
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2004)
4, Number 4, pp. 402–420

Controlling for time-dependent confounding

using marginal structural models

Zoe Fewell
University of Bristol, UK

Zoe.Fewell@bristol.ac.uk

Miguel A. Hernán
Harvard School of
Public Health, USA

mhernan@hsph.harvard.edu

Frederick Wolfe
National Data Bank for
Rheumatic Diseases, USA

fwolfe@arthritis-research.org

Kate Tilling
University of Bristol, UK

Kate.Tilling@bristol.ac.uk

Hyon Choi
Harvard Medical School, USA

hchoi@partners.org

Jonathan A. C. Sterne
University of Bristol, UK

Jonathan.Sterne@bristol.ac.uk

Abstract. Longitudinal studies in which exposures, confounders, and outcomes
are measured repeatedly over time have the potential to allow causal inferences
about the effects of exposure on outcome. There is particular interest in estimating
the causal effects of medical treatments (or other interventions) in circumstances
in which a randomized controlled trial is difficult or impossible. However, standard
methods for estimating exposure effects in longitudinal studies are biased in the
presence of time-dependent confounders affected by prior treatment.

This article describes the use of marginal structural models (described by
Robins, Hernán, and Brumback [2000]) to estimate exposure or treatment effects
in the presence of time-dependent confounders affected by prior treatment. The
method is based on deriving inverse-probability-of-treatment weights, which are
then used in a pooled logistic regression model to estimate the causal effect of
treatment on outcome. We demonstrate the use of marginal structural models to
estimate the effect of methotrexate on mortality in persons suffering from rheuma-
toid arthritis.

Keywords: st0075, marginal structural models, causal models, weighted regression,
survival analysis, logistic regression, confounding

1 Introduction

Observational studies in which the recruited subjects are followed over time are called
cohort studies by epidemiologists and panel studies by social scientists. Values of the
characteristics of interest that are recorded when the subjects enter the study are known
as the baseline measurements. Subjects are followed up until the outcome event occurs
or they are censored. Censoring occurs when the study ends or the subject withdraws
from the study. In the context of epidemiological research, the outcome event might be

c© 2004 StataCorp LP st0075
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death or the occurrence of a particular disease or illness. The time between the start of
follow-up and occurrence of the outcome event is called the failure time.

The problem addressed here is estimation of the causal effect of exposure to treat-

ment on the outcome event, but the method applies equally to exposures or risk factors

that are not assigned by a health professional. In observational studies, the control
of confounding is a fundamental problem in analyzing data and interpreting results.
A confounder or confounding variable is associated with both the occurrence of the
outcome event and the treatment of interest. Confounding can be controlled by strati-
fication, for example by using Mantel–Haenszel methods, or by using regression models
in which both the treatment and the confounders are included as covariates.

Here we will consider observational studies in which measurements of exposures and
confounders are made (updated) on a number of different occasions. Use of standard
regression models for the analysis of cohort studies with time-updated measurements
may result in biased estimates of treatment effects if time-dependent confounders af-
fected by prior treatment are present. A covariate is a time-dependent confounder if it
predicts

1. future treatment and

2. future outcome, conditional on past treatment.

If past treatment predicts the current covariate value (e.g., if the covariate is on the
causal pathway between treatment and the outcome), standard survival analyses with
time-updated treatment effects will give biased treatment effect estimates.

For example, consider a study to estimate the effect of methotrexate on mortal-
ity among rheumatoid arthritis sufferers. Methotrexate is a disease-modifying anti-
rheumatic drug (DMARD) commonly prescribed to people suffering from rheumatoid
arthritis. The health assessment questionnaire disability index, a measure of a patient’s
level of functional ability, predicts whether a person suffering from rheumatoid arthritis
will be treated with methotrexate and also predicts survival of that person. There-
fore, disability index is a time-dependent confounder. Additionally, treatment with
methotrexate lowers disability index. This is illustrated in figure 1.

Figure 1: Time-dependent confounding

There are several standard methods that might be used in this setting to estimate
the causal effect of treatment on the outcome, but all will produce biased results.
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1. The crude estimate, in which there is no control for confounding, will produce
biased estimates because methotrexate will tend to be given to people whose dis-
ability index is higher and who therefore experience greater severity of rheumatoid
arthritis and higher death rates.

2. Control for the baseline values of confounders such as disability index will give bi-
ased estimates because this ignores the fact that people who started methotrexate
therapy after the start of the study will be those whose disability index worsened.

3. Control for time-updated measurements of time-dependent confounders affected
by prior treatment such as disability index will give biased estimates because
methotrexate acts partly by lowering the disability index score. This is illustrated
in figure 2.

Figure 2: Time-dependent confounder affected by prior treatment

In figure 2, methotrexate therapy at time t predicts the subsequent value of dis-
ability index. Additionally, disability index predicts the outcome (death) and future
methotrexate therapy. The health assessment questionnaire disability index lies on the
causal pathway between exposure to methotrexate at time t and the outcome. In this
case, controlling for disability index will bias the estimation of treatment effect, as any
effect of methotrexate acting via disability index will be lost. If there is no causal path-
way between methotrexate and death, or between disability index and death, standard
methods may still produce biased results when disability index is affected by previous
treatment. For further information, see Robins et al. (1992).

Marginal structural models aim to appropriately control for the effects of time-
dependent confounders affected by prior treatment. We describe how to fit these models
here, using estimation of the effect of methotrexate on mortality among rheumatoid
arthritis patients as an illustration.

2 Example

The analysis described in this paper is performed on data from the Wichita Arthritis
Center database, which is described in detail in Choi et al. (2002), and was done using
Stata version 8.2. The data consist of observations on 1,240 patients with rheumatoid
arthritis who were seen at the Wichita Arthritis Center between 1 January 1981 and
31 December 1999, contains 91,007 person-months of observation, and is arranged so
that there is one observation per person per month that they remained in the study.
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Censoring occurred two years after a subject last visited the clinic, and missing data
is filled in using the last known values of the covariates. The aim of the analysis is to
estimate the effect of methotrexate on all-cause mortality among rheumatoid arthritis
patients.

For the purposes of the analysis, we will assume that, once a patient starts taking
methotrexate, they will remain on it until the end of follow-up. This provides a conser-
vative estimate of the treatment hazard ratio, analogous to intention-to-treat analysis
in an unblinded randomized controlled trial, and can be considered as an intention to
continue treatment analysis.

2.1 Variables

The outcome variable in these analyses will be dead, and the treatment variable will be
mtxspan. Variable cens is an indicator for whether follow-up for a patient was censored
during the current month.

storage display value
variable name type format label variable label

dead byte %8.0g Death status (1/0)
mtxspan byte %9.0g On methotrexate
cens byte %9.0g Censored

As described below, we will model patients’ probabilities of being treated or un-
censored over time. To do this, we will include variables measured at times t (the
current month) and t − 12 (one year ago) in logistic regression models. This means
that we are assuming that only the current value and the value one year previously of
each covariate are useful for predicting the probability of being treated or uncensored.
For this analysis, the variables included in these models record use of other DMARDs,
erythrocyte sedimentation rate, patient’s global assessment of disease severity, health
assessment questionnaire score, tender-joint count, prednisone use, and smoking, mea-
sured at month t and month t−12, if applicable. For the first twelve months of follow-up,
the lagged variables are defined to be equal to the baseline value of that variable.

(Continued on next page)
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storage display value
variable name type format label variable label

dmrd byte %9.0g othdmrd On other DMARDs
dmrd_nd byte %9.0g othdmrd On other DMARDs 12 months before
esrc byte %9.0g esrc Erythrocyte sedimentation rate
esrc_nd byte %9.0g esrc Erythrocyte sedimentation rate

12 months before
gs byte %14.0g gs Patient’s assessment of global

disease severity
gs_nd byte %14.0g gs Patient’s global assessment of

disease severity 12 months
before

haq byte %9.0g haq Health assessment questionnaire
score

haq_nd byte %9.0g haq Health assessment questionnaire
score 12 months before

jc byte %9.0g jc Tender joint count
jc_nd byte %9.0g jc Tender joint count 12 months

before
onprd2 byte %8.0g On prednisone
onprd2_nd byte %9.0g On prednisone 12 months before
smokenow byte %11.0g smoking Smoking by code

In addition to the variables described above, we will estimate the probabilities of
being treated and uncensored conditionally on variables measured at baseline. These
are age, use of other DMARDs, rheumatoid arthritis duration, education, erythrocyte
sedimentation rate, patient’s global assessment of disease severity, health assessment
questionnaire score, tender-joint count, prednisone use, presence of rheumatoid factor,
sex, smoking, and calendar year.

storage display value
variable name type format label variable label

age_0 byte %12.0g age Baseline value of age
dmrd_0 byte %9.0g othdmrd On other DMARDs at baseline
duration_0 byte %9.0g duration Baseline value of duration
edu_0 byte %26.0g education Education level at baseline
esrc_0 byte %9.0g esrc Erythrocyte sedimentation rate

at baseline
gs_0 byte %14.0g gs Patient’s assessment of global

disease severity at baseline
haq_0 byte %9.0g haq Health assessment questionnaire

score at baseline
jc_0 byte %9.0g jc Tender joint count at baseline
onprd2_0 byte %9.0g On prednisone at baseline
rapos byte %26.0g rapos Rheumatoid factor
sex byte %8.0g Sex of patient
smoke_0 byte %11.0g smoking Smoking at baseline by code
year_0 byte %21.0g year Baseline value of year
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Many of these variables are categorical. The categories are described below.

age: esrc:
1 <=50 1 <=30
2 [51, 60] 2 >30
3 [61, 70] gs:
4 >70 1 [0, 3.333]

duration: 2 (3.333, 6.666]
1 [0, 3] 3 (6.666, 10]
2 (3, 10] jc:
3 >10 1 [0, 3]

education: 2 (3, 6]
1 <12 3 (6, 18]
2 =12 othdmrd:
3 >12 1 None

2 >=1
rapos: year:

0 Rheumatoid factor negative 0 Before 1981
1 Rheumatoid factor positive 1 1981-1990

smoking: 2 1991-2000
0 Never
1 Now
2 In the past

In the following display, we list some example data. The variable patkey records each
subject’s unique identity number, and cummonth records a person’s number of months
in the study. Person 10521 was censored in month 80, which is recorded by cens = 1
at cummonth = 80. The outcome, death, cannot be observed, and dead is recorded
as missing. Person 10541 died between month 4 and month 5 of follow-up, which is
recorded as dead = 1 at cummonth = 4. Also shown are the current tender-joint count
values, the values 12 months previously, and the baseline values.

. list patkey cummonth dead mtxspan cens jc jc_nd jc_0 in 87791/87800

patkey cummonth dead mtxspan cens jc jc_nd jc_0

87791. 10521 75 0 1 0 1 2 1
87792. 10521 76 0 1 0 1 2 1
87793. 10521 77 0 1 0 1 2 1
87794. 10521 78 0 1 0 1 2 1
87795. 10521 79 0 1 0 1 2 1

87796. 10521 80 . 1 1 1 2 1
87797. 10541 1 0 1 0 2 2 2
87798. 10541 2 0 1 0 1 2 2
87799. 10541 3 0 1 0 1 2 2
87800. 10541 4 1 1 0 1 2 2

3 Marginal structural models

Marginal structural models aim to estimate the effect of treatment on outcome by
appropriate control for the effects of time-dependent confounders. The model is fitted
in a two-stage process in which
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1. we estimate each subject’s probability of having their own treatment history and
use these to derive inverse-probability-of-treatment weights (IPTW), and

2. the treatment–outcome association is estimated in a regression model that is
weighted using the IPTWs.

3.1 Notation

The dataset we are using for this analysis has been discretized by time, so that there
is one observation per person per month that they remained in the study. The reason
for this is that, as mentioned in the previous section, lagged variables must be used.
Suppose, for example, that one subject had last visited the clinic one month ago and
that another had last visited six months ago. This would make it very difficult to create
a variable lagged to the last visit that would be comparable between subjects. With
our time-discretized dataset, the lagged variables are comparable between subjects.

Using the same notation as Hernán, Brumback, and Robins (2002), let Ti denote
the observed failure time of subject i, and let Ai(t) denote treatment of subject i at
time t. Throughout, Ai(t) is a dichotomous variable, taking the value 1 if subject i

receives treatment in month t and 0 otherwise. Let Vi denote a subset of the baseline
values of all covariates and Li(t) denote the values of the covariates at month t for
subject i. In this particular example, we will use Vi = Li(0), the baseline values of
all covariates. Ai(t) denotes treatment history (i.e., the vector of values of Ai(k) from
k = 0 to k = t − 1), and similarly the matrix Li(t) denotes history of time-dependent
confounders for subject i. We often suppress the i subscript denoting individual in
the notation because we assume that the random vector for each subject is drawn
independently from a distribution common to all subjects. We will also use standard
statistical notation, in which an uppercase letter denotes a random variable and the
corresponding lowercase letter denotes a particular realization of that random variable.

3.2 Counterfactuals

At each month t, A(t) can be either 1 or 0. If the study length is K months, there will
therefore be 2K different possible values for a(K).

We denote by Ta a subject’s failure time had they received treatment history a. Only
one value of a is observed for each subject, and the only failure time we observe is that for
which Ta = T . All other values of Ta occur contrary to fact and so are called counterfac-

tual variables. (For further discussion of counterfactuals, see Rothman and Greenland
[1998].) For each a, we will specify the marginal structural Cox proportional hazards
model

λTa
(t|V ) = λ0(t) exp {β1a(t) + β2V } (1)

where λTa
(t|V ) is the hazard of death at time t among subjects with baseline covariates

V had they all followed treatment history a, β1 and the vector β2 are unknown param-
eters to be estimated, and λ0 is an unspecified baseline hazard function. Our focus of
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interest is on parameter β1, which is an estimate of the causal log hazard ratio for the
effect of treatment on mortality, comparing subjects’ hazard of mortality if they were
continuously treated with their hazard of mortality if they were never treated.

This model is known as a marginal structural model because

1. it is a model for the marginal distribution of the counterfactual variables Ta (the
counterfactual survival times associated with each treatment history a) conditional
on the baseline variables V , rather than a model for the joint distribution of the
Ta, and

2. causal models, or models for counterfactual variables, are often referred to as
structural in the econometric and social sciences literature (Hernán, Brumback,
and Robins 2002).

4 Inverse-probability-of-treatment weights (IPTW)

Each observation on an individual will be weighted using an inverse-probability-of-
treatment weight. For the time being, we assume that each subject is followed-up
until the outcome event occurs or the study ends, whichever comes first. This means
that there will be no censoring by competing risks. In the following equations, A(−1)
is defined to be 0.

The inverse-probability-of-treatment weight is

W (t) =

t∏

k=0

1

f{A(k)|A(k − 1), L(k)}
(2)

where f(. . .) denotes the conditional probability mass function. However, in practice
these weights tend to be highly variable and fail to be approximately normally dis-
tributed. Therefore, the stabilized version

SW (t) =
t∏

k=0

f{A(k)|A(k − 1), V }

f{A(k)|A(k − 1), L(k)}
(3)

is preferable, due to its smaller variance, and yields 95% confidence intervals that
are narrower and have better coverage rates (Hernán, Brumback, and Robins 2000;
Robins, Hernán, and Brumback 2000).

Informally, the denominator of (3) can be thought of as a subject’s conditional
probability of receiving his or her own observed treatment history up to time t, given past
treatment and prognostic factor history. Note that V is included as L(0). The numerator
can be thought of, informally, as a subject’s conditional probability of receiving his or
her own observed treatment history up to time t, given past treatment history.

For the IPTW estimates to perform well, our estimate of SW (t) cannot be exceed-
ingly variable (Hernán, Brumback, and Robins 2002). To guarantee this, we reduce the
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number of free parameters in the model estimating SW (t). Instead of estimating a
separate intercept for each month, we assume that the intercept is a smooth function
and estimate it using cubic splines. Alternative methods would be to assume that the
intercept is constant in windows of, for example, 3 months, or to use other smoothing
techniques, such as kernel regression (Hernán, Brumback, and Robins 2000).

4.1 Deriving IPTWs using Stata

We use the command spbase (Sasieni 1994) to generate a truncated power basis for
a natural cubic spline. The variable used to create the basis is cummonth. The knots

option tells spbase where the knots in the spline should be: here months 4, 25, 52, 90,
and 165 were chosen. These correspond to the 5th, 27.5th, 50th, 72.5th, and 95th centiles
of cummonth. Finally, we give a name to the basis variables by using gen(spline).

. spbase cummonth, knots(4, 25, 52, 90, 165) gen(spline)

This basis can now be used in our regression models to adjust for cummonth.

We assume that, once a subject starts treatment, they remain on treatment until the
end of follow-up, and we can therefore view A(t) as a failure-time variable. Hence, we
can model the probability of being treated at month t by a Cox proportional hazards
model. However, because the dataset has been discretized into one observation per
person per month, we will use a pooled logistic regression model in which we model the
probability that each individual is treated in each month. This is equivalent to a Cox
model (D’Agostino, Lee, and Belanger 1990) because the hazard of treatment in any
single month is small.

To estimate the denominator of (3), we first fit a logistic regression in which we model
the association of the outcome variable mtxspan with the covariates measured at times
t, t− 12, and baseline, described in section 2.1. We also include as covariates cummonth
and the spline variables spline*. The regression is performed only for months up to
and including a subject’s first month on methotrexate. The variable mtx1stcu records
the month in which each person started methotrexate therapy, so we use the qualifier
if cummonth<=mtx1stcu | mtx1stcu==..

. xi: logistic mtxspan onprd2 i.dmrd i.haq i.gs i.esrc i.jc i.smokenow
> onprd2_nd i.dmrd_nd i.haq_nd i.gs_nd i.esrc_nd i.jc_nd onprd2_0
> i.duration_0 i.age_0 i.year_0 i.dmrd_0 i.haq_0 i.gs_0 i.esrc_0
> i.jc_0 i.smoke_0 sex i.edu_0 rapos cummonth spline*
> if cummonth<=mtx1stcu | mtx1stcu==.

(output omitted )

Following the logistic regression, we use the predict command to estimate the proba-
bility of receiving methotrexate for each subject-month included in the regression.

. predict pmtx if e(sample)
(option p assumed; Pr(mtxspan))
(37006 missing values generated)
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The 37,006 missing values generated are for the months following a subject’s methotrex-
ate initiation. As we assume that, once a subject begins taking methotrexate, they
remain on it until the end of follow-up, the probability of receiving methotrexate in the
months following initiation is equal to 1.

. replace pmtx=1 if cummonth>mtx1stcu
(37006 real changes made)

We have now estimated the probability of each person receiving methotrexate therapy
in each month, given their covariate history. We now derive the probability of a person’s
observed methotrexate treatment in each month, so that for months in which they are
not taking methotrexate, we need to subtract the estimated probability of treatment
from 1.

. replace pmtx=pmtx*mtxspan+(1-pmtx)*(1-mtxspan)
(53413 real changes made)

To estimate each subject’s probability of their complete treatment history up to each
month (the denominator in [3]), we multiply the estimated probabilities of their observed
treatment during each month cumulatively over time. The first estimated probability
for each subject is left as it is. For all others, the estimated probability at the current
time point is multiplied by the estimated probability at the previous time point. As
Stata works from the first observation on a subject to the last, the result is the estimated
probability of a subject’s observed treatment history.

. sort patkey cummonth

. by patkey: replace pmtx=pmtx*pmtx[_n-1] if _n!=1
(89767 real changes made)

. rename pmtx mtxdenom

. summ mtxdenom, detail

Pr(mtxspan)

Percentiles Smallest
1% .0008458 .0002996
5% .0034857 .0002996

10% .0064226 .0002996 Obs 91007
25% .0372735 .0002996 Sum of Wgt. 91007

50% .5785145 Mean .4944946
Largest Std. Dev. .3907536

75% .8852679 .999525
90% .9649602 .9995492 Variance .1526884
95% .982233 .9995544 Skewness -.1142317
99% .9948645 .9998104 Kurtosis 1.301617

Variable mtxdenom now contains the required denominator for (3). Using these values to
create the unstabilized version of the weight (2) would result in weights ranging between
1.0 and 3337.8. Using stabilized inverse-probability-of-treatment weights (3) will reduce
this range of values.

The numerator of (3) is estimated in a similar way to the denominator. The only
difference is that the initial logistic regression does not include covariates measured at
time t and time t − 12.
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. xi: logistic mtxspan onprd2_0 i.duration_0 i.age_0 i.year_0 i.dmrd_0
> i.haq_0 i.gs_0 i.esrc_0 i.jc_0 i.smoke_0 sex i.edu_0 rapos cummonth
> spline* if cummonth<=mtx1stcu | mtx1stcu==.

(output omitted )

. predict pmtx if e(sample)
(option p assumed; Pr(mtxspan))
(37006 missing values generated)

. replace pmtx=1 if cummonth>mtx1stcu
(37006 real changes made)

. replace pmtx=pmtx*mtxspan+(1-pmtx)*(1-mtxspan)
(53413 real changes made)

. sort patkey cummonth

. by patkey: replace pmtx=pmtx*pmtx[_n-1] if _n!=1
(89767 real changes made)

. rename pmtx mtxnum

Variable mtxnum now contains the required numerator for (3).

We derive the stabilized weight (3) by dividing the numerator by the denominator.

. gen stabweightmtx=mtxnum/mtxdenom

. summ stabweightmtx, detail

stabweightmtx

Percentiles Smallest
1% .0353742 .0067794
5% .0893559 .0067794

10% .1619441 .0067794 Obs 91007
25% .579341 .0067794 Sum of Wgt. 91007

50% .8884353 Mean 1.019517
Largest Std. Dev. 1.339553

75% .9990956 24.85306
90% 1.494492 24.89879 Variance 1.794403
95% 2.348431 24.94612 Skewness 7.473572
99% 6.083678 30.61479 Kurtosis 80.63894

The values of the stabilized weights are centered around 1.02 and show a much narrower
range ([0.007, 30.615]) than the unstabilized weights.

5 Censoring

In a cohort study, some subjects will drop out before the outcome event occurs or the
study ends. We say that these subjects are censored. Let C(t) be a dichotomous variable
taking the value 1 if a subject is censored in month t and 0 otherwise. C(t) will denote
censoring history (that is, the vector of values of C(k) from k = 0 to k = t − 1). To
deal with censoring in the marginal structural model, we again derive weights, this time
for the probability of remaining uncensored up to time t, and again use the stabilized
version of the weight. Each observation on an individual will then be weighted by the
IPTW (see section 4) multiplied by the inverse-probability-of-censoring weight, which we
will derive below. In the following equations, A(−1), C(−1), and L(−1) are defined to
be 0.
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The stabilized version of the inverse-probability-of-censoring weight is

SW †(t) =
t∏

k=0

Pr{C(k) = 0|C(k − 1) = 0, A(k − 1), V, T > k}

Pr{C(k) = 0|C(k − 1) = 0, A(k − 1), L(k − 1), T > k}
(4)

If we want to additionally adjust for censoring in our analysis, the conditioning event
in (3) for the IPTW changes to include C(k) = 0 so that the stabilized IPTW is now
estimated by

SW (t) =
t∏

k=0

f{A(k)|A(k − 1), V, C(k) = 0}

f{A(k)|A(k − 1), L(k), C(k) = 0}

In practice, changing the conditioning event does not affect the commands used to
estimate SW (t). The final weight for each subject-month is

SW (t) × SW †(t)

as shown at the end of section 5.1 below.

When dealing with censoring, we must also pay attention to the setup of the dataset.
In order to perform a pooled logistic regression, time, a continuous variable, must be
discretized. This requires some decisions to be made about how certain variables are
recorded. The two variables of concern here are the outcome, dead, and the censoring
variable, cens.

Consider a minidataset with only one subject. The subject is followed-up for three
months. Each month, all relevant covariates are measured and recorded in covar,
following which the decision whether to treat or not is made. This is recorded in the
variable treat. Following the third month, the subject sends a letter to the study
organizers informing them that he no longer wishes to participate in the study. The
subject is censored at month 4, and the outcome variable, dead, is not observed and so
is set to missing. This example dataset is displayed below. (Note that, in our example
of the effect of methotrexate on mortality in rheumatoid arthritis patients, letters were
not sent to drop out of the study. Censoring occurred 24 months after a subject’s last
clinic visit.)

month treat covar cens dead

1. 1 a1 l1 0 0
2. 2 a2 l2 0 0
3. 3 a3 l3 0 0
4. 4 . . 1 .

To estimate the weights due to censoring, we use (4). The probability of not being
censored at time k is estimated using treatment history and other covariate history at
time k − 1. Similarly, to estimate the mortality hazard ratio, we use the outcome at
time k and all other covariates at time k − 1. As our dataset stands, the values of
each variable that we want to use are not aligned. In order to analyze the data, it is
convenient to shift the values of cens and dead up by one, as shown.
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month treat covar cens dead

1. 1 a1 l1 0 0
2. 2 a2 l2 0 0
3. 3 a3 l3 1 .
4. 4 . . . .

Suppose that we want to estimate the denominator of (4). We will fit a logistic
regression for cens based on treatment and covariate history and use it to predict
values for Pr{C(k) = 0}, which are recorded in the variable pnotcens.

month treat covar cens pnotcens dead

1. 1 a1 l1 0 p1 0
2. 2 a2 l2 0 p2 0
3. 3 a3 l3 1 p3 .
4. 4 . . . . .

At this point, we could replace the value p3 with 1-p3 and then multiply the esti-
mated probabilities together to obtain the subject’s estimated probability of observed
censoring history. This would be analogous to the procedure used to calculate the
treatment weights. In practice, however, there is no point in replacing the value p3 with
1-p3. This value will never be used in the final weighted model because the outcome,
dead, is recorded as missing. We therefore multiply the estimated probabilities together
as they are and record the results in the variable censden.

month treat covar cens pnotcens censden dead

1. 1 a1 l1 0 p1 p1 0
2. 2 a2 l2 0 p2 p1*p2 0
3. 3 a3 l3 1 p3 p1*p2*p3 .
4. 4 . . . . . .

5.1 Deriving censoring weights using Stata

The weights due to censoring are estimated in a similar way to the treatment weights. To
estimate the denominator of (4), we first perform a logistic regression in which we model
the association of the outcome variable cens with the covariates measured at times t,
t − 12, and baseline, described in section 2.1. We additionally adjust for methotrexate
therapy using mtxspan. We also include as covariates cummonth and the spline variables
spline*. The regression is performed for all person-months.

. xi: logistic cens mtxspan onprd2 i.dmrd i.haq i.gs i.esrc i.jc i.smokenow
> onprd2_nd i.dmrd_nd i.haq_nd i.gs_nd i.esrc_nd i.jc_nd onprd2_0
> i.duration_0 i.age_0 i.year_0 i.dmrd_0 i.haq_0 i.gs_0 i.esrc_0 i.jc_0
> i.smoke_0 sex i.edu_0 rapos cummonth spline*

(output omitted )
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Following the logistic regression, we use the predict command to estimate the proba-
bility of being censored for each month of observation.

. predict pcens if e(sample)
(option p assumed; Pr(cens))

We have now estimated the probability of each person being censored in each month,
given their covariate history. Subtracting these estimated probabilities from 1 results
in an estimate of the probability of a person being uncensored in each month.

. replace pcens=1-pcens
(91007 real changes made)

To derive each subject’s estimated probability of their complete censoring history up to
each month (the denominator in [4]), we multiply the estimated probabilities of being
uncensored for each month cumulatively over time. The first estimated probability for
each subject is left as it is. For all others, the estimated probability at the current time
point is multiplied by the estimated probability at the previous time point. As Stata
works from the first observation on a subject to the last, the result is an estimate of the
probability of a subject’s observed uncensored history.

. sort patkey cummonth

. by patkey: replace pcens=pcens*pcens[_n-1] if _n!=1
(89767 real changes made)

. rename pcens censdenom

. summ censdenom, detail

Pr(cens)

Percentiles Smallest
1% .0712816 .0034389
5% .1937141 .0036158

10% .2856901 .0039224 Obs 91007
25% .4672786 .0040208 Sum of Wgt. 91007

50% .6622012 Mean .6308459
Largest Std. Dev. .2353487

75% .822933 .9974812
90% .9229034 .9974812 Variance .055389
95% .9598724 .9975808 Skewness -.4834176
99% .9881712 .9978794 Kurtosis 2.395454

Variable censdenom now contains the required denominator for (4). Using these values
to create the unstabilized version of the weight would result in weights ranging between
1.0 and 290.8. Using the stabilized weights (4) will reduce this range of values.

The numerator of (4) is estimated in a similar way to the denominator, except we
do not include covariates measured at times t and t−12 in the initial logistic regression.

. xi: logistic cens mtxspan onprd2_0 i.duration_0 i.age_0 i.year_0 i.dmrd_0
> i.haq_0 i.gs_0 i.esrc_0 i.jc_0 i.smoke_0 sex i.edu_0 rapos cummonth spline*

(output omitted )

. predict pcens if e(sample)
(option p assumed; Pr(cens))
. replace pcens=1-pcens
(91007 real changes made)
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. sort patkey cummonth

. by patkey: replace pcens=pcens*pcens[_n-1] if _n!=1
(89767 real changes made)

. rename pcens censnum

Variable censnum now contains the required numerator for (4).

The censoring weight is generated by dividing the numerator by the denominator.

. gen censweight=censnum/censdenom

. summ censweight, detail

censweight

Percentiles Smallest
1% .7237051 .3170074
5% .8562644 .3278275

10% .9037426 .3361159 Obs 91007
25% .9569152 .3386074 Sum of Wgt. 91007

50% .995711 Mean .9992465
Largest Std. Dev. .1126509

75% 1.026015 3.472285
90% 1.088238 3.660231 Variance .0126902
95% 1.160644 3.725618 Skewness 3.091838
99% 1.405247 3.794446 Kurtosis 43.95382

The values of the stabilized weights are centered around 0.999 and show a much narrower
range ([0.317, 3.794]) than the unstabilized weights.

The overall weight SW (t)×SW †(t) is calculated by multiplying stabweightmtx by
censweight.

. gen stabweightcens=stabweightmtx*censweight

6 Marginal structural model

We can now use model (1) to estimate the causal hazard ratio for the effect of treatment
on mortality. This is done by weighting the observation for each subject-month by
SW (t) × SW †(t). In the weighted analysis, each subject’s probability of being treated
at each time point is unrelated to their time-updated covariates.

Because stcox does not allow for time-varying, subject-specific weights, we will again
fit a pooled logistic regression. When we additionally weight each subject, we introduce
within subject correlation, which must then be adjusted for by deriving robust variance
estimators (Hernán, Brumback, and Robins 2000). The model is

logit pr{D(t) = 1|D(t − 1) = 0, A(t), V } = β0(t) + β1A(t − 1) + β2V

where D(t) = 1 if the subject dies in month t and D(t) = 0 otherwise.
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6.1 Fitting the marginal structural model using Stata

The following shows the result fitting an unweighted pooled logistic regression. Note
that, as explained earlier, the odds ratios are equivalent to the hazard ratios that would
be obtained from the equivalent Cox model.

. xi: logistic dead mtxspan onprd2_0 i.duration_0 i.age_0 i.year_0 i.dmrd_0
> i.haq_0 i.gs_0 i.esrc_0 i.jc_0 i.smoke_0 sex i.edu_0 rapos onprd2_nd
> i.dmrd_nd i.haq_nd i.gs_nd i.esrc_nd i.jc_nd onprd2 i.dmrd i.haq i.gs
> i.esrc i.jc i.smokenow cummonth spline*

(output omitted )

Logistic regression Number of obs = 89958
LR chi2(49) = 452.35
Prob > chi2 = 0.0000

Log likelihood = -1140.1952 Pseudo R2 = 0.1655

dead Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

mtxspan .5574524 .1108437 -2.94 0.003 .3775331 .823115

(output omitted )

This estimate of the mortality hazard ratio of methotrexate therapy in rheumatoid
arthritis sufferers is biased (as explained in section 1), although it does suggest that
methotrexate has a beneficial effect.

To fit the marginal structural model, we weight the observation for each subject-
month by SW (t)× SW †(t) by including in the command [pw=stabweightcens]. This
weighting means that observations on the same subject will be correlated: we therefore
use the cluster option to derive robust standard errors allowing for clustering.

. xi: logistic dead mtxspan onprd2_0 i.duration_0 i.age_0 i.year_0 i.dmrd_0
> i.haq_0 i.gs_0 i.esrc_0 i.jc_0 i.smoke_0 sex i.edu_0 rapos cummonth
> spline* [pw=stabweightcens], cluster(patkey)

(output omitted )

Logistic regression Number of obs = 89958
Wald chi2(29) = 200.31
Prob > chi2 = 0.0000

Log pseudo-likelihood = -1359.8394 Pseudo R2 = 0.1590

(standard errors adjusted for clustering on patkey)

Robust
dead Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

mtxspan .4299443 .1233882 -2.94 0.003 .2449791 .7545629

(output omitted )

This estimates that the mortality hazard ratio of methotrexate therapy on rheuma-
toid arthritis sufferers is 0.4 (95% CI; [0.2, 0.8]), as reported in Choi et al. (2002).
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7 Discussion

There are several assumptions that must be made when fitting a marginal structural
model. The first is that there are no unmeasured confounders; i.e., we have measured all
variables that are associated with both mortality and the probability of being treated.
Note that this assumption cannot be tested using the data. Secondly, we assume that the
marginal structural model for the effect of methotrexate on mortality among rheumatoid
arthritis patients is correctly specified. Finally, we assume that the models for initiation
of treatment and censoring used to estimate SW (t) and SW †(t) are correctly specified.
These are strong assumptions, but they are the same assumptions required to make a
causal interpretation when estimating the effect of a time-independent treatment using
standard statistical methods. However, to make causal inferences about time-varying
treatments from standard statistical models, we must assume that there is no time-
dependent confounding by covariates that are affected by previous treatment. This
assumption is not required when using a marginal structural model with IPTWs because
the method adjusts appropriately for this type of confounding.

We have shown how to control for time-dependent confounders affected by prior
treatment using a marginal structural model in which the treatment is a dichotomous
variable. The method will also work with an ordinal treatment variable, for example,
if the variable records a subject’s dose of methotrexate in units of 5mg. Similarly, a
continuous treatment variable can be used. For more details on fitting a marginal struc-
tural model with ordinal or continuous treatments, see Robins, Hernán, and Brumback
(2000). As stated in the introduction, marginal structural models can also be used to
estimate the exposure–outcome association for exposures or risk factors that are not
assigned by a health professional.

Although useful to unbiasedly estimate the effect of time-dependent exposures in the
presence of time-dependent confounders affected by prior treatment, marginal structural
models do have their limitations. They cannot be used when, at time t, a subset of the
population defined by the variables in L is certain to have a particular exposure, for
example in an occupational cohort if people at work on day t were guaranteed exposure.
Hence, marginal structural models should not be used in occupational cohort studies.

Marginal structural models also cannot be used to estimate the effects of dynamic
treatment regimes. An example of a dynamic treatment regime is to treat when a pa-
tient’s tender-joint count reaches a certain value. They can, however, be used to estimate
the effect of a nondynamic treatment regime when the data are derived from a cohort
study in which the treatment regime is dynamic. In this example, we estimated the
hazard ratio of always taking methotrexate compared with never taking methotrexate
on mortality in rheumatoid arthritis patients.

For cases in which marginal structural models cannot be used, G-estimation of struc-
tural nested models can be used instead. For information on G-estimation in Stata and
a description of the stgest command, see Sterne and Tilling (2002).

Marginal structural models have some advantages over G-estimation. The major
advantage of using marginal structural models over G-estimation to control for time-
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dependent confounding is their close resemblance to standard modeling techniques. Fur-
ther, fitting a marginal structural model is usually less computationally demanding. The
example we have shown implements standard logistic regression techniques which makes
marginal structural models extremely intuitive to use and easy to interpret. Whether the
study is using G-estimation or marginal structural models to control for time-dependent
confounding, it is crucial that the dataset contains comprehensive information on the
variables used by the physician to make the decision to initiate treatment.

For more information on the advantages and disadvantages of marginal structural
models versus structural nested models, see Robins (1999).
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