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Abstract

This paper examines the health effects of a fiscal food policy based on a combination
of fat taxes and thin subsidies. The fat tax is based on the saturated fat content of food
items while the thin subsidy is applied to select fruit and vegetbale items. The policy is
designed to be revenue neutral so that the subsidy exactly offsets the revenue from the fat
tax. A model of food demand is estimated using Bayesian methods that accounts for cen-
soring and infrequency of purchase (the problem of unit values is also discussed). The
estimated of demand elasticities are used to compute nutrient elasticities which demons-
trate how consumption of specific nutrients changes based on price changes in particular
foods from the fiscal policy. Results show that while the fat tax decreases saturated fat
intake, consumption of other important nutrients is also decreased, which may lead to
negative health outcomes.

JEL Codes: D30, D60, H20, I10, I30.

Keywords: Bayesian estimation, censoring, fat tax, infrequency of purchase, nutrient

elasticities, obesity, thin subsidy, unit values.
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1 Introduction

The prevalence of overweight and obesity in the UK has grown rapidly since the 1980s and,

according to the Health Survey for England, in 2004 63% of the adult population had a

BMI>25 while 24% were obese (BMI>30). There is accumulating evidence from the US

that the upper half of the weight distribution has become larger; between the 1970s and 2000

median BMI among American adults increased from 24.6 to 26.3 (or by 8.9%), whereas

the 95% percentile of the distribution rose from 33.9 to 39.6 (or by 16.8%). A similar shift

in the shape of the distribution took place for American children (Anderson, Butcher and

Levine, 2003). Similarly in England in the decade from 1993 to 2003, the upper part of the

BMI distribution experienced significant BMI increases and the middle portion intermediate

increases, while the lower tail remained largely unchanged (Wardle and Boniface, 2008).

Past information and education campaigns to improve healthy eating have proved inef-

fective in the UK (Foresight 2007). Officials across the medical and health community have

made urgent calls for a more system-wide approach to dealing with the growing obesity epi-

demic (Marshall 2000; HCHC 2004; Gostin 2007). One element of such an approach that

governments have considered is taxing unhealthy foods, so-called fat taxes, and/or subsidi-

sing healthy foods, so-called thin subsidies (Caraher and Cowburn 2005; Mytton et. al 2007;

Brownell and Frieden 2009). The ‘fat tax’ concept is often dismissed as i) relatively ineffec-

tive because wealthy consumers are not very responsive to food prices, ii) regressive because

poor consumers spend the largest share of their incomes on food, particularly ‘cheap’ energy-

dense food, and iii) unfair because the tax falls on those who are not obese as well as on those

who are.

Since a fat tax alone is inevitably highly regressive, recent proposals suggest combining

it with a thin subsidy to encourage fruit and vegetable consumption. Poorer people are more

responsive to prices (Deaton, 1997) and may increase their fruit and vegetable consumption
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substantially. The extent to which the tax and subsidy combination is effective is the empi-

rical question addressed in this paper. A model of demand is estimated to obtain elasticity

estimates, which are then used to simulate the effects of changes in the distribution of nu-

trient consumption in England resulting from the imposition of fat taxes and thin subsidies.

In particular, a revenue neutral fiscal policy is developed where the fat-tax is imposed on

certain foods based on saturated fat content while the thin-subsidy is placed selected fruits

and vegetables groups. The estimated demand elasticities will determine the impact of the

fiscal policy in terms of consumption changes while the nutrient elasticities will ascertain the

impact of the policy on selected nutrient intakes.

The Almost Ideal Demand System (AIDS) model is estimated using cross-section data

from the 2003-2004 UK Expenditure and Food Survey (EFS). Two critical problems involved

with estimating a demand model are discussed in this paper: censoring and the use of unit

values. This paper uses a recently developed Bayesian methods for estimating AIDS models

using the IPM to handle censoring. The method developed by Deaton (1987, 1988, 1990) to

correct for the bias when using unit values is discussed.

This paper is organized as follows. The next section describes the major conceptual issue

involved with estimating a system of demand. The third section discusses the Bayesian IPM

estimator. The fourth section discusses the Huang (1996) process of converting demand

elasticities into nutrient elasticities. The data are discussed in the fifth section and the results

are presented in section six. The final section concludes.
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2 Conceptual Issues

2.1 Censoring

Micro-data are in general subject to the econometric problem of censoring. In demand ana-

lysis this arises because most households do not purchase all of the commodities available to

them. Wales and Woodland (1983) introduce two econometric models for censored demand

systems. They refer to the first model as the Kuhn-Tucker approach. As its name implies, it is

based on the Kuhn-Tucker conditions for the consumer’s optimisation problem. The econo-

metric model is developed by adding a stochastic term to the utility function and as a result to

the Kuhn-Tucker conditions. The conditions hold as an equality when an interior solution re-

sults and as an inequality when there is a corner solution. As a result, the likelihood function

is of a mixed discrete-continuous form (Pudney 1989, p163) and is difficult to maximise for

all but relatively small demand systems because of the numerical integration that is required

in its evaluation. The intractability of the likelihood function has led to very few examples

of the empirical implementation of the Kuhn-Tucker approach, one example is Phaneuf et. al

(2000).

By contrast, the second model proposed by Wales and Woodland (1983), which they

refer to as the Amemiya-Tobin approach, has been more widespread in the literature. This

second strategy for handling censoring is an application of the Tobit model (Tobin 1958) as

extended by Amemiya (1974) to the estimation of a system of equations. In this approach

the demand model is derived without explicitly incorporating the non-negativity conditions.

Instead these are added to the estimated model by truncating the distribution of the stochastic

demand choices to allow for a discrete probability mass at zero. A number of strategies

have been adopted to the estimation of the Amemiya-Tobin model. The direct estimation

of the system by maximum likelihood has been problematic for reasons of computational

complexity. Earlier attempts at the estimation of the Amemiya-Tobin model are therefore

4



based on the two stage approach proposed by Heien and Wessells (1990) and developed by

Shonkwiler and Yen (1999) which is itself an application of the Heckman (1979) method.

The two step approach can be considered a generalisation of the Amemiya-Tobin ap-

proach because it comprises two sets of equations: in addition to the censored equations,

additional equations are used to model the censoring and this allows the possibility of a

difference between the models which determine the censoring rule and the continuous ob-

servations. The generalisation of the Tobit model in this way is discussed in the context of

demand for a single good by Blundell and Meghir (1987) who refer to the model in which

the sample selection rule and the continuous variable models differ as the double hurdle mo-

del, a model introduced originally by Cragg (1971). The double hurdle model is adapted by

Blundell and Meghir (1987) to form an infrequency of purchase model which addresses the

fact that within a truncated survey period, observed purchases may differ from actual demand

as stocks are either built up or run down. Yen et. al (2003) note that two step estimation is

consistent but inefficient and they return to maximum likelihood estimation of the original

Amemiya-Tobin model using simulated and quasi maximum likelihood methods. These me-

thods are generalised in Stewart and Yen (2004) and Yen (2005) in an analogous way to the

generalisation offered by the two step estimators referred to above to account for differences

in the processes determining selection and the continuous variable. They recognise that this

generalisation is the multivariate equivalent of that proposed by Cragg (1971). Their models

are estimated by maximum likelihood and are thus efficient.

This paper is to contribute to this literature by applying Bayesian methods to the esti-

mation of multivariate sample selection models. The range of models previously estimated

by maximum likelihood ate extended hitherto to the infrequency of purchase model. The

Bayesian method developed incorporates the Wales and Woodland (1983, p273) approach to

the imposition of adding-up which, as Pudney (1989, p157) notes, has been problematic in a

maximum likelihood context.
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2.2 Unit-values

The EFS (like most household surveys) does not report prices, instead expenditure on each

food item, the quantity of the item purchased, and the quarter the household was surveyed

are reported. The unit value of each food item is derived by dividing expenditure by quantity.

The unit value is not a price because, in addition to choosing the quantity of each food item

they purchase, consumers also choose quality. Treating unit values as prices biases demand

estimates. A method is needed for inferring the impacts of the unobserved prices on demand

based on the unit value information available. In a series of articles Deaton (1987, 1988,

1990) shows that if it is a possible to identify a unit of observation within which prices faced

by all consumers are the same, then the bias can be corrected. In Deaton’s formulation, this

unit is a geographical cluster of households.

The basic premise is a model of consumer behaviour in which households choose simul-

taneously how much of a commodity and of what quality to buy. The model specifies market

prices as an endogenous variable that affects the quantities purchased, meaning market prices

determine the observed unit values. The unit values include both measurement error and qua-

lity effects. The measurement error in the recording of expenditure and quantities, as well as

the quality effect on the unit values, is taken into account in the model by spatially identifying

the sample according to clusters. Households surveyed in the same geographic region at the

same time are defined to be within the same cluster and, therefore, assumed to face the same

price. Within-cluster variation in unit-values is used to estimate the influence of income (or

total expenditure) and household characteristics on consumption and to estimate the degree

of measurement error. Between-cluster variation in unit-values are due to spatial differences

in prices and are used to estimate price elasticities.

In addition to complicated matrix multiplication, the main problem of applying Deaton’s

approach to estimating demand elasticities is that there is no guarantee of obtaining accu-

rate estimates. Given that the residual covariance matrices S, R, Ω, and Γ are influenced
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by a variety of unexplained factors, price variation being just one possible factor, there is

considerable imprecision to the Deaton approach. Moreover, recent studies have revealed the

approach in Deaton (1990) does not correct for the biases resulting from using unit-values

over market prices, and in some cases can be in even more severe than using unit-values

in a traditional model (Brubakk 1997; Gibson and Rozelle 2005; Nimi 2005). The Deaton

method is discussed in more detail in the appendix.

3 Infrequency of Purchase in the AIDS

The infrequency of purchase model is developed in order to accommodate the fact that cen-

soring occurs in the demand system because a particular good may not be purchased by a

household during the time that it is surveyed as it is consuming from stocks purchased in

other time periods. Our approach draws on Blundell and Meghir (1987) in order to adapt

the AIDS to incorporate infrequency of purchase. The censoring rule that relates latent con-

sumption (q∗it)
1 of the ith commodity by the hth household to observed purchases (qih) is as

follows:

qih =


q∗ih
Φit

yih = 1

0 yih = 0
. (1)

Φih is the probability that a purchase is made (p(yih = 1)) and yih is a binary variable which

takes the value 1 when a purchase occurs. The censoring rule (1) implies that there are two

aspects to the latency of q∗ih according to whether qih is observed or not. In cases where a

purchase is made, latent consumption is related to observed purchases as follows:

q∗ih = qihΦih ∀i ∈C (2)

1In this specification of the model we assume that latent consumption for all goods is non-zero. In other
words we assume that all censoring is the result of infrequency of purchase. Whilst allowing for both infre-
quency of purchase and true corner solutions would be preferable, such an approach introduces an identification
problem since the source of a zero may be either a non-purchase, a corner solution or both.
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where:

C = {i : yih = 1} . (3)

The latency in the observations where qih is observed is addressed in the AIDS by defining

the consumption shares for observations where a purchase is observed as follows:

sih =
pihq∗ih

∑i∈C pihq∗ih
∀i ∈C (4)

where pih is the price of the ith good to the hth household and q∗ih is defined in equation 2.

In cases where no purchase is made q∗ih is non-zero as the good in question is consumed

from stocks. In this case latent consumption cannot be computed using (2) because qih is

itself unobserved. Instead a data augmentation algorithm, which we discuss in section 4, is

used to replace the observed zeros with estimated values for latent consumption. The shares

computed using (4) for observations where a purchase is observed sum to one by construction

and therefore once they are combined with the latent shares corresponding to observations

where no purchase is made, the adding up restriction will be violated. Wales and Woodland

(1983, p270) show how this problem can be addressed in a maximum likelihood context. In

order to do this an additional source of latency is introduced into the model for the shares,

defined in equation 4, where a purchase is made. The effect of this is to adjust the shares

defined in equation 4 to ensure that the combined latent shares for goods where a purchase

is made and those where one is not satisfy the adding up restriction. Thus we define latent

shares for the cases where purchases are observed as follows:

s∗ih = sih

(
1−∑

i/∈C
s∗ih

)
∀i ∈C (5)

Pudney (1989) notes that implementing Wales and Woodland (1983) using maximum likeli-

hood in systems with more than 3 commodities is computationally very expensive. This is
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because of the complex inter-dependencies which exist between the end points of the inte-

grals in the likelihood function. The data augmentation algorithm which we employ does not

entail any integration and it is therefore much less costly to implement [?] using our method.

The AIDS is then expressed in terms of the latent shares as follows:

s∗ = X1 +v (6)

where:

X1=Im⊗x1, (7)

x1=(x11 . . . ,x1H)′ , (8)

x1h =
(

1, ln p1,h, · · · , ln pm+1,h, ln
(

eh

Ph

)
,D′h

)′
, (9)

s∗ = (s∗1,1, · · · ,s∗1,H ,s∗2,1, . . . ,s
∗
2,H , . . . ,s∗m,1, . . .s

∗
m,H)′, (10)

=
(
α1,γ11, . . .γ1,m+1,ω1,ψ

′
1, . . . ,αm,γm1, . . .γm,m+1,ωm,ψ ′m,

)′
, (11)

v=(v1,1, · · · ,v1,H ,v2,1, . . . ,v2,H , . . . ,vm,1, . . .vm,H)′ (12)

p jh is the price of the jth good to the hth household et is total expenditure, Pt = ∏ j p
s jh
jh is

Stone’s price index and Dt is a vector of variables that describes demographic features of the

hth household.

The underlying theory requires that the model satisfies symmetry

γi j = γ ji for all i,j, (13)

homogeneity

∑
j

γi j = 0 for all j (14)
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and concavity. Concavity implies that the Slutsky matrix (M) which has the elements:

Mi j = γi j +ωiω j ln
( e

P

)
− siδi j + sis j (15)

δii = 1,δi j = 0 : i 6= j (16)

is negative semi-definite. The restrictions required for symmetry and homogeneity can be

written in the form

R ∗ = 0 (17)

where R is an r×m(m+2) matrix defining the restrictions and ∗ is the restricted Λ. In

order to impose these restrictions we re-parametrize the model as follows. First define the

(km− r)× km orthonormal matrix R⊥ such that:

RR′⊥ = 0 (18)

R⊥R′⊥ = I. (19)

The restricted can be expressed as:

Λ
∗ = R′⊥Λ̃ (20)

where ˜ is a (km− r)×1 vector of distinct parameters. The restricted model can be written:

s∗ = X1R′⊥ ˜ +v (21)

s∗ = W˜ +v (22)

where:

W=X1R′⊥. (23)
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Equation 22 is the basis for estimation and the restricted parameter vector is recovered using

equation 20.

To complete the IPM, the demand equations in 6 are combined with m probit equations

to give the complete model:

s∗ = WΛ̃+v (24)

y∗ = X2Γ+u (25)

where y∗ is an mH×1 vector of latent variables structured in the same way as s∗ (see equation

10) and based on the binary variable yih defined in equation 1:

y∗ih

 > 0

≤ 0

yih = 1

yih = 0
, (26)

e =

 v

u

∼ N (0,Σ⊗ IH) , (27)

and

X2 = Im⊗x2 (28)

x2 = (x21 . . . ,x2H)
′

(29)

is a matrix of variables that describe household specific characteristics which are assumed

to determine the probability of the household making a purchase in a given time period.2

In our application we assume that all households are identical in this respect and stocks

are exhausted in a purely random manner. x2 is therefore a vector of constants. Since the

2The stochastic specification of our IPM differs slightly from that of Blundell and Meghir (1987) who
explicitly allow for errors in both the decision about whether to consume and the decision about how much to
consume. We implicitly assume that both sources of error are represented by the residuals in v.
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dependent variables in the probit equations (25) are unobserved, data augmentation is also

used in their estimation. With the introduction of the probit equations the probability that is

necessary for the computation of the latent shares in equation 2 can be obtained as:

Φih = p(yih = 1) = p(y∗ih > 0) = p(uih >−x2hΓi) = Φ(x2hΓi) (30)

where Γi is the sub-vector of Γ corresponding to the ith probit equation.

4 Bayesian Inference

We apply Bayesian inference to the parameters of the model by sampling from the posterior

distribution of the parameters in the model and presenting the summary statistics of this sam-

ple. The Gibbs sampler (see Casella and George 1992) allows one to sample from a marginal

distribution by using the conditional distributions of the parameters. In most applications

parameters are grouped into blocks and the conditional distributions for these blocks are used

as the basis for the sampler. If the dependent variables in 24 and 25 were observable, the

full system comprising both sets of equation could be treated as a set of seemingly unrelated

equations (SUR) and estimation using a Gibbs sampler would be straightforward. Writing

the complete system in 24 and 25 as:

z∗ = Xβ + e (31)

where:

z∗ =
(

s∗
′
,y∗

′
)′

,X=

 W 0

0 X2

 ,β=
(

˜ ′,
′
)′

. (32)
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Assuming a diffuse prior (Zellner (1971, p.241):

p
(
β ,Σ−1)= p(β ) p

(
Σ
−1)

∝
∣∣Σ−1∣∣−(m+1

2 ) (33)

the conditional posterior distributions for the two blocks of parameters β and are:

p(β |z,X, )∼MV N
(( −1⊗X′X

)−1 ( −1⊗X′
)

z∗, −1⊗X′X
)

(34)

p( |y,X,β )∼ IW
(
ẽ′ẽ,H

)
(35)

where:

ẽ =


v1,1 . . . vm,1 u1,1 . . . um,1

...
...

...
...

v1,H . . . vm,H u1,H . . . um,H

 (36)

As has been stated above, the theoretically derived property of concavity requires that the

Slutsky matrix of the cost function (see equation 15) to be negative semi-definite. This is

incorporated in the estimation by introducing an informative prior in the form of an indicator

function which takes the value one when the parameter vector β leads to a negative semi-

definite Slutsky matrix and zero otherwise. In practice this results in an accept:reject step in

the algorithm in which only those draws on the distribution in equation 34 which satisfy this

restriction are retained in the sample that is used for inference.

We have noted above that some elements of z∗ are not observed however. In order to

complete the algorithm we therefore employ data augmentation. Data augmentation was

introduced by [?] as a method for conducting inference on the full posterior in the presence

of latent data. Albert and Chib (1993) show how data augmentation can be accomplished

using the Gibbs sampler. They show that where the conditional distributions of the latent

data can be obtained, these data can be treated as another block of unknowns in the algorithm.

In section 3 we argued that there were three types of latency in our model. The first type of
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latency is common to all limited dependent variable models and is referred to as missing data.

In our model we have two types of missing data. In the share equations, where no purchase

is made the shares are missing. In the probit equations the continuous variable
(
y∗ih
)

which

underlies the observed binary variable is missing. The remaining two sources of latency apply

to the observations where a purchase is made. In these cases latency exists first because the

observed purchases do not correspond to actual consumption and second because the adding

up restriction will not hold once consumption of the commodities where no purchase is made

is accounted for. In all three cases the conditional distributions of the latent data are used in

the algorithm to simulate values.

Let us turn to the derivation of these distributions. First consider the conditionals for

the missing data. Because the observations for individual households are assumed to be

independent we can make the latent draws household by household. In order to introduce

the conditional distributions therefore we define z∗h and ẑ∗h to include only the elements of z∗

and ẑ∗ = Xβ respectively corresponding to the hth household. It is also more convenient to

draw the latent variables commodity by commodity. Therefore, defining the precision matrix

= −1, the conditional mean (µht) and variance (Vi) of the individual elements of z∗are

Gweke (2005, Theorem 5.3.1):

µih = ẑ∗ih + i
−1
−i
(
z∗−i,h− ẑ∗−i,h

)
= ẑ∗ih−Ω

−1
ii Ω−i

(
z∗−i,h− ẑ∗−i,h

)
(37)

Vi = Σii− i
−1
−i

′
i = −1

−i (38)

where Σii is the ith on-diagonal element of , i is the ith row of excluding Σii, and −i is the

matrix within excluding both the ith column and ith row. Ωii and i are similarly defined. ẑit

is the fitted value of zih for the hth household and ŷ−i,h and y−i,h are vectors within ŷh and yh

respectively, with their ith elements removed. The conditional distributions for the missing

14



data in the probit equations are:

yih = 0 : y∗ih|y∗−i,h,β ,X, ∼ N(µih,Vi) I[−∞,0]∀i,h (39)

yih = 1 : y∗ih|y∗−i,h,β ,X, ∼ N(µih,Vi) I[0,∞]∀i,h (40)

and in the share equations:

sih = 0 : s∗ih|y∗−i,h, ,X, ∼ N(µih,Vi) I[0,1]∀i /∈C,h (41)

where I[−∞,0] is an indicator variable that is one if yit ∈ [−∞,0] and zero otherwise and I[0,1]

is similarly defined on the interval from zero to one.

For the remaining two types of latency, in observations where a purchase is made, the

latent data are a linear transformation of the observed data. This data can therefore be simu-

lated by applying the transformations in 2 and 5 sequentially to the observed data. It can be

seen that because our method simulates the latent data and estimates the model directly using

these data it greatly simplifies the Wales and Woodland (1983, p270) approach to ensuring

that adding up is satisfied by the latent shares in comparison with maximum likelihood.

The remaining issue we shall discuss is the identification of the probit equations. To

achieve this it is necessary to restrict the covariance matrix:

=

 vv vu

uv uu

 . (42)

and we impose the restriction that uu = I. Instead of using equation 35 as the basis for

making draws on Σ, we obtain the conditional posterior distributions for the sub-matrices

within as follows. Define the following H×m matrices:
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ṽ =


v11 v21 · · · vm1

...
...

...

v1H v2H · · · vmH

 (43)

ũ =


u11 u21 · · · um1

...
...

...

u1H u2H · · · umH

 (44)

From the properties of the multivariate normal the conditional mean and variance are:

E(v|u) = ΣvuΣ
−1
uu u (45)

E
(

v
′
v|u
)

= ε = Σvv−ΣvuΣ
−1
uu Σ

′
vu (46)

where 45 is a regression of v on u. Under the assumption that Σuu = I we can therefore

re-parametrize the covariance matrix as:

=

 vv vu

uv uu

=


(

ε +ρρ
′
)

ρ

ρ
′ I

 . (47)

where ρ = Σvu. Recognizing from equations 45 and 46, with the assumption Σuu = I, that ρ

and Σε are the coefficient vector and covariance matrix of the error term ε respectively in the

following seemingly unrelated regression:

v = ρu+ ε (48)
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ε ∼ N (0,Σε) and assuming a diffuse prior we use the following conditional posteriors:

ρ| ε ∼ N
[(

ũ′ −1
ε ũ
)−1 ũ′ṽ ,

(
ũ′ −1

ε ũ
)−1
]

(49)

ε |δ ∼ IW (ε ′ε,H) (50)

together with the relations in 47 as the basis for sampling the restricted covariance matrix.

The estimation algorithm can then be stated as:

1. Assume starting values for z∗ and Σ.

2. Use the most recently drawn values of z∗ from steps 4 and 5 and Σ from step 6 (or those

assumed in step 1 if this is the first pass), draw the parameter vector β from the normal

distribution in equation 34.

3. Use the appropriate elements of the β draw to compute the Slutsky matrix using equa-

tion 15 and check to see whether it is negative semi-definite. If it is, add the draw to

the sample. If it is not revert to the previous draw of β .

4. Using the parameter vector drawn in 2, compute ẑ∗ = Xβ . Using the appropriate ele-

ments in ẑ∗ and Σ from step 6 (or that assumed in step 1 if this is the first pass), compute

the mean and variance of the conditional distributions using equations 37 and 38. Use

these in the truncated normal distributions in equations 39 and 40 to draw the latent

data for the probit equations.

5. Obtain the latent data for the share equations:

(a) Where the share is censored use the appropriate elements in ẑ∗ from step 4 and Σ

from step 6 (or that assumed in step 1 if this is the first pass) to compute the mean

and variance of the conditional distribution using equations 37 and 38. Use these

to make a draw on the distribution in equation 41.
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(b) Where a purchase is observed compute the probability of a purchase using equa-

tion 30 and the latent shares using equations 4 and 5.

6. Using β from step 2 and z∗ from steps 4 and 5, draw the variance-covariance matrix :

(a) Draw ρ from the normal distribution in equation 49.

(b) Draw ε from the inverse Wishart distribution in equation 50.

(c) Construct the complete matrix using equation 47.

7. Return to step 2.

5 Converting to Nutrient Elasticities

The main objective of this paper is to determine the health effects of a fiscal food policy.

Once the matrix of price elasticities is computed, corrected for quality effects and measure-

ment error, the next step is compute the nutrient elasticities. The nutrient elasticities provide

information on how intake of specific nutrients, such saturated fat or protein, may change as

a result of a combination of fat taxes and thin subsidies. The technique developed by Huang

(1996,1999) is used to link the demand model to nutrient availability. The basic premise of

the approach in Huang (1996) is that changes in the price of a particular food or in total expen-

diture will affect the consumption of all food items and will simultaneously change intakes

in a variety of different nutrients. Three pieces of information are needed: the expenditure

elasticities, price elasticities, and the nutrient values of each food.

Define aki as the amount of the kth nutrient obtained from a unit of the ith food and let

φk be the total amount of that nutrient obtained over the different food items consumed. An

expression for φk is given by

φk = ∑
i

akiqi, (51)
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where k = 1, ...,K is the total number of nutrients and qi is the quantity demanded (i.e., the

Marshallian demand) of the ith food. Since demand is a function of prices (p) and expenditure

(m), the Marshallian demand function is represented by qi = f (p,m). Changes in nutrient

availability can therefore be expressed as

dφk = ∑
i

aki

[
∑

j

∂qi

∂ pi
d p j +

∂qi

∂m
dm

]
. (52)

The relative change in nutrient availability can also be expressed in terms of relative changes

in food prices and per capita expenditure as

dφk

φk
= ∑

j

(
∑

i
εi jaki

qi

φk

)(
d p j

p j

)
+

(
∑

i
ηiaki

qi

φk

)(
dm
m

)
, (53)

where εi j denotes price elasticities and ηi denotes expenditure elasticities.

Equation 53 is equivalently written as

dφk

φk
=
(

πk j
d p j

p j

)
+
(

ρk
dm
m

)
, (54)

where πk j is a price elasticity measure that relates the effect of a price change in the jth food

on the availability of the kth nutrient, and ρk is an income elasticity measure that relates the

effect of a change in total expenditure on the availability of that specific nutrient. The calcu-

lation of the nutrient elasticities represents a weighted average of the price and expenditure

elasticities, with weights expressed as each food’s share in the contribution to the kth nutrient.

In practice, the calculation of the K× (G+1) matrix of nutrient elasticities (NE) for the

case of K nutrients and G foods is obtained by multiplying the K×G nutrient share matrix

of each food (NS) by the G× (G+1) matrix of food demand elasticities (FE)

NE = NS×FE. (55)
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Based on the measurements of nutrient elasticity, a change in the price of a food or in per ca-

pita expenditure will affect all food quantities demanded through the interdependent demand

relationships, resulting in simultaneous changes in the levels of nutrient availability (Huang

1996).

6 Data and Results

Data on food expenditures and quantities are from the UK government’s Expenditure and

Food Survey (EFS) for 2003-2004, which records data on a wide range of food eaten. The

EFS (starting in 2001-2002) is the result of the merger between the Family Expenditure Sur-

vey (FES) and the National Food Survey (NFS), two well established surveys and important

sources of information for government and the broad research community on UK spending

and food consumption patterns. In this paper, the 2003-2004 data set is used, which is the

latest (at the time of starting to work with the data) complete data set available from the

Economic and Social Data Service (ESDS). The 2003-2004 sample is based on 7,014 house-

holds in 672 postcode sectors stratified by Government Office Region in England and Wales.

Participating households voluntarily record food purchases for consumption at home for a

two week period using a food diary for each individual over seven years of age. Three key

aspects to the data require special attention and include the food aggregations necessary for

demand analysis, the nutrient content of aggregated food groups, and the calculation of the

tax-subsidy policy instrument.

Individual food items are converted into aggregate food groups that can be identified for

a fat tax or thin subsidy. Seven main food groups are: dairy and eggs, meat and fish, staples

and starches, fruits and vegetables, fats and sugars, drinks, and hot takeaway. Each main

food groups is composed of sub-food groups (29 in total) listed in the first two columns of

Table 1 (a complete listing of the individual food items used in each level of aggregation is

available upon request). While broad aggregates simplify the analysis, detailed information
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is inevitably lost in the aggregation process. For example, the “milk” category includes both

full-fat and skimmed milk, and the price elasticities may potentially differ between these two

sub-category items.

Table 1 also presents the household averages for quantity consumed, unit value, and bud-

get share for the sub-food groups. Mean quantities consumed per household are in kilo-

grammes or litre equivalent and unit values per household are in GBP per kilogram or litre

equivalent (except eggs, which are in pence per unit). Meat and fish compose the largest

share of the average household budget at about 22 percent. This is followed by drinks and

fruits and vegetables both at 16 percent, fats and sugars at 15 percent, dairy and eggs at 14

percent, staples and starches at 12 percent, and hot takeaway at 5 percent.

The data in the EFS that is publicly accessible only provides data for the survey hou-

sehold by Government Office Region (GOR) and by survey quarter. Since there are only

four quarters in the survey year and nine GORs, the publicly available data only permit 48

distinct clusters to be defined. While this does allow for the estimation of elasticities for rea-

sonable small demand system, the small cluster number of clusters creates problems in the

between-cluster estimation stage in the Deaton approach.

6.1 Nutrient contents

The EFS data provide the nutrient contents of 45 different nutrients for each individual food

item. Table 2 shows the nutritive values for the 29 sub-food groups for selected nutrients

(the full nutrient content of the food groups for all 45 nutrients is available upon request).

Food energy is measured in food calories (kcal); protein, fat, and carbohydrates in grams;

and calcium and iron in milligrams. The nutritive content provided is per gram or millitre

equivalent of the respective food item (except eggs which is given per a medium size egg).

The food items that tend to contain the most energy per unit include (excluding eggs): all

fats; biscuits, cakes, and pastries; candies and other sugars; breakfast cereals; other starches
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and staples; and cheeses. The food energy contents of these groups are related to higher food

nutrient contents of protein, fats and carbohydrates.

For example, cheese has high contents of both animal protein and fats, but is low in car-

bohydrates. Breakfast cereals and other starches and staples have high carbohydrate content,

but are lower in protein and fat. The fruit and vegetable sub-food groups are higher in cal-

cium and vegetable proteins than most of the other groups, but are generally lower in total

energy. The other fruits and vegetables category is an exception as these items correspond to

fruit and vegetable based ready-made meals and other takeaway products, which are higher

both in total energy and in saturated fats. The meat products are both high in animal proteins

and total energy and in the case of beef, pork, and lamb, are also high in saturated fats

By multiplying the amount of each sub-food group consumption by its nutritive values the

food shares of nutrients are obtained. The share matrix is presented in Table 3, which is also

the S matrix used in the Huang (1996) approach to obtain the nutrient elasticities. Total energy

consumption is mostly derived from breads, all fats, biscuits, cakes and pastries, candies and

other sugars, and tea and coffee, which together contribute nearly 50 percent to total energy

intake. The fruit and vegetable food groups contribute very little to overall energy intake at

less than 7 percent. Combined consumption of milk and cream, all fats, and biscuits, cakes,

and pastries give most of the nutritive content of saturated fat (42 percent). Carbohydrates are

mostly obtained from breads (20 percent), though biscuits, cakes, and pastry yield another

10 percent. Calcium intake is mostly based from milk and cream (27 percent) and bread (15

percent).

6.2 The fiscal food policy

The fat tax applied to selected food groups is based on saturated fatty acid content. The

subsidy is applied to most of the fruit & vegetable groups, except the one-a-day and other

fruits and vegetables group. The one-a-day group is excluded since intake of each of the food
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items in this group only count once for the recommended servings of fruits and vegetables.

The other fruits and vegetables group is excluded because these items consist of ready-made

meals and other takeaway products and contain relatively higher quantities and are actually

taxed.

The fiscal policy used, based on a combination of taxes and subsidies, is designed to be a

revenue-neutral scheme. The choice of saturated fatty acids as the prime target of the fat tax

is justified by evidence from the medical literature. Saturated fats are an important risk factor

in the occurrence of coronary heart disease (Hu et al. 1997), higher systolic blood pressure

(Esrey et al. 1996), and higher plasma concentration of cholesterol (Ascherio et al. 1994).

Fruit and vegetables, on the other hand, are positively linked to lower risks of various cancers

(Ames et al. 1995; Riboli and Norat 2003), major chronic diseases (Hung et al. 2001), and

ischaemic stroke (Joshipura et al. 2001).

Specifically, the fiscal scheme simulation increases the price of each food group by 1%

for every percent of saturated fats the group contains. The EFS data set contains nutrient

conversion tables that are used to convert food group items into nutrient content. For example,

since milk contains 1.72% of saturated fats, its price increasing by 1.72%. A ceiling of 15%

is placed on the simulated price increase. To offset this tax burden, and to encourage the

consumption of fruit and vegetables, a subsidy on fruit and vegetables is introduced, so as to

exactly cancel the costs of the fat tax paid by consumers. Table 4 presents the tax and subsidy

rates applied to the different component food group items and assigns an index number to

each group.

6.3 Demand Elasticity Estimates

The demand elasticities computed for this paper contain 870 estimates of own- and cross-

price elasticities and expenditure elasticities for 29 food groups. Only the own-price and

expenditure elasticities obtained from the alternative demand approach are listed in Table 5.
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All of the estimated own-price elasticities are statistically significant and have the expected

negative sign. A number of the food groups are price elastic (i.e., have an own-price elasticity

greater than unity) and include other meats, other staples/starches, frozen fruits/vegetables,

other fruits/vegetables, water, and hot takeaway. Of particular interest is the fact that the

“other” food categories for meats, staples/starches, and fruit/vegetables all include ready-

made and cold takeaway items. The smallest own-price elasticities (less than 0.7) are found

for cheeses, milk/cream, fish, and all fats, which are all relatively inelastic. The own-price

elasticities for eggs, breads, breakfast cereals, rice/pasta, and biscuits, cakes, and pastry are

also generally of small magnitude indicating relative in elasticity. The remaining food cate-

gories are very close to being unit-elastic.

In terms of the expenditure elasticities, all are positive and statistically significant. While

most of the expenditure elasticities are less than one, a few food groups are associated

with being superior goods such as other dairy, other meats, other staples/starches, other

fruits/vegetables, fresh fruits/vegetables, alcohol, water, and hot takeaway. Again, the “other”

products include ready-made products and cold takeaway items. For example, other dairy is

composed of, among other items, ice cream, milk puddings, and takeaway products such as

milkshakes. Moreover, those food items with expenditure elasticities greater than one also

have own-price elasticities greater than, or close to, one as well (except the biscuits, cakes,

and pastry group). The smallest expenditure elasticities (less than 0.6) are for eggs and tin-

ned/processed fruits and vegetables.

6.4 Nutrient Elasticity Estimates

Using the estimated demand elasticities and the food shares of nutrients contained in Table 3,

nutrient elasticities are calculated on the basis of equation 55. The following tables provide

estimates for the nutrient elasticities of each specific food group:

Table 6 lists the nutrient elasticities for the dairy and eggs food groups.
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Table 7 lists the nutrient elasticities for the meat and fish food groups.

Table 8 lists the nutrient elasticities for the staples and starches food groups.

Table 9 lists the nutrient elasticities for the fruits and vegetables food groups.

Table 10 lists the nutrient elasticities for the fats and sugars food groups.

Table 11 lists the nutrient elasticities for the drinks food groups.

Table 12 lists the nutrient elasticities for hot takeaway.

The reported nutrient elasticities show the effect of a 1% increase in price or total expendi-

ture on a selection of 45 different nutrients. For example, a 1% increase in the price of cheese

(holding other prices and income constant) will affect the amount of all food consumption

through the interdependent demand relationships. Changes in food consumption resulting

from a 1% price increase in cheese will, for example, reduce per capita energy by 0.034%,

saturated fat intake by 0.086%, and lactose by 0.15%. From our fiscal food policy in Table 4,

a fat-tax based on saturated fat content would suggest a 15% increase in the price of cheese.

If the price of cheese is expected to rise one-for-one with the fat-tax then per capita energy

would in fact be reduced by 0.51% (i.e., 0.034% multiplied by 15%) and saturated fat intake

would fall by 1.29%. The impact of the food price changes from the fiscal policy in Table 4

can be obtained in a similar way.

From a diet and health perspective of keen interest is the suggested fat tax on cheeses

(already discussed) and on the foods in the fats and sugars groups, which had the heaviest

tax levied on them due to their high saturated fat content. For example, the 15% tax on all

fats would result in a drop in saturated fat intake 1.83% and total energy by 1.13%. Given

that dairy products and foods in the fats and sugars group compose a large share of both

average per capita intakes of saturated fats and total energy, any tax is likely to reduce not

only fat intake, but also total energy intake as well. Moreover, intake of important nutrients

will also fall as a result of a fat-tax. For example, the tax on all fats will reduce vitamin D

intake by 2.58% and vitamin E by 4.41%, which are non-trivial changes in the average diet.
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The tax on biscuits, cakes, and pastry reduces saturated fat intake by 0.89% but also reduces

carbohydrate intake by 1.00%.

Looking at the impact of the subsidies on selected fruits and vegetables foods also yields

interesting changes in nutrient consumption. The suggested subsidy on fresh fruits and vege-

tables will, for example, increase intake of important nutrient substantially such as carotene

(15.79%), vitamin C (9.23%), dietary fibre (4.42%), and vitamin E (2%). On the other hand,

intake of certain sugars increases as well including glucose (5.49%) and fructose (7.92%). In

addition, since fresh fruits and vegetables compose only a very small share of energy intake,

the subsidy only increases total energy by 0.80%. The subsidies on both frozen and tin-

ned/processed fruits and vegetables follow similarly, though the changes are of much smaller

magnitude given they contain less nutrients than fresh fruits and vegetables. For example, the

subsidy on frozen fruits and vegetables increases carotene by 2.16%, vitamin C by 1.20%,

dietary fibre by 0.88% and vitamin E by 0.11%. Energy intake from the subsidy on frozen

fruits vegetables only increases by 0.08%.

7 Conclusions

Obesity is of increasing concern throughout the developed world. Some estimates suggest

that by 2015, 60% of men and 50% of women will be obese. Being obese increases the

risks of a range of chronic health problems including heart disease, type 2 diabetes and high

blood pressure. Additionally it has been shown that increased levels of fruit and vegetable

consumption will contribute to a reduction in the incidence of some cancers. As a result,

there is an increase in interest in public health policies that are designed to reduce the im-

pacts of diet related disease. One such policy is a fiscal intervention designed to reduce the

consumption of calorie and fat dense food via a fat-tax and to encourage the consumption of

fruit and vegetables via a thin susbsidy.
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The extent to which a fiscal food policy is effective can be judged based on if the po-

licy successfully redistributes consumption away from unhealthy foods towards healther food

choices. Of particular importance is not just how consumption of specific food items shifts,

but how changes in nutrient consumption are affected by a policy of food taxes and subsidies.

This paper explores the linkage between food choice and nutrient consumption as the demand

for food items shifts because of price changes.

Demand elasticities are obtained from a theoretically consistent demand model that ac-

counts for censoring that occurs in most consumer surveys. This paper demonstrates how the

infrequency of purchase model can be estimated for a system of equations using Monte Carlo

Markov chain methods. The method was illustrated by estimating a model which is desi-

gned to disentangle the impacts of economic factors from preference heterogeneity resulting

from differing demographic conditions in influencing the healthiness of diets in England and

Wales.

The demand elasticities are then used to calculate nutrient elasticities which describe how

nutrient consumption changes due to price changes in specific food groups. While the fat

tax seems to be effective in reducing the average intake of saturated fats, there are negative

consequences. Given that the groups with the highest fat tax rate applied to them account

for the largest share of energy intake in the average UK diet, total energy intake declines as

a result of the tax. Moreover, the fat tax also results in decreased consumption of important

nutrients such as dietary fibre, and vitamins A, D, and E. The thin subsidy does appear to

increase consumption of fruits and vegetables and therefore increase consumption of key

nutrients, like carotene, sugar intake also increases substantially. Further, since energy supply

from fruits and vegetables does not account for a large share of total energy supply, the

decrease in calorie intake resulting from the tax is not fully compensated for by the subsidy

on fruit and vegetable items.
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Appendix: Review of Deaton’s Approach

Econometric specification

The model consists of two equations where the choice of quantity and quality are a function

of expenditures, prices, and household characteristics. The two equations for household i in

cluster c are:

wGic = α
0
G +β

0
G lnxic + γ

0
Gzic +

N

∑
H=1

θGH ln pHc +
(

fGc +u0
Gic
)

(56)

lnvGic = α
1
G +β

1
G lnxic + γ

1
Gzic +

N

∑
H=1

ψGH ln pHc +u1
Gic, (57)

where i = 1, ...,n indicates the total number of households, H = 1, ...G, ...,N indicates the

total number of goods, and c = 1, ...,C indicates the total number of clusters.

The budget share equation, equation 56, shows the budget share of good G in household

i’s budget (wGic) as a linear function of the logarithm of total expenditure on all goods (lnxic),

a vector of household characteristics (zic), and the logarithm of unobservable prices for each

good in the system (pHc). There are two components to the error term in the share equation:

the cluster-fixed effect, fGc, is interpreted as the cluster-specific residual in the demand for

good G and the standard idiosyncratic error term, u0
Gic, is interpreted as the household-specific

residual component. In a typical fixed-effects framework, fGc may be correlated with the

observable explanatory variables, lnxic and zic, but the assumption must be made that fGc is

uncorrelated with pHc. If this assumption is not made then estimation of price elasticities is

not possible, since tastes would vary arbitrarily between clusters. Note there is no i subscript

on the price terms, pHc, since the key assumption is that prices are the same for all households

in a particular cluster c.

The unit-value equation, equation 57, shows the logarithm of the unit-value of good G

in household i (vGic) as a function of the same variables in the share equation except omits
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the cluster-fixed effects. The exclusion of cluster-fixed effects implies unit-value is the sum

of the logarithm of quality and the logarithm of price, with price allowed to affect quality

choice. In other words, unit-value is a direct indication of price in the absence of quality

effects. The exclusion of fixed effects in the unit-value equation is therefore essential to the

formulation and relies on spatial variation in unit-value to yield the price information used in

the estimation of elasticities. While the budget share for good G is observed for all households

in equation 56, the unit value is only observed for households that purchase that particular

good at least once. Households with a zero purchase do not generate a corresponding unit

value.

The error components, u0
Gic and u1

Gic, are standard idiosyncratic residuals with zero mean

and are assumed to be uncorrelated with the explanatory variables, including the cluster-fixed

effects. They reflect the typical randomness of econometric models, such as measurement er-

ror. The ability of the model to estimate price responses relies on the correlation between

u0
Gic and u1

Gic. Unless price is measured perfectly without error (meaning that survey respon-

dents use a perfectly recalled price to either (i) calculate the quantity consumed from price

and expenditure or (ii) calculate expenditure from price and quantity), measurement error in

unit-value must be correlated with measurement error in the share for good G since the loga-

rithm of unit-value is the difference between the logarithm of expenditure and the logarithm

of quantity.

In summary, the key feature is that prices are not observed so it is not possible to estimate

the equations directly. Equation 56 can be estimated directly only when the ψGH matrix

is an identity matrix, meaning unit-values and prices shift together. The framework of the

model suggests, however, some quality effects exist and unit-values may be measured with

error. This implies ψGH is a diagonal matrix with coefficients different than unity along the

diagonal. The affect of or total expenditure and demographic characteristics on consumption

is obtained using within-cluster variation in quantities purchased and unit-values. The impact
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of measurement error is also obtained from the variation in unit-values. Once within-cluster

effects are accounted for, estimation of price elasticities is based on the variation of prices

between clusters. The formulation implies that since both quantity and quality reflect choices

made by consumers, expenditure is not just a function of quantity and price, but also of

quality as well. Price and income elasticities of quality must therefore also be accounted for

in the derivation of price and income elasticities of quantity. The relationship between the

parameters and the elasticities of interest are complicated as a result of the additional quality

factor, which is described next.

Elasticity derivation

The total expenditure elasticities of both quantity and quality are simply the quantity demand

and quality demand elasticities, respectively, and are obtained from the parameters β 0
G and

β 1
G. Given that unit-value is price multiplied by quantity, if equation 57 is differentiated with

respect to lnx then
∂ lnvG

∂ lnx
= β

1
G, (58)

is simply the quality demand elasticity for good G. Equation 56 can also be differentiated

with respect to lnx to yield
∂ lnwG

∂ lnx
=

β 0
G

wG
, (59)

which is used to obtain the quantity demand elasticity. First, note the logarithm of the budget

shares may be written equivalently as the sum of the logarithms of quantity and quality less

the logarithm of expenditure

lnw = ln
(xG

x

)
= ln

(vGqG

x

)
= lnvG + lnqG− lnx,
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where for good G, vG is the unit-value, xG is the quantity consumed, and x is the total ex-

penditure on all goods. Second, if the quantity demand elasticity for good G is defined as

εG = ∂ lnqG/∂ lnx, then equation 59 may be re-written as

∂ lnwG

∂ lnx
=

∂ lnvG

∂ lnx
+

∂ lnqG

∂ lnx
−1 = β

1
G + εG−1. (60)

Since equation 59 is equal to 60, solving for εG yields the quantity demand elasticity of good

G with respect to total expenditure

εG = 1−β
1
G +

β 0
G

wG
. (61)

The price elasticities are also straightforward to derive from the parameters. The deriva-

tive of equation 57 with respect to ln pH is

∂ lnvG

∂ ln pH
= ψGH , (62)

where ψGH is the matrix of own- and cross-price elasticities of the unit values (i.e., the price

effect on the unit-values), which is an identity matrix if price does not effect quality. Equation

57 can also be differentiated with respect to ln pH to yield

∂ lnwG

∂ ln pH
=

θGH

wG
. (63)

If the matrix of own- and cross-price elasticities is defined as εGH = ∂ lnqG/∂ ln pH , then equa-

tion 63 may be re-written as

∂ lnwG

∂ ln pH
=

∂ lnvG

∂ ln pH
+

∂ lnqG

∂ ln pH
− ∂ lnx

∂ ln pH
= ψGH + εGH , (64)
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where ∂ lnx/∂ ln pH = 0. Solving for the price elasticities of demand gives

εGH =−ψGH +
θGH

wG
. (65)

Clearly, however, not all of the parameters can be estimated since actual prices are not obser-

ved. Deaton (1990) identifies a formula that links the effects of prices on quality choice to

conventional price and total expenditure elasticities.

In particular, Deaton (1988) shows that if separability is assumed regarding the goods

that comprise each heterogeneous commodity then the matrix of price elasticities of the unit

values is given by

ψGH = δGH +
β 1

GεGH

εG
, (66)

where δGH is the Kronecker delta. Equation 66 implies the quality of good G is only affected

by the price of good H when there is a cross-price quantity elasticity εGH , otherwise ψGH

is simply an identity matrix meaning unit values directly influence prices. If εGH is present,

then the extent of its effect depends on the change in the total quantity of good G, where β 1
G/εG

is the quality elasticity of G with respect to total expenditure on G. Substituting in equation

61 and equation 65 for εG and εGH in equation 66, then

ψGH = δGH +
β 1

G

(
θGH
wG
−ψGH

)
1−β 1

G + β 0
G

wG

(67)

is the expression that provides a relationship linking the model parameters. In matrix nota-

tion, equation 67 is given by

Ψ = I +D(ξ )Θ−D(ξ )D(w)Ψ, (68)
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where

ξG =
β 1

G

1−β 1
GwG +β 0

G
, (69)

and I is the N×N identity matrix and D(ξ ) and D(w) are N×N diagonal matrices with the

vectors ξ and w along the diagonals.

Estimation strategy

Estimation proceeds in two stages. In the first stage, equations 56 and 57 are estimated

equation by equation using OLS with the cluster means subtracted from the data. The cluster-

fixed effects and cluster-invariant prices are removed and yield consistent “within-cluster”

estimates of β 0
G, γ0

G, β 1
G, γ1

G. Subtracting cluster means from equations 56 and 57 gives

(wGic−wG·c) = β
0
G (lnxic− lnx·c)+ γ

0
G (zic− z·c)+

(
u0

Gic−u0
G·c
)

(70)

(lnvGic− lnvG·c) = β
1
G (lnxic− lnx·c)+ γ

1
G (zic− z·c)+

(
u1

Gic−u1
G·c
)
, (71)

where the ’·’ subscript represents the means over all households in cluster c. For example,

wG·c is the means of household budget share per capita for good G in cluster c. Removing the

cluster means from all variables annihilates the price and fixed effects and permits consistent

estimation of expenditure and demographic characteristics effects on consumption in both

the share and unit-value equations. Equations 70 and 71 represent a set of 2×G classical

multivariate regressions with identical explanatory variables, so using OLS on each equation

is efficient. Denote the parameters estimates from the stage 1 regressions as β̃ 0
G, γ̃0

G, β̃ 1
G,

γ̃1
G and the estimated residuals as e0

Gic and e1
Gic. Note that once the parameter estimates are

obtained, the expenditure elasticities of quality (β 1
G) and quantity (εG) are easily obtained.

In addition, the total expenditure elasticity of both quantity and quality together, given by
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εG +β 1
G, can be computed, as can the values of ξ in equation 69.

The second stage of the estimation proceeds with using the first stage parameter estimates

to compute the corrected budget shares and unit values, which are then used in the between-

cluster estimation of the elasticities. The corrected shares and unit-values are

ỹ0
G·c = wG·c− β̃

0
G lnx·c− γ̃

0
G · z·c (72)

ỹ1
G·c = lnvG·c− β̃

1
G lnx·c− γ̃

1
G · z·c. (73)

The population counterparts to equations 56 and 57 are, from 72 and 73, given by

y0
G·c = ỹ0

G·c +
(
y0

G·c− ỹ0
G·c
)

= α
0
G +

N

∑
H=1

θGH ln pHc +
(

fGc +u0
G·c
)

(74)

y1
G·c = ỹ1

G·c +
(
y1

G·c− ỹ1
G·c
)

= α
1
G +

N

∑
H=1

ψGH ln pHc +u1
G·c. (75)

Define the variance-covariance of y1
G·c and the covariance between y0

G·c and y1
G·c as

sgh = cov
(
y1

G·c,y
1
G·c
)
, (76)

rgh = cov
(
y0

G·c,y
1
G·c
)
, (77)

respectively. Convenient matrix representations of equations sGH and rGH are denoted as S

and R. Using these results, the between-cluster estimation of equations 74 and 75 is given by

B = S−1R.

If there is no measurement error in the cluster averages then B = S−1R is correct, however

if there is measurement error present in the recorded expenditures and quantities (as expected)

then this formulation is incorrect. In particular, the variance and covariances of prices are
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overestimated in the presence of measurement error and so the S and R matrices require

correction. To obtain a correct estimation of B, the residuals from the stage one regressions,

e0
Gic and e1

Gic, are used to obtain consistent estimates of the variances and covariances of the

measurement errors u0
Gic and u1

Gic in equation 74 and 75 as follows

σ
01
GG =

(
n+

G−C− k
)−1

∑
c

∑
i

(
e1

Gic
)2

, (78)

σ
10
GG =

(
n+

G−C− k
)−1

∑
c

∑
i

e0
Gice1

Gic. (79)

Denote the vector nc as the number of households in each cluster and the vector n+
cG as the

number of households in each cluster that purchase good G at least once (i.e., the number of

households in each cluster that have observations on both the budget share and the unit-value

of good G). The scalar n+
G is defined as the sum over clusters of n+

cG and represents the total

number of households that have positive consumption of good G. Note the summation in

equations 78 and 79 is taken only over those households that have an observed unit value.

Matrix representation of the residual variances and covariances in equations 78, and 79 are

denoted as Ω, and Γ, respectively (which are diagonal matrices of the elements of σ01
GG and

σ10
GG).

The corrected estimation of the B matrix is

B̃ =
(
S̃− Ω̃T̃−1

+
)−1 (

R̃− Γ̃T̃−1
A

)
, (80)

where the ’∼’ denotes an estimate and T̃−1
+ and T̃−1

A are diagonal matrices of the cluster

means given by

T−1
A = C−1

∑
c

[D(nc)]
−1 (81)

T−1
+ = C−1

∑
c

[
D
(
n+

c
)]−1

. (82)

38



Note that ỹ0
G·c and ỹ1

G·c are used to provide consistent estimates of the empirical variances and

covariances matrices, S̃ and R̃, while Ω̃ and Γ̃ are estimates of Ω and Γ from equations 78

and 79. The value of B̃ converges to B

p lim B̃ = B =
(

Ψ
′
)−1

Θ
′

(83)

as the sample size (i.e., the number of clusters) tends to infinity with cluster sizes remaining

constant.

If Ψ = I then B = Θ
′

and price effects are directly given by the Θ matrix. Additional

information is needed, however, if Ψ 6= I , in which case estimates of B do not directly recover

Ψ and Θ. This additional information is provided by the expression derived in equation 68

and by the result in equation 83. Calculation of Θ proceeds from

Θ = B
′
[
I−D(ξ )B

′
+D(ξ )D(w)

]−1
. (84)

Taking note that the matrix representation of the price elasticities in equation 65 is given by

E =
[
D(w)−1

Θ−Ψ

]
, substituting gives

E =
[
D(w)−1 B

′
− I
][

I−D(ξ )B
′
+D(ξ )D(w)

]−1
. (85)

Estimates of both Θ and E are calculated using estimates from the first and second stages and

by using the sample mean budget shares in the w vector.

In addition to complicated matrix multiplication, the main problem of applying Deaton’s

approach to estimating demand elasticities is that there is no guarantee of obtaining accurate

estimates. Given that the residual covariance matrices S, R, Ω, and Γ are influenced by a

variety of unexplained factors, price variation being just one possible factor, there is consi-

derable imprecision to the Deaton approach. Since the estimated elasticities are essentially
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obtained through a between-cluster regression, the since the sample used here does not have

many clusters, the application of the Deaton approach to the 2003-2004 EFS data yielded

elasticity estimates deemed unsatisfactory.
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Table 1: Major food groups
Mean Mean Mean

Main Food Groups Sub-Food Groups Consumption Unit Value Budget Share
Dairy & Eggs Cheeses 0.63 0.51 0.03

Eggs 0.01 11.71 0.01
Milk & cream 8.59 0.06 0.06

Other dairy 2.10 0.21 0.04
Meat & Fish Beef 0.80 0.48 0.03

Lamb 0.24 0.55 0.01
Pork 1.15 0.55 0.05

Poultry 1.15 0.45 0.04
Fish 0.66 0.57 0.03

Other meats 1.43 0.46 0.06
Staples & Starches Breads 3.71 0.11 0.04

Breakfast cereals 0.72 0.29 0.02
Rice & pasta 0.69 0.18 0.01

Potatoes 3.17 0.09 0.02
Other starches 0.65 0.55 0.03

Fruit & Vegetables Fresh 6.96 0.17 0.11
Frozen 0.36 0.15 0.01

Tinned & processed 0.75 0.16 0.01
One-a-day only 2.17 0.13 0.02

Other fruit & veg 0.29 0.44 0.01
Fats & Sugars All fats 1.05 0.29 0.02

Biscuit, cakes, pastry 1.64 0.36 0.05
Chips and Crisps 1.03 0.40 0.03

Candies & other sweets 1.34 0.46 0.05
Beverages Alcohol 3.67 0.41 0.10

Soft drinks 9.46 0.06 0.04
Tea & coffee 0.26 0.83 0.02

Water 1.11 0.04 0.00
Hot Takeaway 0.58 1.01 0.05
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Table 2: Nutritive content of food
Total Saturated Animal Vegetable

Energy Fat Protein Protein Carbs Calcium Iron
kcal g g g g mg mg

Cheeses 3.255 0.166 0.196 0.000 0.031 5.280 0.002
Eggs 76.238 1.602 6.357 0.000 0.000 28.990 0.966

Milk & cream 0.575 0.018 0.034 0.000 0.049 1.173 0.001
Other dairy 1.018 0.027 0.030 0.001 0.135 0.969 0.001

Beef 2.116 0.063 0.197 0.001 0.006 0.099 0.017
Lamb 1.848 0.063 0.154 0.000 0.000 0.081 0.013
Pork 2.124 0.055 0.164 0.003 0.024 0.332 0.007

Poultry 1.235 0.019 0.158 0.000 0.001 0.051 0.005
Fish 1.288 0.014 0.147 0.007 0.037 0.670 0.009

Other meats 2.182 0.051 0.092 0.032 0.125 0.384 0.014
Breads 2.350 0.005 0.000 0.086 0.485 1.526 0.018

Breakfast cereals 3.508 0.008 0.001 0.080 0.770 0.881 0.109
Rice & pasta 2.914 0.003 0.001 0.072 0.666 0.183 0.010

Potatoes 0.475 0.001 0.000 0.012 0.100 0.057 0.003
Other starches 3.257 0.048 0.029 0.073 0.443 1.583 0.017

Fresh 0.317 0.001 0.000 0.008 0.067 0.159 0.003
Frozen 0.535 0.002 0.000 0.036 0.082 0.312 0.009

Tinned & processed 0.653 0.001 0.000 0.018 0.148 0.201 0.008
One-a-day only 0.703 0.004 0.000 0.024 0.111 0.218 0.006

Other fruit & veg 1.731 0.023 0.002 0.032 0.185 0.487 0.008
All fats 6.367 0.192 0.007 0.004 0.032 0.153 0.002

Biscuit, cakes, pastry 4.063 0.085 0.010 0.048 0.595 0.846 0.017
Chips and Crisps 2.710 0.053 0.000 0.038 0.346 0.154 0.011

Candies & other sweets 3.926 0.048 0.024 0.003 0.811 0.574 0.008
Alcohol 0.515 0.000 0.000 0.002 0.012 0.065 0.002

Soft drinks 0.242 0.000 0.000 0.000 0.064 0.037 0.000
Tea & coffee 0.730 0.005 0.003 0.052 0.114 0.804 0.024

Water 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Hot Takeaway 1.937 0.032 0.079 0.044 0.168 0.580 0.010
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Table 3: Nutritive share of food
Total Saturated Animal Vegetable

Energy Fat Protein Protein Carbs Calcium Iron
kcal g g g g mg mg

Cheeses 0.029 0.089 0.082 0.000 0.002 0.089 0.003
Eggs 0.008 0.010 0.031 0.000 0.000 0.006 0.013

Milk & cream 0.069 0.132 0.192 0.000 0.047 0.268 0.007
Other dairy 0.030 0.047 0.042 0.002 0.032 0.054 0.005

Beef 0.024 0.042 0.104 0.001 0.001 0.002 0.023
Lamb 0.006 0.013 0.025 0.000 0.000 0.001 0.006
Pork 0.034 0.054 0.125 0.002 0.003 0.010 0.014

Poultry 0.020 0.018 0.121 0.000 0.000 0.002 0.009
Fish 0.012 0.008 0.064 0.003 0.003 0.012 0.010

Other meats 0.044 0.061 0.087 0.034 0.020 0.015 0.034
Breads 0.122 0.014 0.001 0.236 0.201 0.151 0.118

Breakfast cereals 0.035 0.005 0.000 0.043 0.062 0.017 0.137
Rice & pasta 0.028 0.002 0.000 0.037 0.051 0.003 0.012

Potatoes 0.002 0.000 0.000 0.002 0.003 0.000 0.001
Other starches 0.029 0.026 0.012 0.035 0.032 0.027 0.019

Fresh 0.031 0.004 0.000 0.043 0.052 0.030 0.038
Frozen 0.003 0.000 0.000 0.010 0.003 0.003 0.006

Tinned & processed 0.007 0.000 0.000 0.010 0.012 0.004 0.011
One-a-day only 0.021 0.008 0.000 0.038 0.027 0.013 0.024

Other fruit & veg 0.007 0.006 0.000 0.007 0.006 0.004 0.004
All fats 0.093 0.170 0.005 0.003 0.004 0.004 0.003

Biscuit, cakes, pastry 0.093 0.118 0.011 0.058 0.109 0.037 0.048
Chips and Crisps 0.039 0.046 0.000 0.029 0.040 0.004 0.019

Candies & other sweets 0.073 0.054 0.021 0.003 0.121 0.020 0.018
Alcohol 0.004 0.000 0.000 0.001 0.001 0.001 0.003

Soft drinks 0.012 0.000 0.000 0.000 0.026 0.004 0.000
Tea & coffee 0.096 0.044 0.019 0.366 0.121 0.203 0.398

Water 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Hot Takeaway 0.030 0.030 0.058 0.036 0.021 0.017 0.019
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Table 4: Fiscal food policy
Index Sub-food Group Tax/Subsidy

1 Cheeses 15.00%
2 Eggs 3.20%
3 Milk & cream 1.82%
4 Other dairy 2.69%
5 Beef 6.28%
6 Lamb 6.30%
7 Pork 5.54%
8 Poultry 1.86%
9 Fish 1.36%
10 Other meats 5.08%
11 Breads 0.46%
12 Breakfast cereals 0.79%
13 Rice & pasta 0.29%
14 Potatoes 0.12%
15 Other starches 4.76%
16 Fresh -26.76%
17 Frozen -26.76%
18 Tinned & processed -26.76%
19 One-a-day only 0.42%
20 Other fruit & veg 2.26%
21 All fats 15.00%
22 Biscuit, cakes, pastry 8.52%
23 Chips and Crisps 5.26%
24 Candies & other sweets 4.76%
25 Alcohol 0.01%
26 Soft drinks 0.00%
27 Tea & coffee 0.55%
28 Water 0.00%
29 Hot Takeaway 3.15%
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Table 5: Demand elasticities
Index Sub-food Group Own-price Stand. Dev. Expenditure Stand. Dev.

1 Cheeses -0.655 0.030 0.878 0.014
2 Eggs -0.747 0.030 0.502 0.023
3 Milk & cream -0.601 0.032 0.965 0.012
4 Other dairy -0.981 0.037 1.352 0.018
5 Beef -0.853 0.041 0.829 0.019
6 Lamb -0.910 0.041 0.834 0.023
7 Pork -0.842 0.037 0.851 0.019
8 Poultry -0.948 0.021 0.830 0.016
9 Fish -0.688 0.039 0.799 0.019
10 Other meats -1.636 0.108 1.654 0.034
11 Breads -0.717 0.027 0.876 0.013
12 Breakfast cereals -0.729 0.030 0.835 0.014
13 Rice & pasta -0.781 0.025 0.806 0.020
14 Potatoes -0.946 0.028 0.771 0.025
15 Other starches -1.267 0.055 1.517 0.022
16 Fresh -0.985 0.022 1.103 0.008
17 Frozen -1.105 0.044 0.642 0.023
18 Tinned & processed -0.908 0.039 0.518 0.021
19 One-a-day only -0.805 0.031 0.667 0.017
20 Other fruit & veg -1.213 0.053 1.553 0.033
21 All fats -0.607 0.029 0.641 0.019
22 Biscuit, cakes, pastry -0.751 0.025 1.007 0.016
23 Chips and Crisps -0.890 0.033 0.817 0.018
24 Candies & other sweets -0.983 0.041 1.379 0.020
25 Alcohol -1.000 0.022 1.091 0.008
26 Soft drinks -0.930 0.022 0.856 0.011
27 Tea & coffee -0.929 0.025 0.626 0.010
28 Water -1.816 0.067 1.774 0.029
29 Hot Takeaway -1.097 0.136 1.358 0.134
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Table 6: Nutrient elasticities for dairy and eggs group
Milk & Other Dairy

Nutrient Cheese Eggs Cream Dairy Expend
Vegetable Protein 0.000 0.000 -0.001 -0.002 0.002
Animal Protein -0.090 -0.036 -0.147 -0.053 0.330

Fat -0.054 -0.017 -0.073 -0.034 0.179
Saturates -0.086 -0.017 -0.115 -0.056 0.275

Mono-unsaturates -0.039 -0.016 -0.054 -0.024 0.134
Poly-unsaturates -0.012 -0.011 -0.017 -0.008 0.049

Carbohydrate -0.013 -0.003 -0.039 -0.036 0.090
Energy - Kcal -0.034 -0.011 -0.057 -0.034 0.136

Calcium -0.112 -0.022 -0.199 -0.080 0.413
Iron -0.002 -0.010 -0.007 -0.002 0.022

Retinol -0.080 -0.036 -0.104 -0.021 0.248
Carotene -0.014 -0.002 -0.021 -0.011 0.048

Retinol equivalent -0.058 -0.025 -0.077 -0.018 0.182
Thiamin -0.014 -0.007 -0.037 -0.033 0.090

Riboflavin -0.040 -0.020 -0.104 -0.043 0.208
Niacin Equivalent -0.018 -0.008 -0.028 -0.011 0.066

Vitamin C -0.013 -0.004 -0.043 -0.013 0.073
Vitamin D -0.014 -0.049 -0.042 0.000 0.113

Folate -0.011 -0.009 -0.021 -0.009 0.052
Sodium -0.038 -0.008 -0.040 -0.016 0.102
Starch -0.001 0.000 -0.003 -0.008 0.011

Glucose -0.007 -0.001 -0.018 -0.049 0.072
Fructose -0.005 -0.001 -0.011 -0.032 0.046
Sucrose -0.008 -0.001 -0.019 -0.052 0.076
Maltose -0.002 0.000 -0.005 -0.012 0.019
Lactose -0.147 -0.043 -0.455 -0.196 0.837

Other sugars -0.015 -0.004 -0.046 -0.060 0.121
Total sugars -0.026 -0.006 -0.075 -0.066 0.170

Non-milk extr sugars -0.008 -0.001 -0.020 -0.051 0.076
Potassium -0.011 -0.004 -0.032 -0.016 0.062

Magnesium -0.012 -0.004 -0.028 -0.014 0.058
Copper -0.010 -0.002 -0.005 -0.001 0.019

Zinc -0.042 -0.014 -0.063 -0.021 0.141
Vitamin B6 -0.016 -0.008 -0.040 -0.011 0.076

Vitamin B12 -0.099 -0.056 -0.234 -0.056 0.452
Phosphorus -0.058 -0.019 -0.105 -0.043 0.227

Biotin -0.010 -0.016 -0.028 -0.008 0.064
Pantothenic acid -0.030 -0.022 -0.091 -0.033 0.178

Vitamin E -0.009 -0.010 -0.020 -0.017 0.057
Cholesterol -0.039 -0.142 -0.074 0.020 0.257
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Table 7: Nutrient elasticities for meat and fish group
Other Meat/Fish

Nutrient Beef Lamb Pork Poultry Fish Meats Expend
Vegetable Protein -0.002 -0.001 -0.007 -0.002 -0.005 -0.055 0.061
Animal Protein -0.098 -0.025 -0.120 -0.121 -0.064 -0.071 0.507

Fat -0.037 -0.012 -0.059 -0.029 -0.020 -0.085 0.234
Saturates -0.040 -0.013 -0.054 -0.021 -0.016 -0.079 0.214

Mono-unsaturates -0.046 -0.013 -0.070 -0.037 -0.023 -0.100 0.277
Poly-unsaturates -0.013 -0.005 -0.052 -0.032 -0.023 -0.064 0.183

Carbohydrate -0.001 -0.001 -0.005 -0.001 -0.004 -0.032 0.038
Energy - Kcal -0.023 -0.007 -0.035 -0.022 -0.015 -0.056 0.152

Calcium -0.003 -0.002 -0.011 -0.003 -0.010 -0.020 0.046
Iron -0.022 -0.007 -0.017 -0.011 -0.012 -0.046 0.109

Retinol -0.030 -0.081 -0.050 -0.008 -0.025 -0.155 0.328
Carotene -0.002 -0.001 -0.004 -0.002 -0.004 -0.052 0.055

Retinol equivalent -0.021 -0.055 -0.035 -0.006 -0.018 -0.121 0.238
Thiamin -0.006 -0.003 -0.064 -0.014 -0.011 -0.066 0.157

Riboflavin -0.012 -0.006 -0.015 -0.014 -0.008 -0.022 0.075
Niacin Equivalent -0.033 -0.009 -0.044 -0.053 -0.024 -0.038 0.202

Vitamin C -0.003 -0.001 -0.015 -0.001 -0.003 -0.031 0.049
Vitamin D -0.045 -0.022 -0.068 -0.036 -0.114 -0.032 0.328

Folate -0.006 -0.002 -0.004 -0.005 -0.004 -0.012 0.032
Sodium -0.020 -0.004 -0.107 -0.020 -0.029 -0.112 0.280
Starch -0.002 -0.001 -0.008 -0.002 -0.007 -0.056 0.066

Glucose -0.001 0.000 -0.008 -0.001 -0.001 -0.016 0.025
Fructose 0.000 0.000 -0.001 -0.001 -0.001 -0.012 0.013
Sucrose 0.000 0.000 0.000 0.000 0.000 -0.004 0.005
Maltose -0.001 0.000 -0.010 -0.001 -0.001 -0.013 0.024
Lactose 0.000 0.000 -0.001 0.000 -0.001 -0.007 0.008

Other sugars 0.000 0.000 0.000 -0.002 0.000 -0.005 0.006
Total sugars 0.000 0.000 -0.002 0.000 -0.001 -0.008 0.010

Non-milk extr sugars 0.000 0.000 0.000 0.000 0.000 -0.001 0.002
Potassium -0.008 -0.002 -0.010 -0.010 -0.006 -0.012 0.048

Magnesium -0.006 -0.002 -0.009 -0.009 -0.007 -0.014 0.045
Copper -0.005 -0.009 -0.008 -0.004 -0.006 -0.026 0.055

Zinc -0.061 -0.014 -0.037 -0.024 -0.017 -0.042 0.196
Vitamin B6 -0.034 -0.007 -0.049 -0.040 -0.019 -0.033 0.182

Vitamin B12 -0.089 -0.047 -0.048 -0.017 -0.094 -0.079 0.375
Phosphorus -0.024 -0.008 -0.036 -0.029 -0.021 -0.039 0.156

Biotin -0.003 -0.002 -0.008 -0.005 -0.005 -0.014 0.035
Vitamin -0.006 -0.003 -0.011 -0.004 -0.015 -0.027 0.064

Cholesterol -0.059 -0.023 -0.086 -0.100 -0.048 -0.095 0.407
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Table 8: Nutrient elasticities for staples and starches group
Breakfast Rice & Other Staples

Nutrient Breads Cereals Pasta Potatoes Staples Expend
Vegetable Protein -0.185 -0.057 -0.037 -0.002 -0.035 0.327
Animal Protein -0.004 -0.002 -0.001 0.000 -0.015 0.020

Fat -0.029 -0.011 -0.005 -0.001 -0.035 0.077
Saturates -0.019 -0.007 -0.003 -0.001 -0.032 0.058

Mono-unsaturates -0.021 -0.009 -0.004 -0.001 -0.035 0.065
Poly-unsaturates -0.048 -0.019 -0.009 -0.002 -0.045 0.120

Carbohydrate -0.162 -0.068 -0.048 -0.003 -0.027 0.320
Energy - Kcal -0.101 -0.040 -0.027 -0.002 -0.029 0.204

Calcium -0.118 -0.028 -0.008 0.000 -0.033 0.191
Iron -0.106 -0.112 -0.016 -0.002 -0.007 0.257

Retinol -0.006 -0.003 -0.001 0.000 -0.014 0.022
Carotene -0.004 -0.005 -0.003 0.000 -0.013 0.022

Retinol equivalent -0.005 -0.003 -0.001 0.000 -0.013 0.022
Thiamin -0.145 -0.146 -0.019 -0.004 -0.010 0.340

Riboflavin -0.024 -0.050 -0.003 -0.001 -0.001 0.083
Niacin Equivalent -0.044 -0.039 -0.008 -0.001 -0.008 0.103

Folate -0.052 -0.063 -0.009 -0.003 0.002 0.132
Sodium -0.158 -0.049 -0.015 -0.001 -0.061 0.285
Starch -0.300 -0.106 -0.090 -0.006 -0.050 0.574

Glucose -0.013 -0.024 -0.004 -0.001 -0.005 0.048
Fructose -0.019 -0.027 -0.005 -0.001 -0.005 0.060
Sucrose -0.006 -0.030 -0.002 -0.001 0.001 0.041
Maltose -0.194 -0.033 -0.037 0.001 -0.026 0.302
Lactose -0.002 -0.004 0.000 0.000 -0.004 0.009

Other sugars -0.015 -0.002 -0.001 0.000 -0.009 0.027
Total sugars -0.024 -0.029 -0.006 -0.001 -0.003 0.065

Non-milk extr sugars -0.005 -0.025 -0.002 0.000 0.001 0.033
Fibre:Southgate -0.218 -0.103 -0.038 -0.004 -0.040 0.418

Potassium -0.017 -0.008 -0.004 -0.002 -0.005 0.037
Magnesium -0.041 -0.020 -0.009 -0.001 -0.009 0.082

Copper -0.040 -0.017 -0.011 -0.001 -0.008 0.079
Zinc -0.066 -0.026 -0.016 -0.001 -0.017 0.130

Vitamin B6 -0.047 -0.101 -0.016 -0.008 0.006 0.178
Vitamin B12 -0.007 -0.026 -0.002 -0.001 -0.005 0.041
Phosphorus -0.065 -0.029 -0.015 -0.001 -0.018 0.131

Biotin -0.013 -0.008 -0.003 0.000 -0.005 0.030
Pantothenic acid -0.038 -0.030 -0.010 -0.002 -0.011 0.094

Vitamin E -0.017 -0.014 -0.007 -0.002 -0.029 0.065
Cholesterol -0.005 -0.002 -0.001 0.000 -0.015 0.020
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Table 9: Nutrient elasticities for fruits and vegetables group
Tinned & One-a-Day Other Fruit/Veg

Nutrient Fresh Frozen Processed Only Fruit/Veg Expend
Vegetable Protein -0.036 -0.011 -0.010 -0.033 -0.001 0.095

Fat -0.012 -0.001 0.000 -0.013 -0.010 0.036
Saturates -0.007 0.000 0.000 -0.006 -0.006 0.019

Mono-unsaturates -0.010 0.000 0.000 -0.015 -0.007 0.033
Poly-unsaturates -0.028 -0.002 -0.001 -0.025 -0.027 0.082

Carbohydrate -0.047 -0.004 -0.012 -0.024 -0.003 0.093
Energy - Kcal -0.030 -0.003 -0.007 -0.019 -0.005 0.064

Calcium -0.028 -0.003 -0.004 -0.012 -0.003 0.051
Iron -0.032 -0.006 -0.011 -0.021 0.000 0.073

Retinol -0.004 0.000 0.000 0.000 -0.007 0.008
Carotene -0.590 -0.081 -0.053 -0.041 -0.062 0.818

Retinol equivalent -0.191 -0.026 -0.017 -0.013 -0.024 0.267
Thiamin -0.054 -0.011 -0.007 -0.026 -0.003 0.104

Riboflavin -0.014 -0.002 -0.002 -0.006 0.000 0.025
Niacin Equivalent -0.017 -0.003 -0.004 -0.011 0.000 0.037

Vitamin C -0.345 -0.045 -0.033 -0.251 0.006 0.690
Vitamin D -0.004 0.000 0.000 0.000 -0.008 0.010

Folate -0.062 -0.011 -0.005 -0.024 -0.002 0.105
Sodium -0.009 -0.001 -0.007 -0.026 -0.012 0.058
Starch -0.007 -0.004 -0.004 -0.011 -0.007 0.034

Glucose -0.205 -0.005 -0.073 -0.092 0.008 0.381
Fructose -0.296 -0.005 -0.080 -0.121 0.005 0.511
Sucrose -0.059 -0.003 -0.007 -0.027 -0.001 0.100
Maltose 0.001 0.000 -0.005 0.000 0.001 0.004
Lactose -0.001 0.000 0.000 0.000 -0.003 0.003

Other sugars -0.057 -0.022 -0.005 -0.005 -0.002 0.092
Total sugars -0.088 -0.004 -0.021 -0.037 0.000 0.154

Non-milk extr sugars 0.010 -0.002 -0.014 -0.046 0.011 0.049
Fibre:Southgate -0.165 -0.033 -0.034 -0.066 0.000 0.305

Potassium -0.040 -0.003 -0.007 -0.015 -0.001 0.067
Magnesium -0.023 -0.004 -0.005 -0.017 0.001 0.050

Copper -0.026 -0.001 -0.008 -0.008 0.000 0.044
Zinc -0.019 -0.005 -0.004 -0.012 -0.001 0.041

Vitamin B6 -0.080 -0.005 -0.009 -0.023 -0.006 0.124
Vitamin B12 -0.001 0.000 0.000 0.000 -0.002 0.002
Phosphorus -0.024 -0.005 -0.005 -0.016 -0.001 0.052

Biotin -0.014 -0.001 -0.002 -0.017 0.002 0.034
Pantothenic acid -0.041 -0.003 -0.004 -0.011 -0.002 0.061

Vitamin E -0.075 -0.004 -0.012 -0.022 -0.027 0.139
Cholesterol -0.003 0.000 0.000 0.000 -0.005 0.006
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Table 10: Nutrient elasticities for fats and sugars group
All Biscuits, Chips & Candies & Fat/Sugars

Nutrient Fats Cakes Crisps Other Expend
Vegetable Protein -0.009 -0.044 -0.028 -0.008 0.089

Fat -0.165 -0.086 -0.054 -0.030 0.351
Saturates -0.122 -0.104 -0.050 -0.053 0.339

Mono-unsaturates -0.172 -0.086 -0.061 -0.027 0.363
Poly-unsaturates -0.270 -0.048 -0.054 0.015 0.388

Carbohydrate -0.028 -0.118 -0.044 -0.130 0.312
Energy - Kcal -0.075 -0.092 -0.042 -0.074 0.286

Calcium -0.008 -0.034 -0.006 -0.025 0.072
Iron -0.009 -0.041 -0.019 -0.022 0.091

Retinol -0.150 -0.018 -0.006 0.007 0.185
Carotene -0.032 -0.004 -0.002 -0.001 0.042

Retinol equivalent -0.116 -0.013 -0.005 0.005 0.142
Thiamin -0.005 -0.023 -0.019 -0.006 0.054

Riboflavin -0.003 -0.012 -0.004 -0.011 0.029
Niacin Equivalent -0.004 -0.011 -0.014 -0.004 0.033

Vitamin C -0.004 -0.002 -0.036 -0.001 0.044
Vitamin D -0.172 -0.015 -0.007 0.016 0.197

Sodium -0.041 -0.046 -0.032 -0.010 0.134
Starch -0.015 -0.084 -0.073 -0.012 0.187

Glucose -0.032 -0.111 -0.012 -0.164 0.308
Fructose -0.023 -0.079 -0.008 -0.097 0.200
Sucrose -0.061 -0.230 -0.022 -0.380 0.665
Maltose -0.014 -0.052 -0.005 -0.094 0.157
Lactose -0.012 -0.036 -0.003 -0.046 0.094

Other sugars -0.023 -0.058 -0.008 -0.180 0.255
Total sugars -0.041 -0.151 -0.014 -0.246 0.435

Non-milk extr sugars -0.056 -0.206 -0.018 -0.349 0.605
Fibre:Southgate -0.012 -0.049 -0.071 -0.008 0.143

Potassium -0.004 -0.008 -0.024 -0.004 0.040
Magnesium -0.005 -0.015 -0.014 -0.010 0.044

Copper -0.007 -0.022 -0.016 -0.016 0.060
Zinc -0.006 -0.021 -0.012 -0.012 0.052

Vitamin B6 -0.006 -0.007 -0.055 0.004 0.066
Vitamin B12 -0.006 -0.007 -0.001 -0.005 0.018
Phosphorus -0.008 -0.029 -0.018 -0.016 0.072

Biotin -0.004 -0.009 -0.002 -0.005 0.020
Pantothenic acid -0.005 -0.013 -0.012 -0.008 0.037

Vitamin E -0.294 -0.045 -0.107 0.015 0.466
Cholesterol -0.059 -0.059 -0.005 -0.016 0.143
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Table 11: Nutrient elasticities for drinks group
Soft Tea & Drinks

Nutrient Alcohol Drinks Coffee Water Expend
Vegetable Protein 0.060 0.017 -0.340 0.121 0.231
Animal Protein 0.003 0.001 -0.017 0.006 0.012

Fat 0.005 0.001 -0.027 0.010 0.018
Saturates 0.007 0.002 -0.041 0.015 0.028

Mono-unsaturates 0.004 0.001 -0.023 0.008 0.015
Poly-unsaturates 0.001 0.000 -0.005 0.002 0.004

Carbohydrate 0.022 -0.019 -0.113 0.043 0.099
Energy - Kcal 0.013 -0.007 -0.090 0.033 0.076

Calcium 0.033 0.006 -0.189 0.068 0.131
Iron 0.064 0.019 -0.369 0.132 0.252

Retinol 0.024 0.007 -0.134 0.048 0.090
Carotene 0.002 -0.018 -0.002 0.002 0.017

Retinol equivalent 0.017 -0.001 -0.090 0.033 0.066
Thiamin 0.035 0.010 -0.193 0.069 0.130

Riboflavin 0.093 0.026 -0.520 0.186 0.352
Niacin Equivalent 0.084 0.021 -0.469 0.168 0.321

Vitamin C 0.006 -0.047 -0.005 0.007 0.046
Vitamin D 0.018 0.005 -0.103 0.037 0.069

Folate 0.103 0.028 -0.575 0.205 0.390
Sodium 0.015 0.002 -0.083 0.030 0.059
Starch 0.008 0.002 -0.046 0.016 0.031

Glucose 0.019 -0.126 -0.049 0.030 0.151
Fructose 0.014 -0.140 -0.012 0.018 0.136
Sucrose 0.039 -0.026 -0.203 0.076 0.170
Maltose 0.075 0.013 -0.447 0.160 0.317
Lactose 0.013 0.004 -0.073 0.026 0.049

Other sugars 0.094 0.019 -0.525 0.188 0.363
Total sugars 0.036 -0.040 -0.182 0.069 0.168

Non-milk extr sugars 0.050 -0.059 -0.250 0.096 0.236
Alcohol -1.000 -0.037 -0.079 -0.034 1.091

Potassium 0.120 0.034 -0.676 0.241 0.458
Magnesium 0.114 0.031 -0.645 0.230 0.440

Copper 0.120 0.035 -0.675 0.241 0.456
Zinc 0.066 0.019 -0.368 0.131 0.248

Vitamin B6 0.047 0.000 -0.269 0.097 0.197
Vitamin B12 0.006 -0.006 -0.031 0.012 0.028
Phosphorus 0.051 0.012 -0.291 0.104 0.201

Biotin 0.131 0.036 -0.738 0.264 0.502
Pantothenic acid 0.056 0.016 -0.418 0.148 0.307

Cholesterol 0.002 0.000 -0.009 0.003 0.006
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Table 12: Nutrient elasticities for hot takeaway group
Hot HT

Nutrient Takeaway Expend
Vegetable Protein -0.040 0.049
Animal Protein -0.064 0.079

Fat -0.038 0.046
Saturates -0.032 0.040

Mono-unsaturates -0.043 0.054
Poly-unsaturates -0.039 0.048

Carbohydrate -0.023 0.028
Energy - Kcal -0.033 0.041

Calcium -0.019 0.023
Iron -0.020 0.025

Retinol -0.009 0.011
Carotene -0.036 0.044

Retinol equivalent -0.018 0.022
Thiamin -0.023 0.029

Riboflavin -0.009 0.011
Niacin Equivalent -0.032 0.039

Vitamin C -0.018 0.022
Vitamin D -0.029 0.036

Folate -0.010 0.012
Sodium -0.041 0.051
Starch -0.041 0.050

Glucose -0.011 0.014
Fructose -0.008 0.010
Sucrose -0.001 0.002
Maltose -0.010 0.012
Lactose -0.005 0.006

Other sugars -0.014 0.017
Total sugars -0.005 0.006

Fibre:Southgate -0.031 0.038
Potassium -0.009 0.012

Magnesium -0.013 0.016
Copper -0.013 0.016

Zinc -0.030 0.037
Vitamin B6 -0.025 0.031

Vitamin B12 -0.037 0.046
Phosphorus -0.032 0.039

Pantothenic acid -0.024 0.030
Vitamin E -0.032 0.039

Cholesterol -0.055 0.068
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