

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

# DEMOGRAPHIC VARIABILITY IN U.S. CONSUMER RESPONSIVENESS TO CARBONATED SOFT-DRINK MARKETING PRACTICES 

Charles Rhodes

University of Connecticut

charlesrrhodes@gmail.com

The Economics of Food, Food Choice and Health $1^{\text {st }}$ joint eaae/aaea seminar

## 2010

## Selected Paper

prepared for presentation at the $1^{\text {st }}$ Joint EAAE/AAEA Seminar
"The Economics of Food, Food Choice and Health"
Freising, Germany, September $15-17,2010$

Copyright 2010 by Rhodes. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.


#### Abstract

Using three years of Nielson Homescan and advertising data from 16 major metropolitan areas across the U.S. to construct a panel data set that follows weekly consumer purchasing behavior, this paper investigates the impact of marketing activities on a representative cross-section of U.S. consumers. Because many consumers do not participate in the market week-in and week-out, I apply Heckman's econometric selection model to recover the impact of pricing, advertising, and promotion on a wide range of consumer segments. Reduced-form estimates of consumer responsiveness to these marketing activities reveal different effects across consumer segments, which have numerous implications for marketing policy.


Keywords: carbonated soft drink, marketing-mix models, demographic segmentation, econometric selection models, Nielsen panel data, food marketing policy

JEL codes: D12, L66, M38

## 1. Introduction

The obesity epidemic in the United States has penetrated an increasing number of regions and demographic groups over the last two decades, and seems to be going global (Popkin: 2004; Yach, et al.: 2006). Diabetes rates are following. Nations that have enjoyed abundance now are peopled by citizens who corporeally manifest superabundance to their own poor health outcomes. Policy makers are taking increasing notice.

No one food group can plausibly be assigned causality, but we do know that sweetened carbonated soft drinks (sCSDs) in the U.S. serve as pure vectors into the body of simple sugar calories without fiber protein or any natural vitamin or mineral content to favor them nutritionally. We further know that rising consumption of sCSDs in the U.S. has not only paralleled the rise in obesity, but is highest among young adults (Binkley and Golub: 2007; Bray, et. al.: 2004; Nielsen and Popkin: 2003). Who exactly is buying all of this colored high-fructose-corn-syrup water, and are they that different from us? Does "Coke add life" for them? Are they "Doing the Dew?" Are they motivated by multi-million dollar advertising campaigns, name brand recognition going back generations, some of the cheapest calories in the supermarket, or something else (Harris, et. al.: 2009)?

Recent academic access to an extremely rich marketing data set that spans the U.S. allows the parsing of demographic correlations with sCSD purchase. I ask this data which demographic groups have the largest marginal responses to changes in sCSD marketing variables: price, discounting, and advertising (here called marketing mix variables).

Myriad sub-questions are enabled by the effort. Among them: What is the marginal effect of an increase in household size on consumer response to discounting? Does purchase fall as the formal education level of the head of household rises in comparative level? Do racial groups with lower income profiles respond more in purchase to television advertising campaigns for sCSDs than do racial groups who are characterized by higher mean household incomes?

The scope and characteristics of the data along with the focus of the question motivate exploration of econometric modeling issues from within the modeling set for censored and truncated data.

For my purposes here, let me define poor food choice to mean "unhealthful choice/a choice that if regimented in individual consumption patterns is likely to lead to health problems for an average individual." Allow that the term "poor food choice" says nothing about poverty (not "the poor"), or about the economically efficient or rational balance of expenditures of an
individual's limited food budget (not "poor choice" in terms of utility maximization given a budget constraint). Let me also define the term effective nutrition education to mean the level of application of responsible nutritional choices in realized individual food/drink purchasing and consumption patterns - e.g., a person who actually buys and consumes more carrots than candy is demonstrating (a higher level of) effective nutrition education, i.e., more than someone who buys and consumes more candy than carrots.

## 2. Literature Review

Relevant academic consideration of the use of demographic variables to determine brand choice or market segment come from the Marketing literature. Chiang (1991), Kamakura and Russell (1989), Gupta and Chintagunta (1994), and Kalyanam and Putler (1997) all develop insights into the use of demographic variables as determinants of consumer choice. Fennell, Allenby, Yang, \& Edwards (2003) specifically study how demographic and psychographic variables can be used to explain consumption rates and product use. They examine 52 product categories, "providing evidence that these variables predict product use and unconditional brand use, but do not predict brand choice conditional on product category use" (: 241). The fact that I choose not to estimate demand (for reasons explained in section 4, see "RFM"), that my current proposed estimation structure aggregates individual choice to the category (not brand) level, and the fact that I will be using actual advertising exposure, separates this work from that of predecessors I have so far identified, and suggests numerous points of potential separation or extension from the existing literature.

Asking the data what correlations exist rather than building a structural model of demand from economic theory is a methodological response motivated in part to findings from behavioral economics focused on food consumption. These researchers discover consumer behavior inconsistent with stated goals, inconsistent with stated perceptions, and divergent from immediate memory of recent eating (Wansink: 2006). Rational maximization of utility may be a process more rigorous than consuming a sCSD warrants (Just: 2010). Pesendorfer (:2006) describes in his review of Advances in Behavioral Economics models of failures of expected utility theory or hyperbolic discounting that may find appeal in application to marginal junk-food consumption. Marginal junk-food consumption is likely to have a very attenuated negative impact on health. Rational thinking about health impacts can easily be offset by rational thinking about current utility maximization ("I'm hungry, and it's here and cheap.") Given this potential
conflict, it is inappropriate to presume that modes of consumer economic decision making about junk-food purchases will be uniform.

Knowledge of proper nutrition in the U.S. is not extensive or impressive (Variyam and Golan: 2002; Zamora and Popkin: 2007; Duffey and Popkin: 2006), so rational ignorance (Downs: 1957) may also play into day-to-day consumption choices and habit formation. The word "addiction" as applied to carbohydrate-intensive foods is beginning to be used in the literature (Richards, et. al.: 2007). There may be real cumulative costs to habitual drinking of sCSDs, but structural modeling tends to assume orderly preferences for even such attenuated dangers, and that risks are unambiguously known and properly discounted by the individual. In reality there are changing priorities and levels of awareness and responsibility playing out dynamically in individual economic choices (Pesendorfer: 2006).

## 3. Data - Summarizing sCSD Consumer Markets

Data are from AC Nielson, weekly HomeScan, for three years from February 2006 through to December 2008 (152 weekly "Process Periods"), for 16 Designated Marketing Areas (DMAs): Atlanta, Boston, Baltimore, Chicago, Detroit, Hartford \& New Haven, Houston, Kansas City, Los Angeles, Miami - Ft. Lauderdale, New York, Philadelphia, San Francisco Oakland - San Jose, Seattle - Tacoma, Springfield - Holyoke, and Washington D.C. DMAs are defined by the range of metropolitan commercial television broadcast markets. This data set combines specific purchase information, recorded after purchase by household members, with the demographic information of the participating household.

Also from Nielsen are (television) advertising data corresponding to Nielson areas. These are measured in population exposure to advertising within a broadcast market. This exposure is measured in advertising-industry-standard units known as "gross rating points" (GRPs). Nielsen categorizes the DMA-level GRPs to a certain level of demographic granularity (the entire data set includes GRPs for specific-aged children, for example). After data management procedures, 13,356 households presented a balanced panel, for 358,518 purchase observations.

The research question of interest here is to examine the extent to which different demographically identified groups respond to price, promotions/discounting, and advertising ("marketing-mix") variables. A dataset consisting of only purchase observations cannot directly represent a choice not to purchase as a response to a price promotion or increased advertising. So regressing on only positive observations with no other modeling correction would be a
misspecification for addressing this question. It is therefore necessary to balance the panel with demographic information fully listed for "observations" in the weeks without purchase. The integrity of the Nielsen data-gathering process ensures that these filled-in zeros are actual purchase observations for the household for the week. This expands the ability of the existing dataset to characterize real-world behavior. With every house exiting in the Nielsen panel during a year now having an observation - zero or positive purchase - every week, the number of observations rises to $2,003,644$. With the filled-in zeros, non-purchase observations represent 81.2\% of all observations.

Table 1 is a key the reader will find useful in explaining variable names, symbols, and representational terms used in tables throughout the paper.

Table 1. Key to Variable Names, Symbols, and Their Meanings, Used in Later Tables

| Variable Name | Variable Meaning | Notes |
| :---: | :---: | :---: |
| Demographic variables |  |  |
| HalfPov4Inc | 0 to $1 / 2 \times$ Pov4Inc | Pov4Inc $\approx$ poverty-level |
| x1Pov4Inc | $1 / 2$ to $1 \times$ Pov4Inc | income for U.S. family of 4 |
| x2Pov4Inc | 1 to $2 \times$ Pov4Inc | (U.S. average) |
| x3Pov4Inc | 2 to $3 \times$ Pov4Inc |  |
| x4Pov4Inc | 3 to $4 \times$ Pov4Inc |  |
| HHsiz2 | Household Size $=2$ members | HH = Household |
| HHsiz3 | Household Size = 3 members |  |
| HHsiz4 | Household Size = 4 members |  |
| HHsiz5plus | Household Size $=5$ or more members |  |
| AfrAm | African American |  |
| Asian | Asian |  |
| OtherRace | Other Race | 62.5\% identified Hispanic |
| Hispnc | Hispanic | separate from Race binaries |
| FemLessHSEdu | Female best Educ level < high school | ALL references to |
| FemHSEdu | Female best Educ level = high school | 'Male', 'Mn', or ' $\mathbf{M}^{\prime}$ are for |
| FemSomCollgEdu | Female best Educ level = some college | Male head of household, with |
| FemCollgEdu | Female best Educ level = full college | 'Fem', 'Fm', or 'F' for Female |
| FemPostCollgEdu | Female best Educ level = graduate work | head of household; |
| MaleLessHSEdu | Male best Educ level < high school | head of household must be |
| MaleHSEdu | Male best Educ level = high school | M or F, but can be both |
| MaleSomCollgEdu | Male best Educ level = some college |  |
| MaleCollgEdu | Male best Educ level = full college |  |
| MalePostColgEdu | Male best Educ level = graduate work |  |
| MaleAgeL30 | Male Age in years in category up to 29 | "L" in any variable name |
| MaleAge30L40 | Male Age in years between 30 \& 39 | means "less than" |
| MaleAge40L50 | Male Age in years between 40 \& 49 |  |
| MaleAge50L65 | Male Age in years between 50 \& 64 |  |
| MaleAge65plus | Male Age in years 65 and older |  |


| FemAgeL30 | Female Age in years in category up to 29 |  |
| :---: | :---: | :---: |
| FemAge30L40 | Female Age in years between 30 \& 39 |  |
| FemAge40L50 | Female Age in years between 40 \& 49 |  |
| FemAge50L65 | Female Age in years between 50 \& 64 |  |
| FemAge65plus | Female Age in years 65 and older |  |
| FemUnderEmp | Female Under-Employment | <35 hrs/wk \& Unemployed |
| ManNoEmp | Male unemployed |  |
| ManNotFullEmp Other Variables | Male working <35 hrs/wk |  |
| Ssn2 | Summer (Apr-Jun) |  |
| Ssn3 | Autumn (Jul-Sep) |  |
| Ssn4 <br> Marketing \& Interaction | Winter (Oct-Dec) | ' $x$ ' anywhere after first character depicts interaction, no number |
| P, Sale, Adv (e.g.) PxHHsiz | Price index, Discount (Sale), Advertising price index interacted with HHsize | on HHsiz depicts category, not level |
| HHTotOzByPP | HH total oz purchased in a week | the dependent variable |

Table 2 shows summary statistics for marketing and purchase variables used in regression. The dependent variable is a household's weekly total ounces of sCSDs purchased. Note that the standard deviation is over three times the mean in ounces. A price index of all soft drinks purchased in a DMA shows an average price across the dataspan of 2.28 cents per ounce, with standard deviation just over $10 \%$ of that value. Households typically buy a total of at least 67 oz . (2 liters or more) in a week an average of 8 times per year, but the standard deviation is also just over $10 \%$ larger than the mean.

Table 2. Descriptive Statistics - Marketing and Purchase Variables
observations = 2,003,644

| Variable | Mean | Std. Dev. | Min | Max | Notes |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Wkly HH Purchase Total (oz.) | 49.396 | 165.984 | 0 | 12235.6 | dependent variable |
| Avg Price in \$ in a DMA / wk | 0.02280 | 0.00279 | 0.0108 | 0.0346 | indexed for all sCSDs |
| HH's Purchase of $\geq \mathbf{6 7}$ ozs. | 8.021 | 9.251 | 0 | 52 | \# of Wks / Yr. |
| Discount - Sale | 0.060 | 0.237 | 0 | 1 |  |
| Discount - Coupon | 0.011 | 0.105 | 0 | 1 |  |
| HH Avg. Advert Exposure | 171.977 | 126.209 | 2.752 | 748.196 | DMA-level |

Only six percent of purchases are bought "on sale" as logged by Nielsen participants, but the standard deviation is four times this. "Coupon" is an extant method of price promotion, making it a marketing mix variable, but it was dropped from the interaction set as a potentially interesting driver of sub-sample behavior, as only 1\% bought with couponing. Household advertising exposure, in GRPs, has a standard deviation roughly $75 \%$ of its mean value.

Table 3 (set). Descriptive Statistics - Demographic Binary Variable


Table 3 (a set of smaller tables), presents demographic variables at chosen levels, each parsed from categoric variables. For example, income is presented as a single variable in the raw dataset, with 27 possible incremental values, from which five levels are presented here (using a fifth, the highest, as a control). The size of the data enables this foray into granularity, risking insignificant standard errors in the estimation process. The percentages presented for each demographic category level represent that category level's percentage representation of the entire category.

The Race category, presents an exception, as "Hispanic" is a self-defined category that overlaps the four groups included in the Race category. While Hispanic crossovers to the White, African-American, and Asian categories can be clearly identified, the only way to self-identify as Hispanic only is to choose "Other Race" and the Hispanic identification dummy. Checking data not presented here, one finds $62.5 \%$ of those selecting "Other Race" identify as Hispanic. Thus roughly $40 \%$ of the $7.5 \%$ of the sample identified as Hispanic in Table 1 are spread over the White, African-American, and Asian "levels." Table 4 in part demonstrates how this ambiguity manifests.

Returning to Table 3, for the income, and male and female age and education levels, the lowest value is not represented by more than $3.6 \%$ of the sample. With relatively few relatively time-invariant observations for certain levels, there may be constraints on statistical significance in the analysis.

Table 4. Descriptive Statistics - Do Hispanics drink more or less than other Racial groups?

| Mean estimation Over: Hispanic | Number of obs $=2003644$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Race | Hisp: $1=\mathrm{Yes}, 2=$ No |  |  |  |
| _subpop_1: 11 | Race: $1=$ White |  |  |  |
| _subpop_2: 12 | $2=\mathrm{Afr} \mathrm{Am}$ |  |  |  |
| _subpop_3: 13 | 3 = Asian |  |  |  |
| _subpop_4: 14 | 4 = Other Race |  |  |  |
| _subpop_5: 21 | White only |  |  |  |
| _subpop_6: 22 | Afr Am only |  |  |  |
| _subpop_7: 23 | Asian only |  |  |  |
| _subpop_8: 24 | Other only |  |  |  |
|  |  |  | [95\% |  |
| Over | Mean | Std. Err. | Conf. | Interval] |
| HHTotOzByPP |  |  |  |  |
| _subpop_1 | 50.037 | 0.589 | 48.883 | 51.192 |


| _subpop_2 | 70.350 | 2.192 | 66.054 | 74.647 |
| :--- | :--- | :--- | :--- | :--- |
| _subpop_3 | 42.782 | 1.983 | 38.895 | 46.669 |
| _subpop_4 | 57.042 | 0.644 | 55.780 | 58.305 |
| _subpop_5 | 50.147 | 0.141 | 49.871 | 50.422 |
| _subpop_6 | 46.834 | 0.292 | 46.261 | 47.407 |
| _subpop_7 | 37.550 | 0.544 | 36.484 | 38.616 |
| _subpop_8 | 47.752 | 0.731 | 46.318 | 49.185 |

Table 5 presents mean values for demographic binary variables in terms of the dependent variable. These are offered to enhance understanding of the baseline magnitudes, relative to the (slope and magnitude) partial effects presented in the Results section.

Table 5. Descriptive Statistics - Mean Value of Dependent Variable for Each Demographic Dummy = 1 (includes positive purchase only, as OLS-form regressions in Results) mean Wkly HH Number

| Variable | Wkly HH Buy in oz. | Std. Err. | [95\% Conf. Interval] |  | Number of Obs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HalfPov4Inc | 251.456 | 2.435 | 246.683 | 256.229 | 13,290 |
| x1Pov4Inc | 267.534 | 1.732 | 264.139 | 270.930 | 34,575 |
| x2Pov4Inc | 267.205 | 1.007 | 265.231 | 269.179 | 82,389 |
| x3Pov4Inc | 282.253 | 0.990 | 280.311 | 284.194 | 94,401 |
| x4Pov4Inc | 289.188 | 1.179 | 286.876 | 291.499 | 74,733 |
| HHsiz2 | 268.090 | 0.808 | 266.507 | 269.673 | 133,206 |
| HHsiz3 | 294.914 | 1.218 | 292.527 | 297.301 | 64,460 |
| HHsiz4 | 307.322 | 1.325 | 304.725 | 309.919 | 57,443 |
| HHsiz5plus | 336.908 | 1.853 | 333.275 | 340.540 | 36,849 |
| AfrAm | 244.699 | 1.161 | 242.422 | 246.975 | 53,814 |
| Asian | 287.179 | 3.156 | 280.992 | 293.366 | 12,300 |
| OtherRace | 267.100 | 1.856 | 263.463 | 270.737 | 23,158 |
| Hispnc | 265.004 | 1.568 | 261.930 | 268.078 | 30,845 |
| FemLessHSEdu | 316.463 | 2.986 | 310.611 | 322.316 | 12,287 |
| FemHSEdu | 303.102 | 1.097 | 300.951 | 305.252 | 86,614 |
| FemSomCollgEdu | 277.918 | 0.901 | 276.152 | 279.684 | 102,159 |
| FemCollgEdu | 265.200 | 0.996 | 263.247 | 267.153 | 88,156 |
| FemPostCollgEdu | 247.076 | 1.592 | 243.956 | 250.196 | 32,178 |
| MaleLesshSEdu | 293.776 | 2.460 | 288.954 | 298.598 | 14,571 |
| MaleHSEdu | 314.075 | 1.318 | 311.492 | 316.657 | 68,960 |
| MaleSomCollgEdu | 291.140 | 1.022 | 289.136 | 293.143 | 85,771 |
| MaleCollgEdu | 268.168 | 1.067 | 266.076 | 270.260 | 79,748 |
| MalePostColgEdu | 262.419 | 1.583 | 259.315 | 265.522 | 32,223 |
| MaleAgeL30 | 264.448 | 4.798 | 255.041 | 273.856 | 3,484 |
| MaleAge 30 L 40 | 276.340 | 1.597 | 273.209 | 279.471 | 33,276 |
| MaleAge 40 L 50 | 299.502 | 1.149 | 297.250 | 301.755 | 80,108 |
| MaleAge50L65 | 291.894 | 0.930 | 290.072 | 293.716 | 118,731 |
| MaleAge65plus | 262.427 | 1.271 | 259.937 | 264.918 | 45,674 |


| FemAgeL30 | 246.688 | 3.266 | 240.284 | 253.091 | 5,981 |
| ---: | :---: | ---: | :--- | ---: | ---: |
| FemAge30L40 | 275.858 | 1.403 | 273.109 | 278.607 | 43,142 |
| FemAge40L50 | 293.668 | 1.068 | 291.574 | 295.762 | 96,712 |
| FemAge50L65 | 282.036 | 0.822 | 280.424 | 283.648 | 96,712 |
| FemAge65plus | 252.329 | 1.237 | 249.904 | 254.753 | 48,112 |
| FemUnderEmp | 283.251 | 0.720 | 281.840 | 284.661 | 181,130 |
| ManNoEmp | 281.034 | 1.099 | 278.880 | 283.189 | 71,203 |
| ManNotFullEmp | 263.584 | 1.928 | 259.805 | 267.363 | 19,857 |
| Ssn2 / Summer | 290.854 | 1.043 | 288.810 | 292.898 | 99,582 |
| Ssn 3 / Autumn | 278.248 | 1.029 | 276.232 | 280.263 | 90,535 |
| Ssn 4 / Winter | 269.579 | 0.942 | 267.733 | 271.425 | 91,224 |

Without regression, the high level of resolution in Table 5 tells. Male-headed households purchase more than female headed households stratified by every age group and education level, except for lowest education level. Females with less-than-high-school education and households with 5 or more members possess the highest weekly means in the table. Households over five members is a $10 \%$ increase over the mean for households with four members. This may suggest a large influence with the presence of children, a factor not analyzed here. Aside from male high school level, both gender-education sets present strictly decreasing purchase means as education rises. Purchase does not strictly increase or decrease in age for either gender. It does peak then decrease from the 40-to-50 category for both genders, also perhaps suggestive of the role of children in the household. Higher, not lower, incomes are associated with higher average means compared to other income levels. Means for the under- and un-employed are not noticeably different from the inter-level mean (of means) for any group. Seasonal results suggest that people buy more sCSDs as mean U.S. monthly temperature rises.

Descriptive statistics tables for interacted variables, both demographic-to-demographic, and marketing-variable-to-demographic, are available upon request.

Nielsen sampling is top-heavy with older, "whiter," wealthier homes, making data thin at lower income levels, and for example in the "Other Race" category. Attempts to parse these for interaction effects, even with over 300,000 total purchase observations across over 13,500 households asks more of the data than can be answered to a high degree of significance.

With the goal of refining the information empirically derived from purchase observations to discover what variables drive patterns and deviations in demand for a food product, there is great analytical advantage in moving from data for a whole market (at the national or city level) to data at the supermarket level, and again to data at the household level. The dataset here
employed is resolute to the household level, but is still not individual-level data. It is not possible to identify who in a household or how many in a household are drinking the sCSDs we observe to be purchased. If one member in a larger household dominates demand for sCSDs, demand is averaged, despite the individual demand being the true driver, and at consumption levels above the household average. There is similarly no information about the health, body mass index, or nutrition education of household members, any of which could prove helpful in pursuing the question of interest undertaken here.

## 4. Methodology

In the introduction, I summarized reasons that the regular consumption of sCSDs may not reflect rational economic behavior from which a utility-based model of demand may be unambiguously derived. Reduced-form modeling (RFM) offers the implicit advantage of "letting the data speak for themselves," without being encumbered by layers of assumptions about economic behavior and discrete, orderly, quantifiable optimization. RFM also allows for multiple specifications without violating structural theory or econometric assumptions that can bind structural models. Multiple specifications may then be employed to explore sequential questions and to establish proofs of robustness for interpretation of results. This is characteristic of econometric issues associated with RFM (Gentzkow and Shapiro: 2008; DellaVigna, et. al.: 2009; Dahl and DellaVigna: 2009; Basker: 2005; Chen and Shapiro: 2006).

The large number of zero observations for the dependent variable - total ounces purchased by a household in one week - highlights that there is a limited dependent variable (non-negative distribution). The nexus of the research question and the available data defines the interaction between the dependent variable, the explanatory variables, and the error term being modeled.

In distinguishing between the extant regression models appropriate for a limited dependent variable that is continuous and non-negative, one must determine if the data is censored or truncated. Panel data with continuous information on household purchasers ensures that there are observations for many explanatory variables even if the dependent variable is not observed. This defines a censored dependent variable versus a truncated one, truncation occurring when both dependent and explanatory variables are unobserved above or below a threshold for a latent explanatory variable. With a censored dependent variable, one must assess whether the data and research question match existing models, and if so, whether the limitations
associated with any one model are tolerable given the data, research question, and alternative models.

Given that there is no censoring of negative observations on quantity purchased, is a linear OLS an acceptable model, once corrected for heteroskedasticy in the error term? Only if there are no other specification errors that are better addressed by the set of continuous limited dependent variable models, and indeed OLS results are presented here for baseline comparison.

In his 1979 Econometrica article, James Heckman proposed a model to correct for bias in the selection of a data sample. There is a sample selection bias problem here, but it is subtle. For there to be sample selection bias in the selection of households, Nielsen must be contracting households that do not cumulatively define a representative cross-section of U.S. households. This conclusion is not supported by the literature (Einav and Leibtag: ).

The research here attempts to distinguish different demographic groups’ responses to marketing mix variables for sCSDs. A response to marketing variables is involvement in the specific market in which a decision to purchase or not is made. "Being in" or "selecting into" the market means at some level a household member actively considers purchase - "the market" being a solution to an equation consisting not only of sellers, their marketing mix variables, and buyers, but a venue (the local DMA) that exists distinctly in each period of observation for both buyers and potential sellers, here one processing period is a week. Thus each observation period (each week) is counted as a new market in which potential buyers may transact with sellers if both choose, with the local DMA being the physical space in which transactions may occur.

Modeling household market participation, I code purchase occasion as a 1, and nonpurchase as a 0 . The bias of selection into the observation set - the selection bias problem that modeling must attempt to resolve - becomes clearer as one realizes that a coded non-purchase " 0 " represents a household in a metropolitan area in a week, a household that may or may not be participating in the market. One type of 0 occurs for market participants, who by the definition of market participant, consider buying, but choose not to buy (e.g., find no lemon-lime flavor, so buy nothing, or find no discounts this week, so buy nothing). But there is a second type of 0 which occurs for those who never consider buying sCSDs in the observed week: non-participants in the market. This group's "0s" reflect their lack of economic presence/being/existence in the market transaction set of agents-forum-time. Because the 0s are of two types - market participants with true-zero responses to the current marketing mix, and non-market participants who are not reacting to the marketing mix in their observed behavior - there is in examining only
the observable 0s, a failure to identify the market participants who choose a no-purchase response to this period's marketing mix of variables. Market participation, even for non-purchase should be coded " 1 ", when the data presents only a " 0 ." This is the crux of the sample selection bias problem - we see only " 0 s " when we do not see purchase, without knowing whether the zeros are responses to marketing mix variables by participants in the market, or zeros characterizing lack of participation in the market.

Econometrically, with $\mathrm{y}_{\mathrm{i}}{ }^{*}$ as the latent variable for market participation, $x_{i}$ the explanatory variable set, $\beta$ a vector of coefficients, and an additive error term $u_{i}$, the attempt is to model:

$$
y_{i}^{*}=x_{i}{ }^{\prime} \beta+u_{i} .
$$

To approximate this, we use actual observations $\mathrm{y}_{\mathrm{i}}$, and:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{i}}
\end{aligned}=1 \text { when } \mathrm{y}_{\mathrm{i}}^{*}=1,
$$

But we never observe:

$$
\mathrm{y}_{\mathrm{i}}=0 \text { when } \mathrm{y}_{\mathrm{i}}^{*}=1 \text {. }
$$

Observing this would fully identify consideration and rejection of marketing variables, as opposed to disengagement from the market in a given week. But there is not and will not be data to comprehensively identify who among our Nielsen households considered purchasing sCSDs in a sampled week. In other words, the true number of non-purchases that reflect consideration and rejection of the week's marketing variables as observable to a potential consumer cannot be unambiguously distinguished from non-purchases resulting from a household's complete inattention to the potentially observable marketing variables for the week.

Because the true rejections of the marketing variables are not observed and entered into the probit estimation of probability of participation in the market - and if they were this would expand the number of identified market participation incidents - the probability of participation is to some unknown amount estimated too low. If we expect that most people who consider buying a sCSD in fact do, than this deviation may be expected to be low. Regardless of our expectation, the undercounting of market participation translates into the secondary OLS estimation and calculation of marginal effects. Those explanatory variables that correlate more strongly with non-purchase will have slightly deflated coefficients, as a portion of the nonpurchase observations (zeros) correctly belong to a market response set, rather than to the non-
participation set in which they are counted (too many zeros are factored in). Similarly, explanatory variables that correlate more strongly with purchase will have slightly inflated coefficients, as some of the non-purchase observations (zeros) correctly belonging to a market response set, rather than to the non-participation set in which they are counted, will not be factored in. The magnitude of these effects will be proportional to the extent that the "true-zero participation responses" exist and are not observed.

The implicit misspecification in modeling the response to the marketing mix defines the need to discriminate market participants from non-market participants. The Heckman two-step model establishes two equations, one assessing probability that a household selects into the market in a given observation period, and the second gauging the outcome of participation. The dependent variable in the selection equation is a probit probability variable, 1 if purchase occurred and 0 otherwise. Purchase is equated with market participation, so the dependent variable does not fully reveal the latent variable of probability of market participation (as distinct from non-participation, which also generates a 0 observation). "Exclusion restrictions" are variables that exist only on the probit side of the model, intended to explain selection into the market without necessarily explaining quantity purchase once committing to purchase.

It is easy to imagine that a highly shelf-stable product like canned or bottled sCSDs may be stocked in the homes of consumers, and that stock levels may affect likelihood to purchase. Attempting to construct a household-stock-level variable from recent purchase behavior would create an autocorrelation problem in OLS regression. As most of my variables of interest are time-invariant, the standard solutions to this problem (differencing between time periods) is not appealing. But with the two-equation framework, stocking levels can be entered on the probit side, and then are regressed only on probability, not on current quantity. As the variable does not present in both equations, it is not factored into the inverse Mills ratio, which channels information between the two equations.

Heckman two-step estimation treats the sample selection bias problem as an omitted variable problem. Because the selection equation is a probit model, it is possible to recover a standard normal distribution function evaluated at a specific observational value of the explanatory variable-coefficient matrix, and divide each respective value by the standard error of the particular normal distribution. This is the denominator of the inverse Mills ratio (IMR), with numerator being the density of the standard normal distribution function, also evaluated at a specific observational value of the explanatory variable-coefficient matrix. The IMR is then a
vector with a value for each observation. The IMR is recognized as the $\frac{\phi(g)}{\Phi(g)}$ in the equation below, where " $g$ " represents a particular value of an explanatory variable and its parameter for an individual observation. Bringing the IMR into the OLS regression as an "omitted" regressor carries within it any effects from explanatory variables that are used in both the probit and OLS equations. Therefore the coefficients from the OLS estimation should not be used directly for inference. Because the derivative of the expected value of the dependent variable in the OLS equation among the selected sample with respect to $x_{i}$ includes components from the OLS coefficients and the inserted IMR variable, marginal effects need to be calculated that include the effects from the IMR.

Marginal effects for explanatory variables shared through the OLS and probit equations are calculated as follows. In the following formula, $\beta_{k}$ is the OLS coefficient, from which the related effects in the probit model must be subtracted. The $\alpha_{k}$ is the probit coefficient for the $\mathrm{k}^{\text {th }}$ explanatory variable, and the $\sigma_{u}$ is the covariance between the error vectors from the probit and OLS equations (reported as "sigma" in Table 6). " $\rho$ " is also reported in Table 6, and represents the correlation coefficient between the errors in the probit and OLS halves of the model. If $\rho$ were 0 , the Two-Part model would fully describe the data, and a Heckman model would be superfluous. With a non-zero $\rho$, the Two-Part model is misspecified. In the IMR, the denominator $\Phi(g)$ represents the standard normal distribution function evaluated at " g ", a particular value of an explanatory variable and its parameter for an individual observation. $\phi(g)$ represents the corresponding standard normal density function evaluated at the same point (Breen: 16). Thus $\phi(g)$ is the density corresponding to the probability $\Phi(g)$ :

$$
\frac{\partial E(y \mid z=1)}{\partial x_{i}}=\beta_{k}-\alpha_{k} \rho \sigma_{u}\left[g \frac{\phi(g)}{\Phi(g)}-\left(\frac{\phi(g)}{\Phi(g)}\right)^{2}\right] .
$$

Heckman's sample selection model has been demonstrated here to be more appropriate than OLS regression, given the nature of the research question and the data. However, Heckman's sample selection model does not solve the problem of sample selection bias discussed here. It merely represents the best way to model an existing problem of this type. To the extent that the exclusionary restrictions included in the probit equation identify a likelihood of "being in the market for sCSDs," the model approximates a solution to the sample selection
problem, where the OLS, Tobit, or Two-Part models necessarily fail to, and each of these alternative models would yield biased and inconsistent results to some degree (Breen: 40).

Price promotion/discounting may motivate the decision to purchase, just as it may motivate quantity of purchase. In the current form, observational data at the household level only include the existence of a discounted price in a process period only if a purchase was made. As there is no direct record of discounted price existing when no purchase was made, discounting variables regressed in the probit equation on selection into the market are perfectly collinear with purchases, and cannot be included. At a later stage of this research, the existence of discounted price may be recovered from other household's purchases within the DMA for that process period.

## 5. Results

All coefficients (except those interacted with the advertising mix and the exclusionary restrictions in the probit equation) may be interpreted as the rate of change in household-total-ounces-purchased-in-a-week (the dependent variable "HHTotOzByPP"), due to a one-unit change in value of the explanatory variable. For all of the demographic variables, season variables, and the marketing variable "Sale," this is for a binary-value change from 0 to 1 . For the price index, this unit change is in dollars per ounce. Coefficients on advertising mix and the exclusionary restrictions in the probit equation may be interpreted only to sign and significance, not magnitude in any meaningful unit.

Table 6 shows that relevant coefficients (i.e., on all un-interacted variables) are of the expected sign and significant to p-values of zero to at least the fourth decimal place. Seasons (Spring is control) are of expected relative magnitudes, largest in Summer, followed by Fall, with Winter last (but still greater than Spring). The exclusion restriction variables that are intended to define market participation are of expected sign (interpretation of magnitudes or in ounces does not apply), meaning that higher estimated household stocks of sCSDs in a given week do diminish likelihood of purchase in that week; and the more often in a year that households buy at least two liters of sCSDs during any week, the higher is their general probability of market participation as measured in the Heckman model applied here. The nonzero correlation coefficient between the Probit and OLS sides of the Heckman ( $\rho=-0.3$ ) rules out the Two-Part model specification.

Table 6. Heckman Model Results, Variables Not Interacted

| Variable / Parameter | dy/dx | Std. Err. | z | P > z | [ 95\% | onf. Int.] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ssn2 | 3.750 | 0.197 | 19.050 | 0.000 | 3.364 | 4.136 |
| Ssn3 | 2.861 | 0.201 | 14.240 | 0.000 | 2.467 | 3.254 |
| Ssn4 | 1.713 | 0.211 | 8.100 | 0.000 | 1.299 | 2.128 |
| WksHHTot>67 | 3.996 | 0.025 | 158.300 | 0.000 | 3.946 | 4.045 |
| MovgAvgHHStock6 | -0.009 | 0.000 | -36.300 | 0.000 | -0.010 | -0.009 |
| OLS_constant | 359.086 | 29.510 | 12.170 | 0.000 | 301.248 | 416.924 |
| Probit-OLS equation Heckman-generated parameters |  |  |  |  |  |  |
| mills lambda | -89.748 | 0.958 | -93.660 | 0.000 | -91.626 | -87.870 |
| rho | -0.300 |  |  |  |  |  |
| sigma | 298.852 |  |  |  |  |  |

Table 7. Results - Demographic-Demographic Binary Interactions (coefficients in ounces/wk)

| Interactions | Variable | dy/dx | Std. Err. | z | $\mathrm{P}>\mathrm{Z}$ | [ 95\% C.I.] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HfPvincFmL~d | 7.673 | 3.856 | 1.99 | 0.047 | 0.116 | 15.230 |
| Inc | x1PvIncFmL~d | -0.177 | 2.658 | -0.07 | 0.947 | -5.386 | 5.031 |
| x | x2PvIncFmL~d | 6.704 | 2.650 | 2.53 | 0.011 | 1.510 | 11.897 |
| F Educ | x3PvIncFmL~d | 8.792 | 2.710 | 3.24 | 0.001 | 3.480 | 14.103 |
| (L High School) | x4PvincFmL~d | 9.573 | 3.011 | 3.18 | 0.001 | 3.672 | 15.473 |
| Income Level | Hf mHSEd* | 0.463 | 3.235 | 0.14 | 0.886 | -5.877 | 6.803 |
| x | x1~mHSEd* | -7.821 | 1.660 | -4.71 | 0 | -11.074 | -4.569 |
| Fem Educ Level | x2~mHSEd* | -5.161 | 1.730 | -2.98 | 0.003 | -8.552 | -1.770 |
| (High School) | x3~mHSEd* | 0.700 | 1.755 | 0.4 | 0.69 | -2.739 | 4.140 |
|  | x4~mHSEd* | 4.366 | 2.024 | 2.16 | 0.031 | 0.399 | 8.332 |
| Income Level | HfPvincFmS~d | -2.011 | 3.178 | -0.63 | 0.527 | -8.239 | 4.217 |
| x | x1PvIncFmS~d | -8.314 | 1.623 | -5.12 | 0 | -11.495 | -5.134 |
| Fem Educ Level | x2PvIncFmS~d | -2.948 | 1.659 | -1.78 | 0.076 | -6.201 | 0.304 |
| (Some College) | x3PvincFmS $\sim$ | 2.436 | 1.691 | 1.44 | 0.15 | -0.878 | 5.750 |
|  | x4PvincFmS~d | 2.663 | 1.967 | 1.35 | 0.176 | -1.193 | 6.519 |
| Income Level | HfPvincFmC~d | 0.611 | 3.236 | 0.19 | 0.85 | -5.731 | 6.953 |
| x | x1PvIncFmC~d | 2.262 | 1.661 | 1.36 | 0.173 | -0.992 | 5.517 |
| Fem Educ Level | x2PvincFmC~d | 1.394 | 1.663 | 0.84 | 0.402 | -1.866 | 4.655 |
| (College) | x3PvincFmC $\sim$ d | 5.408 | 1.674 | 3.23 | 0.001 | 2.128 | 8.689 |
|  | x4PvincFmC $\sim$ d | 7.689 | 1.939 | 3.97 | 0 | 3.890 | 11.489 |
| Income Level | HfPvincFmP~d | 14.207 | 3.755 | 3.78 | 0 | 6.847 | 21.568 |
| x | x2PvIncFmP~d | -1.639 | 1.790 | -0.92 | 0.36 | -5.148 | 1.870 |
| Fem Educ Level | x3PvincFmP~d | 7.760 | 1.743 | 4.45 | 0 | 4.344 | 11.176 |
| (Post College) | x4PvincFmP~d | 6.610 | 1.975 | 3.35 | 0.001 | 2.739 | 10.480 |
| Income Level | HfPvincMLH~d | 22.613 | 6.340 | 3.57 | 0 | 10.187 | 35.039 |
| x | x1PvIncMLH~d | 15.207 | 3.210 | 4.74 | 0 | 8.915 | 21.499 |
| Male Educ Level | x2PvIncMLH~d | 3.813 | 1.954 | 1.95 | 0.051 | -0.018 | 7.643 |
| (L High School) | x4PvIncMLH~d | 4.463 | 2.823 | 1.58 | 0.114 | -1.069 | 9.996 |


| Income Level | HfPvincMHSEd | 19.876 | 6.002 | 3.31 | 0.001 | 8.112 | 31.639 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | x1PvIncMHSEd | 11.812 | 2.762 | 4.28 | 0 | 6.398 | 17.225 |
| Male Educ Level | x2PvIncMHSEd | -1.558 | 1.155 | -1.35 | 0.177 | -3.821 | 0.705 |
| (High School) | x3PvIncMHSEd | -0.211 | 1.819 | -0.12 | 0.908 | -3.776 | 3.355 |
|  | x4PvIncMHSEd | 0.917 | 2.174 | 0.42 | 0.673 | -3.343 | 5.178 |
| Income Level | HfPvincMSo~d | 23.946 | 5.885 | 4.07 | 0 | 12.412 | 35.480 |
| x | x1PvIncMSo~d | 3.042 | 2.778 | 1.09 | 0.274 | -2.403 | 8.486 |
| Male Educ Level | x2PvIncMSo~d | -3.657 | 1.075 | -3.4 | 0.001 | -5.764 | -1.551 |
| (Some College) | x3PvIncMSo~d | -0.260 | 1.779 | -0.15 | 0.884 | -3.747 | 3.226 |
|  | x4PvIncMSo~d | 1.515 | 2.137 | 0.71 | 0.478 | -2.673 | 5.703 |
| Income Level | HfPvincMCo~d | 23.842 | 5.997 | 3.98 | 0 | 12.087 | 35.597 |
| x | x1PvIncMCo~d | 1.684 | 2.754 | 0.61 | 0.541 | -3.713 | 7.082 |
| Male Educ Level | x2PvincMCo~d | -0.256 | 1.068 | -0.24 | 0.81 | -2.349 | 1.836 |
| (College) | x3PvIncMCo~d | 0.827 | 1.778 | 0.47 | 0.642 | -2.658 | 4.313 |
|  | x4PvIncMCo~d | 4.427 | 2.110 | 2.1 | 0.036 | 0.290 | 8.563 |
| Income Level | HfPvincMPo~d | 29.452 | 6.404 | 4.6 | 0 | 16.900 | 42.004 |
| x | x1PvIncMPo~d | 1.228 | 3.109 | 0.39 | 0.693 | -4.866 | 7.323 |
| Male Educ Level | x3PvIncMPo~d | 4.147 | 1.862 | 2.23 | 0.026 | 0.498 | 7.796 |
| (Post College) | x4PvincMPo~d | 4.341 | 2.170 | 2 | 0.045 | 0.088 | 8.594 |
|  | HfPvincAfrAm | 3.935 | 1.144 | 3.44 | 0.001 | 1.692 | 6.177 |
| Income Level | x1PvincAfrAm | -3.601 | 0.903 | -3.99 | 0 | -5.371 | -1.831 |
| x | x2PvincAfrAm | 0.000 | 0.769 | 0 | 1 | -1.508 | 1.507 |
| Race | x3PvincAfrAm | -2.659 | 0.703 | -3.78 | 0 | -4.037 | -1.281 |
| (African Amer.) | x4PvincAfrAm | -3.509 | 0.714 | -4.92 | 0 | -4.908 | -2.110 |
| Income Level | HfPvincAsian | -21.024 | 4.412 | -4.77 | 0 | -29.672 | -12.377 |
| x | x1PvincAsian | -26.014 | 2.218 | -11.73 | 0 | -30.361 | -21.667 |
| Race | x2PvincAsian | -11.489 | 1.297 | -8.86 | 0 | -14.032 | -8.946 |
| (Asian) | x3PvincAsian | -1.605 | 1.120 | -1.43 | 0.152 | -3.801 | 0.590 |
|  | x4PvincAsian | -0.849 | 1.057 | -0.8 | 0.422 | -2.921 | 1.223 |
| Income Level | HfPvincOth~e | -3.542 | 1.745 | -2.03 | 0.042 | -6.962 | -0.121 |
| x | x1PvIncOth~e | -0.851 | 1.388 | -0.61 | 0.54 | -3.573 | 1.870 |
| Race | x2PvIncOth~e | -3.626 | 1.008 | -3.6 | 0 | -5.601 | -1.650 |
| (Other Race) | x3PvIncOth~e | -0.333 | 0.939 | -0.36 | 0.723 | -2.174 | 1.508 |
|  | x4PvincOth~e | -3.238 | 0.928 | -3.49 | 0 | -5.056 | -1.419 |
| Income Level | HfPvincHspnc | -4.121 | 2.092 | -1.97 | 0.049 | -8.221 | -0.020 |
| x | x1PvincHspnc | -6.345 | 1.498 | -4.24 | 0 | -9.282 | -3.409 |
| Race | x2PvincHspnc | -0.404 | 1.157 | -0.35 | 0.727 | -2.672 | 1.864 |
| (Hispanic) | x3PvincHspnc | -0.506 | 1.096 | -0.46 | 0.644 | -2.655 | 1.643 |
|  | x4PvincHspnc | 1.131 | 1.126 | 1 | 0.315 | -1.076 | 3.338 |
| Income Level | HfPvincHHs~2 | -6.605 | 1.582 | -4.17 | 0 | -9.706 | -3.503 |
| X | x1PvIncHHs~2 | -3.512 | 1.298 | -2.71 | 0.007 | -6.055 | -0.969 |
| HH size | x2PvincHHs~2 | -1.385 | 1.177 | -1.18 | 0.239 | -3.693 | 0.922 |
| (2) | x3PvIncHHs~2 | -1.479 | 1.185 | -1.25 | 0.212 | -3.802 | 0.843 |


|  | x4PvinchHs ${ }^{\text {2 }}$ | -5.390 | 1.284 | -4.2 | 0 | -7.907 | -2.872 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Income Level x HH size (3) | HfPvinchHs~3 | -4.193 | 1.950 | -2.15 | 0.032 | -8.014 | -0.371 |
|  | x1PvinchHs 3 | -1.485 | 1.420 | -1.05 | 0.296 | -4.269 | 1.299 |
|  | x2Pvinchis -3 | -4.057 | 1.269 | -3.2 | 0.001 | -6.545 | -1.568 |
|  | x3PvinchHs -3 | -5.364 | 1.260 | -4.26 | 0 | -7.833 | -2.894 |
|  | x4PvinchHs ${ }^{\text {3 }}$ | -4.401 | 1.346 | -3.27 | 0.001 | -7.039 | -1.763 |
| Income Level <br> x <br> HH size <br> (4) | HfPvinchHs $\sim 4$ | -5.499 | 2.174 | -2.53 | 0.011 | -9.760 | -1.237 |
|  | x1PvinchHs $\sim 4$ | -4.675 | 1.614 | -2.9 | 0.004 | -7.839 | -1.511 |
|  | x2PvinchHs $\sim 4$ | 0.328 | 1.342 | 0.24 | 0.807 | -2.302 | 2.958 |
|  | x3PvinchHs $\sim 4$ | -5.373 | 1.303 | -4.12 | 0 | -7.927 | -2.819 |
|  | x4PvincHHs $\sim 4$ | -3.332 | 1.382 | -2.41 | 0.016 | -6.040 | -0.624 |
| $\begin{gathered} \text { Income Level } \\ x \\ \text { HH size } \\ \text { (5 or more) } \end{gathered}$ | HfPvinchis s | -5.113 | 2.458 | -2.08 | 0.037 | -9.930 | -0.296 |
|  | x1PvinchHs~s | 1.257 | 1.727 | 0.73 | 0.467 | -2.127 | 4.641 |
|  | x2PvinchHs s | 1.714 | 1.407 | 1.22 | 0.223 | -1.043 | 4.471 |
|  | x3PvinchHs s | 1.786 | 1.362 | 1.31 | 0.19 | -0.884 | 4.456 |
|  | x4PvinchHs $\sim$ | 3.238 | 1.436 | 2.25 | 0.024 | 0.423 | 6.054 |
| Income Level x Male Age <30 | x2PvincmA 30 | 8.439 | 1.998 | 4.22 | 0 | 4.523 | 12.355 |
|  | x3PvIncMA 30 | 0.969 | 2.570 | 0.38 | 0.706 | -4.068 | 6.006 |
| Income Level x Male Age (30-40) | HfPvincma 40 | -30.832 | 6.077 | -5.07 | 0 | -42.743 | -18.922 |
|  | x1PvincmA 40 | -1.920 | 2.523 | -0.76 | 0.447 | -6.864 | 3.024 |
|  | x2PvincMA 40 | 3.694 | 1.481 | 2.5 | 0.013 | 0.792 | 6.596 |
|  | x3PvIncMA $\sim 40$ | 4.857 | 2.072 | 2.34 | 0.019 | 0.796 | 8.919 |
|  | x4PvIncMA $\sim 0$ | -3.980 | 1.722 | -2.31 | 0.021 | -7.356 | -0.605 |
| ```Income Level x Male Age (40-50)``` | HfPvincMA ${ }^{\text {-50 }}$ | -19.465 | 5.830 | -3.34 | 0.001 | -30.891 | -8.039 |
|  | x1PvIncMA -50 | -1.241 | 2.555 | -0.49 | 0.627 | -6.249 | 3.767 |
|  | x2PvincMA -50 | 5.243 | 1.361 | 3.85 | 0 | 2.575 | 7.911 |
|  | x3PvincMA -50 | 2.181 | 1.998 | 1.09 | 0.275 | -1.734 | 6.097 |
|  | x4PvIncMA $\sim 0$ | -1.601 | 1.796 | -0.89 | 0.373 | -5.121 | 1.919 |
| Income Level x Male Age (50-65) | HfPvincmA~65 | -29.136 | 5.798 | -5.03 | 0 | -40.499 | -17.773 |
|  | x1PvincMA 65 | -6.417 | 2.594 | -2.47 | 0.013 | -11.500 | -1.334 |
|  | x2PvincMA~65 | 2.944 | 1.332 | 2.21 | 0.027 | 0.332 | 5.555 |
|  | x3PvIncMA $\sim 65$ | 0.970 | 1.973 | 0.49 | 0.623 | -2.897 | 4.836 |
|  | x4PvincMA~65 | 0.660 | 1.873 | 0.35 | 0.725 | -3.012 | 4.332 |
| ```Income Level x Male Age (65+)``` | HfPvincmAg~s | -24.698 | 5.914 | -4.18 | 0 | -36.290 | -13.106 |
|  | x1PvincmAg s | -13.313 | 2.666 | -4.99 | 0 | -18.538 | -8.088 |
|  | x2PvincmAg~s | 2.127 | 1.369 | 1.55 | 0.12 | -0.557 | 4.811 |
|  | x3PvincMAg~s | 1.238 | 2.007 | 0.62 | 0.537 | -2.695 | 5.170 |
|  | x4PvincMAg~s | -5.714 | 2.002 | -2.85 | 0.004 | -9.638 | -1.790 |
| Income Level$\times$ Fem Age <30 |  |  |  |  |  |  |  |
|  | x1PvincFm~30 | 0.517 | 2.709 | 0.19 | 0.849 | -4.792 | 5.826 |
| Income Level x | HfPvincFm~40 | 2.568 | 2.843 | 0.9 | 0.366 | -3.004 | 8.140 |
|  | x1PvincFm~40 | -4.821 | 2.139 | -2.25 | 0.024 | -9.014 | -0.629 |


| Fem Age$(30-40)$ | x2PvincFm~40 | 4.269 | 1.161 | 3.68 | 0 | 1.993 | 6.545 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | x3PvincFm~40 | -0.620 | 1.216 | -0.51 | 0.61 | -3.003 | 1.762 |
|  | x4PvincFm~40 | 3.312 | 1.476 | 2.24 | 0.025 | 0.420 | 6.205 |
| Income Level | HfPvincFm~50 | 5.870 | 2.706 | 2.17 | 0.03 | 0.567 | 11.173 |
| X | x1PvincFm~50 | -1.083 | 2.039 | -0.53 | 0.595 | -5.079 | 2.912 |
| Fem Age | x2PvincFm~50 | 2.751 | 1.219 | 2.26 | 0.024 | 0.362 | 5.140 |
| (40-50) | x3PvincFm~50 | 2.590 | 1.277 | 2.03 | 0.043 | 0.087 | 5.092 |
|  | x4PvincFm~50 | 1.910 | 1.557 | 1.23 | 0.22 | -1.142 | 4.961 |
| Income Level | HfPvincFm~65 | 6.331 | 2.748 | 2.3 | 0.021 | 0.945 | 11.717 |
| x | x1PvincFm~65 | 0.006 | 1.972 | 0 | 0.997 | -3.859 | 3.872 |
| Fem Age(50-65) | x2PvincFm~65 | 5.970 | 1.318 | 4.53 | 0 | 3.387 | 8.554 |
|  | x3PvincFm~65 | 1.902 | 1.369 | 1.39 | 0.164 | -0.780 | 4.585 |
|  | x4PvincFm~65 | -0.054 | 1.638 | -0.03 | 0.974 | -3.264 | 3.156 |
| Income Level | HfPvincFmA~s | 1.596 | 2.892 | 0.55 | 0.581 | -4.072 | 7.263 |
| X | x1PvIncFmA~s | -0.305 | 1.999 | -0.15 | 0.879 | -4.222 | 3.613 |
| Fem Age | x2PvIncFmA~s | 2.799 | 1.438 | 1.95 | 0.052 | -0.019 | 5.617 |
| (65+) | x3PvIncFmA~s | 2.282 | 1.516 | 1.51 | 0.132 | -0.690 | 5.255 |
|  | x4PvIncFmA~s | 3.444 | 1.805 | 1.91 | 0.056 | -0.095 | 6.983 |
| Fem Educ Level | FmLHSEdHHs~2 | -4.900 | 2.237 | -2.19 | 0.028 | -9.284 | -0.515 |
| x | FmHSEdHHsiz2 | -6.377 | 2.571 | -2.48 | 0.013 | -11.416 | -1.338 |
| HH size | FmSmColgEd~2 | -3.104 | 2.565 | -1.21 | 0.226 | -8.131 | 1.923 |
| (2) | FmColgEdHH~2 | 0.038 | 2.585 | 0.01 | 0.988 | -5.028 | 5.104 |
|  | FmPostColg~2 | -1.875 | 2.649 | -0.71 | 0.479 | -7.068 | 3.318 |
| Fem Educ Level | FmLHSEdHHs~3 | -8.226 | 2.461 | -3.34 | 0.001 | -13.049 | -3.404 |
| x | FmHSEdHHsiz3 | -4.627 | 2.684 | -1.72 | 0.085 | -9.887 | 0.633 |
| HH size | FmSmColgEd~3 | -3.442 | 2.675 | -1.29 | 0.198 | -8.686 | 1.802 |
| (3) | FmColgEdHH~3 | -2.983 | 2.695 | -1.11 | 0.268 | -8.265 | 2.300 |
|  | FmPostColg 3 | -4.311 | 2.778 | -1.55 | 0.121 | -9.755 | 1.133 |
| Fem Educ Level | FmHSEdHHsiz4 | 2.585 | 1.798 | 1.44 | 0.15 | -0.939 | 6.109 |
| x | FmSmColgEd~4 | 1.213 | 1.778 | 0.68 | 0.495 | -2.273 | 4.699 |
| HH size | FmColgEdHH~4 | 5.118 | 1.806 | 2.83 | 0.005 | 1.578 | 8.657 |
| (4) | FmPostColg 4 | 1.773 | 1.942 | 0.91 | 0.361 | -2.033 | 5.579 |
| Fem Educ Level | FmLHSEdHHs~s | -8.305 | 3.286 | -2.53 | 0.012 | -14.746 | -1.864 |
| x | FmHSEdHHsi~s | -18.581 | 3.441 | -5.4 | 0 | -25.325 | -11.837 |
| HH size | FmSmColgEd~s | -15.296 | 3.427 | -4.46 | 0 | -22.012 | -8.580 |
| (5 or more) | FmColgEdHH~s | -10.995 | 3.440 | -3.2 | 0.001 | -17.736 | -4.253 |
|  | FmPostColg~s | -13.980 | 3.562 | -3.92 | 0 | -20.962 | -6.998 |
| Male Educ Level | MLHSEdHHsiz2 | -0.207 | 3.230 | -0.06 | 0.949 | -6.538 | 6.124 |
| x | MHSEdHHsiz2 | -3.921 | 2.623 | -1.5 | 0.135 | -9.061 | 1.219 |
| HH size | MSmColgEdH~2 | -1.136 | 2.574 | -0.44 | 0.659 | -6.180 | 3.908 |
| (2) | MColgEdHHs~2 | -0.134 | 2.563 | -0.05 | 0.958 | -5.158 | 4.889 |
|  | MPostColgE~2 | 0.720 | 2.651 | 0.27 | 0.786 | -4.477 | 5.916 |


| Male Educ Level | MLHSEdHHsiz3 | -3.329 | 3.325 | -1 | 0.317 | -9.847 | 3.189 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | MHSEdHHsiz3 | -6.132 | 2.653 | -2.31 | 0.021 | -11.332 | -0.932 |
| HH size | MSmColgEdH~3 | -3.956 | 2.604 | -1.52 | 0.129 | -9.061 | 1.148 |
| (3) | MColgEdHHs~3 | -0.337 | 2.599 | -0.13 | 0.897 | -5.430 | 4.757 |
|  | MPostColgE~3 | 0.122 | 2.702 | 0.05 | 0.964 | -5.173 | 5.417 |
| Male Educ Level | MLHSEdHHsiz4 | 2.820 | 3.417 | 0.83 | 0.409 | -3.877 | 9.517 |
| X | MHSEdHHsiz4 | -7.740 | 2.690 | -2.88 | 0.004 | -13.012 | -2.468 |
| HH size | MSmColgEdH~4 | -3.251 | 2.633 | -1.23 | 0.217 | -8.412 | 1.910 |
| (4) | MColgEdHHs~4 | -2.031 | 2.615 | -0.78 | 0.437 | -7.157 | 3.095 |
|  | MPostColgE~4 | 0.811 | 2.731 | 0.3 | 0.766 | -4.541 | 6.163 |
| Male Educ Level | MLHSEdHHsi~s | -8.606 | 3.440 | -2.5 | 0.012 | -15.349 | -1.863 |
| x | MHSEdHHsiz~s | -2.963 | 2.752 | -1.08 | 0.282 | -8.358 | 2.432 |
| HH size | MSmColgEdH~s | -4.237 | 2.704 | -1.57 | 0.117 | -9.536 | 1.062 |
| (5 or more) | MColgEdHHs~s | -2.026 | 2.690 | -0.75 | 0.451 | -7.299 | 3.247 |
|  | MPostColgE~s | 3.572 | 2.838 | 1.26 | 0.208 | -1.991 | 9.135 |
| Male Educ Level | MLHSEdAfrAm | -2.900 | 1.123 | -2.58 | 0.01 | -5.102 | -0.698 |
| X | MHSEdAfrAm | -5.334 | 0.667 | -8 | 0 | -6.641 | -4.026 |
| Race | MSmColgEdA~m | -4.331 | 0.588 | -7.36 | 0 | -5.484 | -3.178 |
| (African Amer.) | MColgEdAfrAm | -0.728 | 0.652 | -1.12 | 0.264 | -2.005 | 0.549 |
|  | MPostColgE~m | 0.450 | 0.931 | 0.48 | 0.629 | -1.374 | 2.274 |
| Male Educ Level | MLHSEdAsian | 3.726 | 4.251 | 0.88 | 0.381 | -4.606 | 12.058 |
| x | MHSEdAsian | 5.897 | 1.789 | 3.3 | 0.001 | 2.392 | 9.403 |
| Race | MSmColgEdA~n | -4.121 | 1.479 | -2.79 | 0.005 | -7.019 | -1.222 |
| (Asian) | MColgEdAsian | -7.647 | 1.383 | -5.53 | 0 | -10.358 | -4.935 |
|  | MPostColgE~n | -3.972 | 1.564 | -2.54 | 0.011 | -7.038 | -0.906 |
| Male Educ Level | MLHSEdOthR~e | 4.962 | 1.758 | 2.82 | 0.005 | 1.517 | 8.407 |
| X | MHSEdOthRace | 0.796 | 1.163 | 0.68 | 0.494 | -1.484 | 3.076 |
| Race | MSmColgEdO~e | 0.673 | 1.109 | 0.61 | 0.544 | -1.500 | 2.846 |
| (Other Race) | MColgEdOth~e | 0.630 | 1.176 | 0.54 | 0.592 | -1.676 | 2.936 |
|  | MPostColgE~e | -1.348 | 1.508 | -0.89 | 0.372 | -4.304 | 1.609 |
| Male Educ Level | MLHSEdHspnc | -2.450 | 1.545 | -1.59 | 0.113 | -5.478 | 0.578 |
| X | MHSEdHspnc | -3.267 | 1.079 | -3.03 | 0.002 | -5.382 | -1.152 |
| Race | MSmColgEdH~c | -3.095 | 1.042 | -2.97 | 0.003 | -5.138 | -1.053 |
| (Hispanic) | MColgEdHspnc | -3.647 | 1.071 | -3.41 | 0.001 | -5.746 | -1.549 |
|  | MPostColgE~c | -3.917 | 1.322 | -2.96 | 0.003 | -6.507 | -1.327 |
| Fem Educ Level | FmLHSEdAfrAm | -7.738 | 1.401 | -5.52 | 0 | -10.484 | -4.993 |
| X | FmHSEdAfrAm | 2.174 | 0.840 | 2.59 | 0.01 | 0.528 | 3.820 |
| Race | FmSomColgE~m | 1.244 | 0.768 | 1.62 | 0.105 | -0.261 | 2.749 |
| (African Amer.) | FmColgEdAf $\sim m$ | 2.453 | 0.802 | 3.06 | 0.002 | 0.880 | 4.026 |
|  | FmPostColg $\sim$ m | 2.770 | 0.952 | 2.91 | 0.004 | 0.905 | 4.636 |
| Fem Educ Level | FmLHSEdAsian | -11.924 | 2.712 | -4.4 | 0 | -17.240 | -6.609 |
| x | FmHSEdAsian | -22.329 | 1.797 | -12.42 | 0 | -25.852 | -18.807 |
| Race | FmSomColgE~n | -13.360 | 1.655 | -8.07 | 0 | -16.604 | -10.116 |


| (Asian) | FmColgEdAs~n | -13.117 | 1.519 | -8.63 | 0 | -16.094 | -10.139 |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | FmPostColg~n | -11.112 | 1.745 | -6.37 | 0 | -14.531 | -7.692 |
| Fem Educ Level | FmLHSEdOth~e | 6.149 | 1.787 | 3.44 | 0.001 | 2.647 | 9.651 |
| x | FmHSEdOthR~e | -0.832 | 1.326 | -0.63 | 0.53 | -3.430 | 1.766 |
| Race | FmSomColgE~e | -2.385 | 1.238 | -1.93 | 0.054 | -4.811 | 0.041 |
| (Other Race) | FmColgEdOt~e | -5.478 | 1.263 | -4.34 | 0 | -7.955 | -3.002 |
|  | FmPostColg~e | -0.209 | 1.687 | -0.12 | 0.901 | -3.514 | 3.097 |
| Fem Educ Level | FmLHSEdHspnc | -7.033 | 1.671 | -4.21 | 0 | -10.308 | -3.759 |
| $\mathbf{x}$ | FmHSEdHspnc | 0.252 | 1.295 | 0.19 | 0.846 | -2.287 | 2.790 |
| Race | FmSomColgE~c | 0.308 | 1.258 | 0.24 | 0.807 | -2.157 | 2.773 |
| (Hispanic) | FmColgEdHs~c | 4.135 | 1.294 | 3.2 | 0.001 | 1.599 | 6.672 |
|  | FmPostColg~c | -3.837 | 1.612 | -2.38 | 0.017 | -6.995 | -0.678 |

Table 8. Results - Marketing-Variable-Demographic Binary Interactions (coefficients in ounces/wk)

| Interactions | Variable | dy/dx | Std. Err. | z | P>z | [ 95\% C.I. ] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PxHalfPov | 320.324 | 164.160 | 1.95 | 0.051 | -1.416 | 642.064 |
| Price-index | Px1Pov | 190.513 | 118.140 | 1.61 | 0.107 | -41.031 | 422.057 |
| x | Px2Pov | -107.711 | 92.750 | -1.16 | 0.246 | -289.498 | 74.076 |
| Income level | Px3Pov | -118.019 | 85.723 | -1.38 | 0.169 | -286.033 | 49.996 |
|  | Px4Pov | -148.223 | 85.273 | -1.74 | 0.082 | -315.354 | 18.908 |
| P-index x HHsiz | PxHHsiz | 70.759 | 22.183 | 3.19 | 0.001 | 27.282 | 114.236 |
| Price-index | PxMaleLess-u | -529.433 | 213.030 | -2.49 | 0.013 | -946.957 | -111.909 |
| x | PxMaleHSEdu | -611.677 | 173.870 | -3.52 | 0 | -952.463 | -270.890 |
| Male Educ level | PxMaleSomC~u | -654.077 | 172.110 | -3.8 | 0 | -991.411 | -316.743 |
|  | PxMaleColl $\sim$ | -798.425 | 175.300 | -4.55 | 0 | -1142.000 | -454.851 |
|  | PxMalePost-u | -714.122 | 193.900 | -3.68 | 0 | -1094.160 | -334.084 |
| Price-index | PxFmUndrEmp | -128.935 | 59.770 | -2.16 | 0.031 | -246.081 | -11.789 |
| x | PxMnNotFEmp | 609.992 | 112.850 | 5.41 | 0 | 388.806 | 831.178 |
| Employm M/F | PxMnNoEmp | -359.677 | 78.234 | -4.6 | 0 | -513.012 | -206.341 |
| P-index x Hspnc | PxHspnc | 765.674 | 96.552 | 7.93 | 0 | 576.435 | 954.912 |
| P-index x M Age | PxMnAge | 110.514 | 20.765 | 5.32 | 0 | 69.815 | 151.212 |
| P-index $\times$ F Age | PxFmAge | -31.055 | 12.444 | -2.5 | 0.013 | -55.445 | -6.665 |
| Sale | SalexHalfPov | 0.054 | 0.942 | 0.06 | 0.954 | -1.791 | 1.900 |
| x | Salex1Pov | -2.272 | 0.684 | -3.32 | 0.001 | -3.614 | -0.931 |
| Income level | Salex2Pov | 0.981 | 0.522 | 1.88 | 0.06 | -0.042 | 2.005 |
|  | Salex3fPov | -0.088 | 0.478 | -0.18 | 0.854 | -1.024 | 0.848 |
|  | Salex4Pov | 0.592 | 0.481 | 1.23 | 0.219 | -0.352 | 1.535 |
| Sale x HHsiz | SalexHHsize | -0.935 | 0.128 | -7.3 | 0 | -1.186 | -0.684 |
| Sale | SalexFemLe~u | 2.916 | 1.246 | 2.34 | 0.019 | 0.475 | 5.358 |


| x | SalexFemHS~u | 5.545 | 0.983 | 5.64 | 0 | 3.619 | 7.472 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fem Educ level | SalexFemSo~u | 5.182 | 0.964 | 5.38 | 0 | 3.293 | 7.071 |
|  | SalexFemCo~u | 2.752 | 0.955 | 2.88 | 0.004 | 0.880 | 4.624 |
|  | SalexFemPCo~u | 3.793 | 1.044 | 3.63 | 0 | 1.747 | 5.839 |
| Sale | SalexFmUnd~p | -0.263 | 0.334 | -0.79 | 0.431 | -0.918 | 0.392 |
| x | SalexMnNot $\sim$ | -2.674 | 0.670 | -3.99 | 0 | -3.988 | -1.360 |
| Employm M/F | SalexMnNoEmp | -0.430 | 0.454 | -0.95 | 0.344 | -1.320 | 0.461 |
| Sale | SalexAfrAm | 2.801 | 0.428 | 6.55 | 0 | 1.962 | 3.640 |
| x | SalexAsian | 6.167 | 0.794 | 7.77 | 0 | 4.611 | 7.723 |
| Race | SalexOthrRac | 1.451 | 0.730 | 1.99 | 0.047 | 0.020 | 2.883 |
|  | SalexHspnc | -2.590 | 0.645 | -4.02 | 0 | -3.853 | -1.326 |
| Sale $\times$ Age (M) | SalexMnAge | 0.244 | 0.062 | 3.94 | 0 | 0.123 | 0.366 |
| Sale x Age (F) | SalexFmAge | 0.283 | 0.101 | 2.8 | 0.005 | 0.085 | 0.481 |
| Advertsg x HHsiz | AdvxHH~z | 0.002 | 0.000 | 5.54 | 0 | 0.001 | 0.003 |
| advertising interactions not in ounces |  |  |  |  |  |  |  |
| Advertsng | AdvxAf $\sim$ m | 0.003 | 0.002 | 1.88 | 0.06 | 0.000 | 0.006 |
| $\mathbf{x}$ | AdvxAs~n | 0.005 | 0.003 | 1.77 | 0.077 | -0.001 | 0.011 |
| Race | AdvxOt c | 0.004 | 0.003 | 1.75 | 0.081 | -0.001 | 0.009 |
|  | AdvxHs~c | -0.007 | 0.002 | -3.39 | 0.001 | -0.012 | -0.003 |

The P-index-by-income-level interaction term strongly indicates that consumers of greater means secure better prices when they buy. Explanations that poorer shoppers have more transportation constraints and therefore less access to large supermarkets (relative to convenience stores) or price clubs would be consistent with this result.

Interactions of Hispanic ethnic identification first with the P-index, are of large relative magnitude and highly significant ( $p-\mathrm{val}=0$ ), meaning they buy more at higher prices. Interactions of Hispanic ethnic identification with the Sale dummy are negative and highly significant ( $p$-val $=0$ ), meaning they do not buy more when buying at an advertised discount. Household size interacted with Price and with Sale interaction show similar results, although the magnitude of purchase in increasing price is smaller.

Both of these results may indicate purchase behaviors constrained by consistent "habitual" purchases that are relatively inflexible to short-term price increases or discounts. The unexpected negative response to advertising (at better than $1 \%$ significance) for Hispanics, when all other non-White groups have a positive response, may further support the hypothesis of purchase so habituated that directly appreciable response to marketing variables is no longer evident. As table 5 shows, self-identified Hispanics do drink much more than all other similarlypaired groups, except whites-to-Hispanic-whites, where they are just short of equal.

The interaction of P-index-by-Male-Head-of-Household-Education-level shows a strong negative quantity response to a rising price. This response strengthens as education level rises, but peaks at college education. These effects are all significant at $1.5 \%$ or better, and are consistent with the belief that men respond directly to price as a marketing variable. An inference that the need to respond to price incentives may taper off with the extra income afforded by postgraduate education would be consistent with these results. P-index-by-Female-Head-of-Household-Education-level were mixed and poor performers by statistical significance in previous specifications, and were dropped from this model (as were the interactions of Male Education levels with the Sale dummy). In contrast, the Sale-by-Female-Head-of-Household-Education-level interactions demonstrate that women at all education levels respond positively to price promotions (all at better than a $2 \%$ significance level) - discounting being female’s marketing variable of choice, versus the male's price variable.

Marginal effects are often negative when interacting with the lowest income level, but there is a noticeable break from this in the interaction of female education and income level. There is evidence that the rising income effect dominates the offsetting effect of rising education as incomes move into the upper levels. This balances against other results that suggest that formal education level may proxy for a level of nutrition awareness that would eschew sCSD purchase.

Marginal analysis supports with constrained consistency an argument that sCSDs act as a luxury good (whose demand rises with income), but only for income rises moving out of poverty range, and again at higher incomes. In between, however, the quantity of sCSDs drops with rising income.

Previous specifications suggested that there is not enough variability in the DMA-level advertising data used in this specification to ask for higher resolution through interactions. All coefficients failed to be statistically different from zero when the advertising variable was as heavily interacted with demographic levels as Price and Sale are in this specification. This is the reason that advertising interaction was restricted to the HHsize categorical variable and Race groups only. The gains in statistical significance are obvious, with all of these five significant below the 10 \% level.

## 5.1 naïve OLS performance versus the econometric selection model specification

As specified, most interactive variable coefficients are interpretable in ounces per week when they are statistically significant to an acceptable chosen level. Thus the magnitudes of the variables in relation to each other become informative to a degree that is no longer possible when the statistical effect approaches zero, and inference is restricted to just the sign of the variable. The OLS results were rarely significant and will only be partially included here because the argument can be effectively made using less paper. Table 9 demonstrates that the sample selection model strongly outperformed the OLS estimation by a simple count of interacted variables of interest significant at the $10 \%$ level or better.

| Table 9. Comparison of OLS and Heckman Results - | Incidence |
| :--- | :--- | :--- | :---: | :---: |
| of Statistical Significance Across Interacted | Variable Sets |

OLS coefficients were routinely an order of magnitude higher than Heckman coefficients (that had been adjusted down using the marginal effects correction necessary for proper inference). The differences between variables, once adjusting for magnitude differences across the two models, seemed to track in roughly similar patterns, but only for certain blocks of interactions. The pattern of statistically insignificant variables across the level groups made statistically meaningful inference from OLS results unreliable at best, and intractable at worst. Table 10 presents the interaction block of level comparisons most statistically significant in the OLS estimation (the only one of its kind), against the same block of results from the Heckman. Both results are for the OLS equation on only positive purchases. Confidence intervals and z scores have been dropped to accommodate page width.

| Interaction | Variable | $\begin{gathered} \mathrm{O} \\ \mathrm{dy} / \mathrm{dx} \end{gathered}$ | $\stackrel{\mathrm{L}}{\text { Std. Err. }}$ | S | Heckman/ Sample |  | Sample Selection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | P>z | dy/dx | Std. Err. | P>z |
| Income Level | HfPvincAfrAm | 30.751 | 28.020 | 0.272 | 3.935 | 1.144 | 0.001 |
| x | x1PvincAfrAm | -18.291 | 22.799 | 0.422 | -3.601 | 0.903 | 0.000 |
| Race | x2PvincAfrAm | 6.513 | 17.750 | 0.714 | 0.000 | 0.769 | 1.000 |
| (African Amer.) | x3PvincAfrAm | -16.674 | 16.790 | 0.321 | -2.659 | 0.703 | 0.000 |
|  | x4PvincAfrAm | -23.867 | 14.779 | 0.106 | -3.509 | 0.714 | 0.000 |
| Income Level | HfPvincAsian | -158.269 | 63.856 | 0.013 | -21.024 | 4.412 | 0.000 |
| $x$ | x1PvincAsian | -193.448 | 57.133 | 0.001 | -26.014 | 2.218 | 0.000 |
| Race | x2PvincAsian | -94.540 | 37.680 | 0.012 | -11.489 | 1.297 | 0.000 |
| (Asian) | x3PvincAsian | -33.395 | 26.761 | 0.212 | -1.605 | 1.120 | 0.152 |
|  | x4PvincAsian | -24.277 | 25.863 | 0.348 | -0.849 | 1.057 | 0.422 |
| Income Level | HfPvincoth~e | -27.671 | 35.443 | 0.435 | -3.542 | 1.745 | 0.042 |
| x | x1PvincOth~e | -49.871 | 31.010 | 0.108 | -0.851 | 1.388 | 0.540 |
| Race | x2PvincOth~e | -10.221 | 23.975 | 0.670 | -3.626 | 1.008 | 0.000 |
| (Other Race) | x3Pvincoth~e | -18.089 | 22.180 | 0.415 | -0.333 | 0.939 | 0.723 |
|  | x4PvincOth~e | -7.159 | 24.567 | 0.771 | -3.238 | 0.928 | 0.000 |
| Income Level | HfPvincHspnc | -29.943 | 33.305 | 0.369 | -4.121 | 2.092 | 0.049 |
| x | x1PvincHspnc | -19.678 | 31.390 | 0.531 | -6.345 | 1.498 | 0.000 |
| Race | x2PvincHspnc | -29.970 | 19.847 | 0.131 | -0.404 | 1.157 | 0.727 |
| (Hispanic) | x3PvincHspnc | -2.345 | 18.680 | 0.900 | -0.506 | 1.096 | 0.644 |
|  | x4PvincHspnc | -28.293 | 19.180 | 0.140 | 1.131 | 1.126 | 0.315 |

The sharper resolution of the interaction of category levels compared to the categories themselves (e.g., HHsiz2, HHsiz3, HHsiz4, HHzie5plus, vs. the single HHsize categoric variable) in conjunction with the relatively high degree of significance of the coefficients on interacted variables afforded by the Heckman specification - despite the demands on their ability to identify variability when interacted in so many variables - enables the analyst to inform judgment about why certain coefficients are counterintuitive in direction or magnitude, or statistically insignificant. I infer that despite predominantly negative and often statistically significant marginal effects on Asian as an interacted variable, the reason that the mean consumption is high is that Asian households are wealthier and larger than the sample population averages. Coefficients on income as a category (not parsed into levels) would be less likely to be statistically significant despite the influence of income as a determinant of purchasing behavior, because of confounding effects. Marginal effects rise, fall, and rise again, as one traverses interlevel income rises within the categories. Many specific questions about particular consumer behaviors within subgroups can be answered with solid statistical support using this data and methodology.

## 5.2. policy implications

Comparing OLS with selection model results suggests that proper model specification can be the difference in yielding cogent regression results, even with an asymptotically large data set.

There is evidence that levels of consumption are not exceptionally large for any one race, age group, or income level, but that mean purchase falls as formal education rises. This suggests that blanket policies for either taxation or increased education may prove more beneficial than targeting to one racial group or income level. Given the much higher means and marginal effects for lower levels of female education, and female education interacted with income level, there is nonetheless arguable support for policy focus targeting this sub-group, if a sub-group were to be targeted.

Evidence within certain demographic groups of resistance in purchase behavior to marginal changes in marketing variables is consistent with arguments that sCSD consumption may be strongly habitual for certain consumers. Given arguments from the medical literature and certain economists (see references, including Suhrcke, et. al.: 2006) on the potential risks of consistent sCSD consumption, the strength of this supporting evidence from an econometrically sound market analysis of real purchase data for a large cross-section of the American population may undergird arguments that there is a need for more direct policy approaches to address population-wide effects of poor dietary choice. Raising effective nutrition education levels may prove an effective strategy, if we believe that some of the effects of increasing general education that we see here actually reflect increased critical-thinking ability that is then applied to dietary choice. From this exploration, support for this contention is mixed.

## 6. Further Work

Further teasing of the existing data set may yield more variability than in the version used for this draft. This variability can then be used to identify more variables to a higher level of resolution. It is possible to recover pricing discounts that existed even when a household did not purchase in a given week. These can be culled using information from other households in the DMA-processing-period (city-week) combination (the market). This would allow the inclusion of a discount variable in the probit half of the Heckman model. The number of people in the household and the number of children 6-18 years of age can be used to more accurately scale the
household's particular exposure to the sCSD industry's television advertising in any week, relative to other households of different composition.

The revised results can be contrasted to similarly derived results for unsweetened CSDs. The future work I propose can be applied to other "junk food" food categories as well. It may also be possible to find in the nearly three years of data, that "natural experiments" were created by the introduction or repeal of taxes or bans on soft drinks at some level in some DMAs and not others.

Because reduced-form modeling does not rely on the structure of economic theory to claim causation or robustness of results, checks of the robustness of the model must be specifically constructed and tested. Dropping DMAs (cities) or classes of observations from the existing data configuration will serve to initiate this process. Running post-estimation prediction tests on the full model, and comparing them to results from subsets of the existing data configuration (say, $90 \%$ of the total) may also serve as a robustness check. Applying the same overall methodology to another "junk food" category may also serve as a robustness check.

## 7. Acknowledgements

I am indebted to the University of Connecticut's Food Marketing Policy Center for providing me access to the fecund data set from which I draw results, and particularly to those young professors and a PhD candidate affiliated with FMPC who have advised me insightfully, carefully, and patiently through this work: Prof. Dr. Joshua Berning, Prof. Dr. Michael Cohen, and Adam Rabinowitz. I am further indebted to my advisor Prof. Dr. Ronald Cotterill for funding and general support, and to the University of Connecticut Department of Agricultural and Resource Economics's fine advanced Ph.D. candidates, particularly Yoon Taeyeon, Deep Mukherjee, and the newly minted Dr. Alex Almeida. All errors are mine.

## 8. References

Basker, E. (2005). Job creation or destruction? labor market effects of Wal-Mart expansion. Review of Economics and Statistics, 87(1), 174--183.

Binkley, J., \& Golub, A. (2007). Comparison of grocery purchase patterns of diet soda buyers to those of regular soda buyers. Appetite, 49(3), 561-571.

Bray, G. A., Nielsen, S. J., \& Popkin, B. M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 79(4), 537-543.

Breen, R.,. (1996). Regression models : Censored, sample selected or truncated data. Thousand Oaks, Ca.: Sage Publications.

Chen, K.M. and J.M. Shapiro. 2007. Does Prison Harden Inmates? American Law and Economics Review 9: 1-29.

Chiang, J. (1991). A simultaneous approach to the whether, what and how much to buy questions. Marketing Science, 10(4), 297-315.

Dahl, G., \& DellaVigna, S. (2009). Does movie violence increase violent crime?. Quarterly Journal of Economics, 124(2), 677-734.

DellaVigna, S., \& Gentzkow, M. Persuasion: Empirical evidence. Unpublished manuscript.
Duffey, K. J., \& Popkin, B. M. (2006). Adults with healthier dietary patterns have healthier beverage patterns. Journal of Nutrition, 136(11), 2901-2907.

Einav, L., Leibtag, E., \& Nevo, A. (2008). Not-so-Classical Measurement Errors: A Validation Study of Homescan,

Fennell, G., Allenby, G. M., Yang, S., \& Edwards, Y. (2003). The effectiveness of demographic and psychographic variables for explaining brand and product category use. Quantitative Marketing and Economics, 1(2), 223-245.

Gentzkow, M., \& Shapiro, J. M. (2008). Preschool television viewing and adolescent test scores: Historical evidence from the Coleman study. Quarterly Journal of Economics, 123(1), 279323.

Gupta, S., \& Chintagunta, P. K. (1994). On using demographic variables to determine segment membership in logit mixture models. Journal of Marketing Research, 31(1), 128.

Harris, J. L., Pomeranz, J. L., Lobstein, T., \& Brownell, K. D. (2009). A crisis in the marketplace: How food marketing contributes to childhood obesity and what can be done. Annual Review of Public Health, 30(1), 211-225.

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), pp. 153-161.

Hirsch, A. R., Lu, H. H., \& Ma, A. (2007). Health effects of caffeine in commercial cola beverages. Alternative and Complementary Therapies, 13(6), 298-303.

Just, D. R. (2010). Applying behavioral economics to food policy. Presentation at the PreConference Workshop on Behavioral and Food Economics, Food and Health, July 24, 2010, Denver, CO (AAEA Annual Conference).

Just, D. R., Mancino, L., \& Wansink, B. (2007). Could behavioral economics help improve diet quality for nutrition assistance program participants? No. Economic Research Report No. (ERR-43))USDA, ERS.

Kalyanam, K., \& Putler, D. S. (1997). Incorporating demographic variables in brand choice models: An indivisible alternatives framework. Marketing Science, 16(2), 166-181.

Kamakura, W. A., \& Russell, G. J. (1989). A probabilistic choice model for market segmentation and elasticity structure. Journal of Marketing Research, 26(4), 379-12 total.

Nielsen, S. J., \& Popkin, B. M. (2003). Patterns and trends in food portion sizes, 1977-1998. JAMA: The Journal of the American Medical Association, 289(4), 450-453.

Pesendorfer, W. (2006). Behavioral economics comes of age: A review essay on advances in behavioral economics. Journal of Economic Literature, 44(3), 712--721.

Popkin, B. M. (2004). The nutrition transition: An overview of world patterns of change. Nutrition Reviews, 62(7), 140-143.

Richards, T. J., Patterson, P. M., \& Tegene, A. (2007). Obesity and nutrient consumption: A rational addiction? Contemporary Economic Policy, 25(3), 309-324.

Suhrcke, M., Nugent, R. A., Stuckler, D., \& Rocco, L. (2006). Chronic disease: An economic perspective. London: Oxford Health Alliance.

Variyam, J. N., \& Golan, E. New health information is reshaping food choices. Food Review, 25(1)

Wansink, B., Just, D. R., \& Payne, C. R. (2009). Mindless eating and healthy heuristics for the irrational. American Economic Review, , 165-169.

Wansink, B. (2006). Mindless eating: Why we eat more than we think . New York, NY: Bantam Books.

Yach, D., Stuckler, D., \& Brownell, K. D. (2006). Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nature Medicine, 12(1), 62-66.

Zamora, D., Gordon-Larsen, P., Jacobs, D., \& Popkin, B. M. (2007). Longitudinal associations between diet quality and obesity in the united states, 1985 through 2005: Findings from the CARDIA study. The FASEB Journal, 21(5), A6-a.

