hundred replicates were
obtained for each treatment by running the model with a di¡erent random
seed each time. This design resulted in 12 di¡erent treatments, each yielding
10 000 surviving individuals (100 individuals per experiment � 100
experiments).
As expected, risk aversion increased as the environment changed from

mild to harsh. With rb � 8 the average value of pb increased from ÿ4:97 to
ÿ4:28 to ÿ2:67 as the environment changed from mild to standard to harsh
(¢gure 5 and table 2). A similar pattern was obtained with rb � 9:2, but at

Figure 5 E¡ect of the risk-free rate �rb� on the average borrowing behaviour of surviving
agents under mild �M�, standard �S� and harsh �H� environments
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higher parameter values, mean pb values increased from ÿ0:18 to ÿ0:13
and then to 0.41 as the environment changed from mild to standard to
harsh (¢gure 5 and table 2). Thus, the harsh environment led to the
evolution of an `average' agent lending 41 per cent of its capital when the
risk-free rate is slightly below the critical value, whereas a classically risk-
neutral individual still borrows as much as possible under these
circumstances. Agents that evolved in the standard and mild environments
also exhibited risk-averse behaviour, borrowing less than 4 per cent of the
maximum allowed (¢gure 5).
Risk aversion also evolved in the crop-mix choice. Mean ps values at

rb � 8 decreased from 0.76 to 0.55 and then to 0.46 as the environments
changed from mild to standard to harsh (table 2).
Interestingly, as the value of the risk-free rate increased slightly above

the critical level �rb � 9:3�, a mild gambling behaviour evolved in all three
environments. Only between 0.19 and 0.49 of capital available was lent at
the (higher) risk free rate, the remainder being invested in farm production
which yields a lower expected return. This suggests that the compensation
provided by occasional high prices and/or yields makes the gamble
attractive. This mild risk-preferring behaviour did not occur at the higher rb

value of 10, where all agents lent all their capital.
Similarly to Szpiro (1997), the distance between the maximum borrowing

rate and the actual borrowing rate adopted by the surviving population can
be taken as an arbitrary measure of risk aversion. By this measure, the level
of risk aversion ranges from 0.03 in the mild environment to 2.33 in the
harsh environment (table 2).
So far we have described only average results for a set of twelve

populations of 10 000 surviving individuals each, without discussing other

Table 2 Average results of Monte Carlo experiments �n � 10 000�

Environment

Mild Standard Harsh

With rb � 8:0
mean pb ÿ4:97 ÿ4:28 ÿ2:67
mean ps 0.76 0.55 0.46
mean R 14.04 14.13 11.74
risk aversion index 0.03 0.72 2.33

With rb � 9:2
mean pb ÿ0:18 ÿ0:13 0.41
mean ps 0.83 0.61 0.64
mean R 8.85 8.80 9.09
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moments of the distributions. Inspection of cumulative density functions
reveals that there is considerable variation among surviving individuals in
each population (¢gure 6). However, clear patterns still emerge in support
of the previous discussion. The proportion of surviving agents who
borrowed more than 4 times the available equity �pb < ÿ4� was practically
1.0 in the mild environment, decreasing to 0.75 in the standard
environment and 0.2 in the harsh environment (¢gure 6A). In the same
vein, the proportion of surviving agents who invested more than 0.8
capital in the high-return, high-risk crop was 0.55 in the mild
environment, decreasing to 0.2 and 0.05 in the standard and harsh
environments (¢gure 6B).

Figure 6 Cumulative density functions of parameter values with rb � 0:8
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6.1 The Separation Theorem

The Separation Theorem, attributed to Tobin, states, in the context of
farming, that if capital markets are e¤cient, and there exists a risk-free
asset, then the crop mix is not in£uenced by risk preferences. This is
illustrated in ¢gure 7, where SW is the farm income-risk frontier and rbz is
the risk-e¤cient frontier comprising di¡erent combinations of risky farm
capital and risk-free asset, the latter held short or long. An e¤cient farmer
is restricted to the risk-e¤cient frontier as indicated by the indi¡erence
curves and hence risk attitudes are separated from the crop-mix decision.
We have seen that the ¢nal distribution of ps di¡ers among the three
environments. Thus, an interesting question is whether the Separation
Theorem holds in our model. The results presented above cannot be used to
test this hypothesis, because each of the three environments resulted in a
di¡erent risk-e¤cient frontier.
To test the Separation Theorem we must use a given risk-e¤cient frontier

and allow only the level of risk aversion to vary. Thus the ¢tness function
must be rede¢ned to account for risk aversion, and a functional form must
be assigned to solve the numerical model. A convenient form for the utility
function is (Anderson, Dillon and Hardaker 1997, p. 99):

Ui � 1ÿ exp�ÿaRi� �9�
where a is a coe¤cient of risk aversion. The hypothesis that the Separation
Theorem holds was tested by using this function to measure ¢tness and
solving Monte Carlo experiments for two di¡erent values of a (0.05 and
0.16) and with rb at 8. The spread in a values used in these experiments is

Figure 7 Graphical representation of the Separation Theorem
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proportional to the spread in risk aversion indexes calculated between the
standard and harsh environments (see table 2).
As expected, higher risk aversion resulted in lower borrowings (¢gure

8A). The proportion of the surviving population that borrowed within one
unit of the limit �ps � ÿ4� decreased from 0.67 to 0.46 per cent as a increased
from 0.05 to 0.16. Results on crop mix are not as clear-cut as those on
borrowing (¢gure 8B). The density functions of the two experiments cross
and their means are similar (0.507 and 0.515 at a of 0.05 and 0.16); however,
the hypothesis that these means are equal was rejected �p < 0:05� by an F-
test �F � 7:26�. Note that the proportion of surviving individuals who
invested less that 0.8 of their capital in the high-risk crop increased from
0.87 to 0.95 as a increased from 0.05 to 0.16 (¢gure 8B).

Figure 8 Cumulative density functions of parameter values under utility maximisation (with
rb � 0:8)

Note: Lines represent two di¡erent levels of risk aversion coe¤cient a in equation 9.
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7. Conclusion

The cautious behaviour exhibited by the agents which evolved in our
experiments comes directly from selection. If farm borrowings are high then
a few poor market or production periods lead to low or negative incomes
so selection favours neighbours who borrowed less. Alternatively, if
borrowings are too low, returns are not competitive in normal and good
periods. The ¢ttest agents were those who struck a balance between too
much and too little caution. These results were qualitatively similar to those
that come from maximising certainty equivalent income with risk aversion.
An increase in the investment horizon caused agents' attitudes to move

closer to risk neutrality, whereas increasing the harshness of the environment
decreased both the amount borrowed and the proportion invested in the
high-return high-risk crop.
The inclusion of a second risky crop in the model allowed a test for

normative e¤ciency based on the Separation Theorem. The change in crop
mix, ps, occurring in the experiments with changes in the selection pressure
do not mean the Separation Theorem was violated, because each environ-
ment resulted in a di¡erent possibility frontier. However, a test based on an
arbitrary utility function and using two plausible risk-aversion coe¤cients,
suggests that the Separation Theorem may have been violated. Hence, our
results suggest that agents who are competitively adaptive may not be
normatively e¤cient. This implies that the most ¢t agents may not be the
most e¤cient and the most e¤cient may not be the most likely to survive.

Mutation is important in genetic algorithms designed for function
maximisation, because it prevents the population from converging to a local
maximum. Strictly speaking, the model developed here belongs to this class,
since the ¢tness function leads to wealth maximisation. In the context of the
stochastic environment prevailing in our model, mutation has the role of
allowing agents to explore strategies which might otherwise have been left
untested. The downside of mutation is that true convergence is never
achieved. To prevent this problem, non-uniform mutation operators have
been developed (Michalewicz 1994). These operators improve the ¢ne-tuning
capabilities of the GA by decreasing the impact of mutation as the ¢nal
generation approaches. This scheme encourages a thorough search of
`genetic space' in early generations while constraining further search to local
areas in late generations. This mutation strategy was not used in our model,
but it may prove useful in future work.
The major problem with a GA approach to investment is that its

theoretical basis, while powerful, is not su¤ciently developed for the types of
applied problems agricultural economists are interested in. However, the
GA model does have some conceptual features that are attractive. The
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genetic memory is an improvement on the treatment of priors in certainty
equivalent models where `memory' is usually restricted to perfect prior
information or, at best, Bayesian or ¢rst or second-order ARCH processes.
Another attractive feature of the GA risk model is that the researcher can
model risk responses over time. While expected utility theorists have made
progress here, most dynamic risk models are still solved as a string of single-
period problems.
The most interesting question arising from the study is whether reconcili-

ation of survival models and expected utility models is possible. There are a
number of reasons why it is unlikely one theory will be found to be a special
case of the other. First, the competitive adaptive model is based on `survival
of the ¢ttest' while expected utility theory is based on satiation (diminishing
marginal utility). These aspects of behaviour are very di¡erent from each
other. Second, since ¢tness may not correspond to normative e¤ciency, any
optimising agents introduced to the model, unless immune from selection,
may disappear within a few generations. Basu (1996, p. 745), concluded from
an evolutionary game-theory framework: `¢tness maximization is not a
preference that will always emerge in equilibrium. Hence, at least for the
time being, the attempt to bring utility and ¢tness into alignment must be
abandoned as futile.' Chavas (1991) argues that optimising and non-
optimising agents may co-exist in a non-identical population. However, from
a GA perspective, it is not clear how his optimising agents derive their
immunity when non-optimal agents are dominant. For a unifying framework
to be developed, a central question is how farmers might trade likelihood
of survival for income.
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