

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Stata tip 15: Function graphs on the fly

Nicholas J. Cox
University of Durham, UK
n.j.cox@durham.ac.uk
[G] graph twoway function gives several examples of how function graphs may be drawn on the fly. The manual entry does not quite explain the full flexibility and versatility of the command. Here is a further advertisement on its behalf. To underline a key feature: you do not need to create variables following particular functions. The command handles all of that for you. We will look at two more examples.

A common simple need is to draw a circle. A trick with twoway function is to draw two half-circles, upper and lower, and combine them. If you are working in some scheme using color, you will usually also want to ensure that the two halves are shown in the same color. The aspect () option was explained in Cox (2004).

```
. twoway function sqrt(1 - x * x), ra(-1 1) ||
> function -sqrt(1 - x * x), ra(-1 1) aspect(1)
> legend(off) yla(, ang(h)) ytitle(, orient(horiz)) clp(solid)
```


MacKay $(2003,316)$ asserts that, if we transform beta distributions of variables P between 0 and 1 to the corresponding densities over logit $P=\ln [P /(1-P)]$, then we find always pleasant bell-shaped densities. In contrast, densities over P may have singularities at $P=0$ and $P=1$. This is the kind of textbook statement that should provoke some play with friendly statistical graphics software.

To explore MacKay's assertion, we need a standard result on changing variables (see, for example, Evans and Rosenthal 2004, theorems 2.6.2 and 2.6.3). Suppose that P is an absolutely continuous random variable with density function f_{P}, h is a function that is differentiable and monotone, and $X=h(P)$. The density function of X is then

$$
f_{X}(x)=\frac{f_{P}\left\{h^{-1}(x)\right\}}{\left|h^{\prime}\left\{h^{-1}(x)\right\}\right|}
$$

In our case, $h(P)=\operatorname{logit} P$, so that $h^{-1}(X)=\exp (X) /\{1+\exp (X)\}$ and $h^{\prime}\left\{h^{-1}(X)\right\}=$ $\{1+\exp (X)\}^{2} / \exp (X)$. In Stata terms, beta densities transformed to the logit scale are the product of betaden(p) or betaden(invlogit(x)) and $\exp (x) /(1+\exp (x))^{\wedge} 2$. The latter term may be recognized as a logistic density function, which always has a bell shape.

An example pair of original and transformed distributions is given by the commands below. To explore further in parameter space, you need only vary the parameters from 0.5 and 0.5 (and, if desired, to vary the range).

```
. twoway function betaden(0.5,0.5,x), ytitle(density) xtitle(p)
. twoway function betaden(0.5,0.5,invlogit(x)) * (exp(x) / (1 + exp(x))~2),
> ra(-10 10) ytitle(density) xtitle(logit p)
```


References

Cox, N. J. 2004. Stata tip 12: Tuning the plot region aspect ratio. Stata Journal 4(3): 357-358.

Evans, M. J. and J. S. Rosenthal. 2004. Probability and Statistics: The Science of Uncertainty. New York: W. H. Freeman.
MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge: Cambridge University Press. Also available at http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html.

