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Abstract. Many statistical problems involve comparison and, in particular, the as-
sessment of agreement or disagreement between data measured on identical scales.
Some commonly used plots are often ineffective in assessing the fine structure of
such data, especially scatterplots of highly correlated variables and plots of values
measured “before” and “after” using tilted line segments. Valuable alternatives
are available using horizontal reference patterns, changes plotted as parallel lines,
and parallel coordinates plots. The quantities of interest (usually differences on
some scale) should be shown as directly as possible, and the responses of given
individuals should be identified as easily as possible.

Keywords: gr0005, graphics, comparison, agreement, paired data, panel data,
scatterplot, difference-mean plot, Bland–Altman plot, parallel lines plot, parallel
coordinates plot, pairplot, parplot, linkplot, Tukey

1 Introduction

In one way or another, much statistical data analysis can be regarded as comparative.
Exploratory projects often center on comparison of groups or of variables. Modeling
projects can be formulated as comparisons of one or more model predictions with data
on response variables. Are levels, spreads, shapes, trends, predictions, estimates, or
whatever similar despite differences or different despite similarities? Above all, how
should we best compare those features quantitatively in ways that summarize the data
well but also direct attention to any important details? Broadly interpreted, the subject
of comparison is wide enough to cover a large fraction of statistical science.

Graphics clearly have a major role to play in comparison. Already in this sequence
of columns, we have seen Stata graphics commands used to compare distributions and
categorical arrays (Cox 2004a,b). Other examples come readily to hand. The scatter-
plot, perhaps the most versatile weapon in the statistical graphics armory, is a device
for comparing values of two variables, both individually and collectively. Indeed, little
that is useful in statistical graphics does not afford comparisons.

In this column, we focus more narrowly. The key question of comparison discussed
is assessing agreement or disagreement between two or more datasets or subsets with
variables measured on the same scale. We will look at some official and user-written
graphical programs available in Stata 8 for such problems. The emphasis is on making
use of all the information in the data. Almost always, we need data reduction and, thus,
seek a concise and simplified summary in terms of a few key parameters, quite possibly
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in terms of a formal model. Almost always, we need to consider the risk of losing
valuable information by producing that summary. Graphics can guide our imagination,
suggesting the best kind of summary. Graphics can also keep us honest, showing us the
inadequacies of any particular summary.

2 Graphs as answers to questions

Let us start with a platitude and build on it. A platitude gets easy assent but can seem
obvious and uninteresting. The challenge is to use that platitude as a platform for a
discussion. An idea on which everyone can agree provides a starting point for analysis.
Far from there being nothing to discuss fruitfully, there is then everything to discuss
fruitfully.

The platitude is that a good graph is a good answer to a good question. That
thought can be developed in various ways.

One way to develop it is to look at graphs and to try to determine the questions that
they best answer. Sometimes it is then not clear which questions are being answered.
Sometimes it is then not clear that the graph types being used are the most efficient
forms for answering the questions being asked. Doing this even in a particular project
is, unsurprisingly, often easier said than done. While a common prejudice runs that
graphs are essentially trivial, a really good graph can prove extraordinarily elusive.
Just as with photography and film, the most spectacular results may require almost
endless experimentation and a ruthlessly critical attitude.

Another way to develop that thought is to look at questions and to try to identify
the kinds of graphs that are most useful for different kinds of questions. This seems
yet more difficult to do in a systematic way, exposing the lack of a good general theory
of statistical graphics. The best available texts portray diverse repertoires of different
kinds of graphs. The best available software is flexible enough to do most of what you
can imagine. However, neither provides a theory.

As a starting point, questions may be classified as general:

What are these data like?

What patterns, trends, similarities, differences are there?

What interesting, informative, puzzling detail can we identify?

Or they may be specific:

Are these variables or subsets identical (as a reference case)?

Is the difference constant (e.g., 0), or is the ratio constant (e.g., 1)?

Has a transformation done what we wanted? Do the data now show a more
tractable structure?
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When answering general questions, we want graphs, above all, to provide summary
and exposure (Tukey and Wilk 1966) and to show coarse and fine structure. The best
general graphs allow both. At least in principle, dot plots and scatterplots show all the
data. In practice, identical points will be overlaid on a scatterplot, and many similar
points may be difficult to distinguish on either kind of plot. Even in principle, box plots
and histograms do not show all the data. Reduction to selected quantiles and bin counts
deliberately discards much detail, which quite possibly may be unintelligible noise, but
also quite possibly be fine structure that we should be thinking about.

When answering specific questions, we want graphs to answer those questions di-
rectly without posing too many challenges. Any graph that requires extensive decoding
or any other kind of hard work (say, rotating it mentally) is likely to be ineffective in
practice.

3 Paired data

Let us now make this more concrete, starting with one very common structure in sta-
tistical science, that of paired data. Pairs arise, naturally or experimentally, in many
circumstances: before and after, import and export, consumption and production, sup-
ply and demand, systolic and diastolic, left and right, husband and wife, control and
treatment. In such situations, we often ask specific questions, such as whether means
or, more generally, distributions can be considered identical. At worst, students—and
often more experienced researchers too—go straight into a t test or a correlation without
scrutinizing the data as a whole.

In Stata, paired data may be held in both wide and long data structures in the
terminology of [R] reshape. For example, Dale et al. (1987) examined data on plasma
β-endorphin concentrations in picomole/liter as measured in 11 runners before and after
a “fun run” half-marathon. Endorphins are naturally occurring chemicals that can give
relief from pain and make runners and indeed other people feel good through exercise.
A wide structure accommodates such data in two variables, say before and after. In
practice, an identifier variable will usually also appear.

. list

id before after

1. 1 4.3 29.6
2. 2 4.6 25.1
3. 3 5.2 15.5
4. 4 5.2 29.6
5. 5 6.6 24.1

6. 6 7.2 37.8
7. 7 8.4 20.2
8. 8 9 21.9
9. 9 10.4 14.2
10. 10 14 34.6

11. 11 17.8 46.2
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A long structure can be obtained from this by using reshape. The detail to note
here is that some renaming of variables may be required first.

. rename before conc1

. rename after conc2

. reshape long conc, i(id) j(time)

(output omitted )

. list

id time conc

1. 1 1 4.3
2. 1 2 29.6
3. 2 1 4.6
4. 2 2 25.1
5. 3 1 5.2

6. 3 2 15.5
7. 4 1 5.2
8. 4 2 29.6
9. 5 1 6.6
10. 5 2 24.1

11. 6 1 7.2
12. 6 2 37.8
13. 7 1 8.4
14. 7 2 20.2
15. 8 1 9

16. 8 2 21.9
17. 9 1 10.4
18. 9 2 14.2
19. 10 1 14
20. 10 2 34.6

21. 11 1 17.8
22. 11 2 46.2

The long structure may look more awkward here, but it is also natural if these data
are considered as panel or longitudinal data, although with just two time points.

Given two paired variables, the most obvious graph that preserves the pairing is a
simple scatterplot. In contrast, quantile–quantile or side-by-side dot plots, box plots,
histograms, etc., lose the information on pairing. With scatterplots, however, it is easy
to forget the specific question being asked. Much of our experience with scatterplots
is based on checking scatters for linear relationships. But linearity y = a + bx is more
general than equality y = x, constant difference y = a + x, or constant ratio y = bx.
If our idea—or our ideal—of underlying structure is not linearity in general but some
special case, then a good graph will be one constructed so that ideal can be tested easily.
(From a different but complementary perspective, Miller [1986, chapter 6] stresses how
the models Y = ∆ + X and Y = ρX are stopping points on the road to Y = α + βX.)
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One common practice is to superimpose a pertinent reference line on the scatterplot,
most commonly y = x. In Stata 8, one idiom is

. scatter yvar xvar || function y = x, ra(xvar)

Longtime users may prefer something more like

. scatter yvar xvar xvar, ms(oh none) connect(none l) sort

itself an echo of an idiom common in Stata 7 and earlier:

. graph yvar xvar xvar, s(oi) c(.l) sort

A detail easy to overlook in the first way of doing it is ra(xvar), without which the
range defaults to (0,1). That default could be exactly what is wanted, or it could be
such a minute fraction of the desired range that the line of equality is barely visible
on the plot. It is also worth being aware of cosmetic options, such as clpattern() for
varying the line pattern. Clearly, other reference lines may also be used, depending on
what seems appropriate.

Such scatterplots with lines of equality superimposed are readily understood and
often regarded as standard in various fields. But how efficient are they at answering the
question? A problem with graphs with sloping reference lines is that it can be difficult
to read the quantities of most interest. This leads immediately to the realization that
other forms of graph are needed. We will look at two solutions suggested for this.

4 Horizontal reference lines

One golden rule is that horizontal alignment of reference lines makes comparisons much
easier. It is very easy to check for patterns when the ideal plots as a flat configuration
and very easy to check for departures from patterns when those departures are measured
vertically. The eye and brain then have fewer challenges to overcome.

In mainstream statistical literature, this idea was repeatedly emphasized by John
Tukey from at least the 1960s. He put it very well in his text Exploratory Data Analysis

(1977, 148):

Choosing scales to make behavior roughly linear always allows us to see
local or idiosyncratic behavior much more clearly. Subtracting incomplete
descriptions to make behavior roughly flat always allows us to expand the
vertical scale and look harder at almost any kind of remaining behavior.

In other literatures, this idea has been rediscovered intermittently, for example, in
medical statistics by Oldham (1962, 1968); Altman and Bland (1983); and Bland and
Altman (1986, 1995a,b, 1999). No doubt other references can be supplied; please email
the author if you know of any from the 1960s or earlier. In essence, it is one of the
main ideas behind several kinds of residual plot (e.g., plotting residual versus fitted,
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residual versus predictor or other variable, etc.). However, even after at least 40 years
of multiple reinvention, the principle still seems to deserve emphasis.

Thus, if differences are of interest, we could usefully plot differences y − x versus
means (y+x)/2. (The terminology Bland–Altman plot is common in medical statistics.
Difference versus sum, a variant sometimes met, is clearly just the same plot apart from
axis labeling.) If ratios are of interest, we could usefully plot ratios y/x versus geometric
means

√
yx. Note that geometric means will be close to arithmetic means whenever y

is close to x, so long as all values remain positive. For some groups of users, means will
be familiar, but geometric means will not be, pushing the choice towards means.

The two cases of differences and ratios cover a large fraction of comparisons in
practice. The Stata manipulations to produce graphs based on differences, means,
ratios, and geometric means are easy. A few generate statements are all that is required.
However, if you are doing this repeatedly, being able to do it on the fly is likely to be
more convenient. One wrapper for this purpose is pairplot from SSC. You can install
it by using the ssc command ([R] ssc) in an up-to-date, net-aware Stata:

. ssc install pairplot

pairplot is a wrapper program for twoway. Among its options are diff, mean, ratio,
and gmean.

Let us look at an example in some detail. Glaciers gain mass mainly by accumulation
of snow, especially in their upper parts, and lose mass by ablation, including melting
and other means, especially in their lower parts. Notionally, there is an equilibrium-
line altitude (elevation above sea level) for each glacier at which accumulation balances
ablation. Monitoring this as it varies is of interest not just to glaciologists. Many other
scientists are interested in such changes in time, space, or both as measures of glaciers’
response to climatic and other fluctuations. In polar and mountain areas, direct and
long-sustained meteorological records tend to be very sparse, so good proxies for climate
are welcome.

Equilibrium line altitude (ELA) is best established by detailed field measurement
on each glacier. The methods are simple in principle, using stakes placed in the ice,
but repeated access to glacier surfaces can be difficult, expensive, and even dangerous,
and there are too many glaciers for this to be anything other than exceptional. So
there is great interest in proxies for the proxy, especially those that can be derived
by map measurements (Leonard and Fountain 2003; Cogley and McIntyre 2003). The
simplest proxy is (minimum glacier altitude + maximum glacier altitude)/2, often called
the mean altitude, although many statistical people would want to call it a midrange.
Another proxy is the contour (line of equal altitude) that is nearly straight, given that
areas of accumulation tend to have concave contours and areas of ablation tend to
have convex contours. One name for this is the kinematic ELA. There are protocols for
complicated cases, and these ideas do not so readily apply to glaciers that end in water
or on cliffs.
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Leonard and Fountain (2003) collected data for 40 glaciers, mostly in the northern
hemisphere, for which all three methods have been used. Correlations are generally very
high:

. describe observed kinematic midrange

storage display value
variable name type format label variable label

observed int %8.0g mean observed ELA, m
kinematic int %8.0g kinematic ELA, m
midrange int %8.0g (min + max altitude)/2, m

. summarize observed kinematic midrange

Variable Obs Mean Std. Dev. Min Max

observed 40 2820.55 1219.8 331 4934
kinematic 40 2675.125 1152.285 320 4840
midrange 40 2796.325 1225.8 300 4785

. correlate observed kinematic midrange
(obs=40)

observed kinema~c midrange

observed 1.0000
kinematic 0.9933 1.0000
midrange 0.9970 0.9897 1.0000

The associated scatterplots are correspondingly impressive (figure 1):

. graph matrix observed kinematic midrange

mean
observed
ELA, m

kinematic
ELA, m

(min +
max

altitude)/2,
m

0

5000

0 5000

0

5000

0 5000

0

5000

0 5000

Figure 1: Scatterplots of three different altitude measures show very high correlations
but fail to allow effective scrutiny of the fine structure of the data.



336 Speaking Stata

However, major reservations are in order. As Leonard and Fountain (2003) emphasize,
the correlations are dominated by the large variations in altitudes from glacier to glacier
and do not give a direct summary of the virtues of the different measurement methods.
In any case, it is arguable that a more relevant single-number summary is the con-
cordance correlation (Krippendorff 1970; Lin 1989, 2000; Steichen and Cox 2002, and
references therein), which summarizes agreement (is y equal to x?), not linearity (is y
equal to some a+ bx?). But no single-number summaries can possibly do justice to any
fine structure here, any more than a map can do the work of a microscope.

A pairplot of difference versus mean for observed and kinematic (figure 2) shows
much more about the structure of errors than is evident from the scatterplot. The largest
error is more than 600 m, and there seems to be some correlation between difference
(observed − kinematic) and mean:

. pairplot observed kinematic, diff mean yla(, ang(h))
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Figure 2: A plot of difference versus mean for observed and kinematic ELA shows more
about the structure of the errors.

The correlation between difference and mean is 0.442 (the sign is arbitrary, as it
depends on which way the difference is calculated).

Incidentally, this correlation is a test statistic for a null hypothesis of equal variances
given bivariate normality (Pitman 1939; also see Snedecor and Cochran 1989, 192–193).
We set that consideration on one side and prefer to use it as an exploratory diagnostic.
The ideal is clear: difference and mean should be uncorrelated. Nevertheless, if you
seek tests, as well as measures, in this terrain, you might also be interested in an F test
of equality of means and variances, again assuming bivariate normality, proposed by
Bradley and Blackwood (1989). The prospect of investigating how these tests perform
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when bivariate normality breaks down will appeal or appall, according to statistical
taste.

Back to the example: as it turns out, an offset between observed ELA and kinematic
ELA is expected from the physics of glacier flow (Leonard and Fountain 2003). A resis-
tant estimate of that offset is the median of the differences, 135 m, and this can be used
as a base for the vertical spikes (figure 3):

. pairplot observed kinematic, diff mean base(135) t1(base 135 m, place(w))
> yla(, ang(h))
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base 135 m

Figure 3: Difference spikes are expressed relative to a base of 135 m, the median of the
differences.

observed functions here as a “gold standard” measurement, so some might prefer
to show that directly on the graph. The rule with pairplot is that a third variable is
used for the other axis (figure 4). (The option mean is correspondingly not specified.)

(Continued on next page)
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. pairplot observed kinematic observed, diff base(135) t1(base 135 m, place(w))
> yla(, ang(h))
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base 135 m

Figure 4: Observed ELA is shown on the horizontal axis, given its role as a gold standard.

We should flag here that Bland and Altman (1995b) warn explicitly that you should
not plot difference against standard. See this paper immediately as an antidote to the
example just set. At the same time, note that the graph just given does resemble that
of difference versus mean.

The apparent tilt could be handled empirically by regression, but it would be better
to have a physical understanding of why it occurred. In addition, any regression would
have to look the problem of errors in variables squarely in the eye (see, for example,
Dunn 2004). In any case, midrange behaves much better (figure 5):

(Continued on next page)
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. pairplot observed midrange observed, diff yla(, ang(h))
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Figure 5: A plot of difference versus mean for observed ELA and midrange altitude
shows a more attractive error structure.

The maximum and median error (23 m) are much smaller here, and no tilt is appar-
ent. The correlation between difference and mean—that is, (observed + midrange)/2—
is much smaller at 0.063; again, the sign is at choice. Leonard and Fountain (2003)
prefer kinematic to midrange, a preference that is not well supported by their results
and is certainly not supported by those here. As seen above, on average, kinematic has
a mean 145 m below that of observed, while midrange has a mean 24 m below, which
results resemble the differences of 130 m and 35 m reported by Cogley and McIntyre
(2003). The smaller offset, the lack of tilt and, indeed, the simpler measurement method
point to midrange as the better proxy in this dataset.

5 Parallel line plots

Evidently, being able to plot difference-mean and ratio-geometric mean plots was one
motivation for writing pairplot. Another was the excellent paper by McNeil (1992),
who focuses particularly on what is most effective for before and after comparisons of the
kind particularly common in medical statistics. His main example is the beta-endorphin
dataset given earlier.

A popular plot for showing such data is as tilted line segments, as shown in figure 6.
(Later we will see how to get such plots in Stata.)
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Figure 6: Change in endorphin concentration is shown by tilted line segments.

One rationale for such a plot could be that “before” and “after” define a time
direction, as is explicit in a long data structure. Drawing a time axis thus appears
natural. Certainly, more data on how concentrations varied in time for these runners
would make a time-series graph the most obvious form. But in the special case of just
two times of observation, how effective is this kind of plot? In Cleveland’s (1994) terms,
change has been encoded essentially as slope of segment and must be decoded from that
representation. That is, the segment slopes are visually the most obvious element—the
reader has to work much harder to estimate differences on this scale.

Two other simple and very practical limitations of this kind of plot need underlining.
As emphasized by McNeil (1992), even in a graph for a sample of eleven the criss-
crossing of lines is confusing to decode. That problem is naturally accentuated with
much larger sample sizes. A related problem is that it is difficult to relate the line
segments to identifiers. As given to us, the identifiers just indicate sort order and are
otherwise not informative. In a typical research project, however, investigators might
well try to interpret anomalous individuals using other information, whether qualitative
or quantitative. Hence, easy relation to identifiers is highly desirable.

Such considerations led McNeil (1992) to suggest representing individuals by parallel
lines. In this kind of plot, values are coded by positions along a common scale and
changes by lengths of line segments, direct and effective choices, typically much easier
to decode mentally. Vertical parallel lines are the default of pairplot. As before, a
third variable, when supplied, is plotted on the other axis (figure 7):

. pairplot before after id, xla(1/11, labsize(medium))
> yti("plasma beta-endorphin concentration," "picomole/liter") aspect(1)
> yla(, ang(h))
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Figure 7: Change in endorphin concentration is shown by vertical line segments, with
a third variable on the other axis.

Although with this dataset, a call with just two variables would have produced an almost
identical plot, as the x-axis defaults to observation number (figure 8):

. pairplot before after, xla(1/11, labsize(medium))
> yti("plasma beta-endorphin concentration," "picomole/liter") aspect(1)
> yla(, ang(h))
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Figure 8: Change in endorphin concentration is shown by vertical line segments, with
observation number on the other axis: in this case, the graph is almost identical.
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Horizontal parallel lines merely require a horizontal option (figure 9):

. pairplot before after id, yla(1/11, ang(h) labsize(medium)) horiz
> xti("plasma beta-endorphin concentration," "picomole/liter")
> yti(, orient(horiz)) aspect(1) yscale(reverse)
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Figure 9: Change in endorphin concentration is shown by horizontal line segments, with
a third variable on the other axis.

You may recognize that this last graph is just a short step away from those pro-
duced by default by graph dot. The similarity is made more evident by adding the
option blstyle(none). Conversely, although it appears to be undocumented, graph
dot supports vertical alignment given a vertical option. graph dot can show more
than two variables if required, but there are no options to emphasize the line segments
between values. pairplot is, as the name implies, limited to comparisons between two
variables, but it is intended to be flexible for that problem.

An aside on these data: McNeil (1992) uses a logarithmic scale for all graphs from
the dataset. Revisiting the example, he uses the original scale (McNeil 1996, 52–54).
Most important here is how the changes behave. To a good approximation, change
in concentration is independent of original, so a logarithmic transformation is neither
needed nor helpful. At first sight, when we look at these data, logarithms may seem a
more natural scale: concentrations tend to have skewed distributions, and more impor-
tantly, they might be expected to change multiplicatively rather than additively. How
the data behave is nevertheless the crucial issue.
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6 pairplot: a reprise

A synopsis of pairplot may be useful here. This is not a complete summary. As usual,
the help file gives other details.

pairplot supports plots with

Y1. two variables, linked vertically, on the y-axis or

Y2. their difference, shown vertically, on the y-axis or

Y3. their ratio, shown vertically, on the y-axis and

X1. order of observations on the x-axis or

X2. a specified variable on the x-axis or

X3. sort order on some varlist (ascending or descending) on the x-axis or

X4. mean of two variables on the x-axis or

X5. geometric mean of two variables on the x-axis or

any of the above combinations but with axes reversed.

7 Beyond pairs to parallel coordinates plots

The case of paired data is common, interesting, and important. We should now look at
more general comparisons. As before, the focus is on graphs that show visual linkage
of specific individuals (however defined) across two or more variables or groups. It is
easy enough to juxtapose or superimpose several distributions (as histograms, dot plots,
quantile functions, distribution functions, etc.), but that is not the aim here.

One standard device is now usually known as a parallel coordinates plot. You may
well know the idea under a less formal name, for example, as a profile plot. Wegman
(1990) gives an accessible, lucid, and definitive account for a statistical readership.
He nevertheless understates the long history and wide geography of such plots: the
nineteenth century French railway schedules beloved of Tufte (1983) show the main
idea, as do plots used for many decades to show the results of so-called “bumps” rowing
races, held at Oxford and Cambridge in Britain and occasionally elsewhere. Any time-
series plot is just a twist away from a parallel coordinates plot. At most, one idea is
needed, that of interchanging of variables and observations.

That restructuring, on the fly, is the main need within any Stata implementation of
parallel coordinates plots. An implementation for Stata 4 was given by Gleason (1996).
An implementation for Stata 8 is the parplot program downloadable from SSC. (The
name is close to pairplot, but no confusion between the two has been evident. A
name parcoord would invite confusion with Gleason’s program, and a name parcplot

is otherwise objectionable.)
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An example is worth a thousand words, and we have already had one. The origin of
figure 6 may now be revealed:

. parplot before after, tr(raw) yla(, ang(h))
> yti("plasma beta-endorphin concentration," "picomole/liter") aspect(1)
> xla(, labsize(medium))

parplot is a wrapper for twoway connected. The options in this example are thus
standard twoway options, with the exception of tr(raw), that is, transform(raw),
which specifies showing data on the original or raw scale. The default of parplot is to
scale values on each variable to (value − minimum)/(maximum − minimum), a choice
that permits comparison of variables measured in quite different units or with quite
different scales. Being able to cope with such data is crucial for many applications of
parplot, although it is beyond the main theme here. Other transforms are also possible,
and logarithmic scales are available as usual through xscale() or yscale(). Against
the semantic objection that a raw transform is no transform must be set the fact that
StataCorp has already laid claim to the option name scale().

A more substantial example can be seen by putting together the three glacier altitude
variables (figure 10).

. parplot kinematic observed midrange, tr(raw) aspect(1)
> xla(1 ‘""kinematic" "ELA""’ 2 ‘""mean observed" "ELA""’
> 3 ‘""midrange" "altitude""’)
> yla(, ang(h)) ytitle(metres, orient(horiz))

0
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kinematic
ELA

mean observed
ELA

midrange
altitude

Figure 10: Three measures of altitude are compared by a parallel coordinates plot.

As before, the syntax is mostly standard, and only a few details need comment.
Environmental scientists usually find it congenial to plot altitude on a vertical axis,
even though it is not the response variable. Note also that the reference case of equal
values for the three variables defines horizontal profiles, departures from which are easy
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to see. In other circumstances, as might be guessed, a horizontal option exchanges
axes as compared with the default.

There is space enough to change the aspect ratio to square. A parallel coordinates
plot is map as well as microscope but retains enough fine structure—indeed, in a strong
sense, all the information in the data—to underline visually that midrange altitude is
closer quantitatively to mean observed ELA than is kinematic ELA.

A different example uses United States census data from 1980. Marriages, divorces,
and deaths come as absolute numbers, so calculating rates relative to population and
taking logarithms wrench the data towards comparable, indeed similar, scales. Different
transforms of the data may be tried, but the default maxmin scale works well (figure 11),
as does a horizontal alignment:

. sysuse census, clear
(1980 Census data by state)

. foreach v in death divorce marriage {
2. gen r_‘v’ = log10(‘v’ / pop)
3. }

. parplot r_*, horiz by(region, caption(logarithmic scales)
> title(US states 1980)) yla(1 "deaths" 2 "divorces" 3 "marriages", ang(h))
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Figure 11: Three demographic measures are compared for U.S. states within census
regions by a parallel coordinates plot.

Here, and elsewhere, there is room for thought and experiment about not only the
scale or transformation to be used but also the order of the variables. Putting closely
correlated variables close together and negating variables to make as many positive
correlations as possible are two of the possible tricks for making an effective graph. At
the same time, there is little point in including variables that are very poorly correlated
with any others, unless that is precisely the point you want to make.
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Substantively, this example shows nothing that is not well known about the demo-
graphic characteristics of the United States, nor was that the intent. The heterogeneity
of the “West” again should come as no surprise. In terms of method, however, parallel
coordinates plots have uses when you are seeking cluster structure or checking how far
cluster structure exists. For example, if a few distinct groups do exist in the data, then
this should be evident in a parallel coordinates plot. Conversely, indications that the
data form a continuum rather than a set of clusters might lead the investigator to call
off a pointless cluster analysis.

8 A timely comment

Time-series people, and many others, may think that some obvious points have been
overlooked so far, so we need to underline one connection hinted at already. With a long
data structure and both panel and time variables, the endorphin data can be declared
as panel data. Then we can use dedicated time-series plots, such as xtline (added to
Stata on 12 September 2003; thus, it is not documented in Stata 8 manuals) (figure 12):

. tsset id t
panel variable: id, 1 to 11
time variable: time, 1 to 2

. xtline conc, overlay legend(off) xla(1 "before" 2 "after", labsize(medium))
> yla(, ang(h)) yti("plasma beta-endorphin concentration," "picomole/liter")
> aspect(1)
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Figure 12: Treating the endorphin data as panel data allows xtline to be used for an
alternative plot.
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In this example, the options have been chosen to emphasize the similarity with
earlier graphs, particularly figure 6. A difference not evident in the printed graph here
is that xtline can make use of different pen colors for different panels, which may be
attractive to you. The main graphical point made earlier was that, even for such data,
tilted line segments are a relatively ineffective kind of display. Nevertheless, in terms of
Stata possibilities, do note that if your data are in or near panel-data form, then you
may find this path an easy one to take.

Yet another way to do it is provided by the linkplot program on SSC, which does
not assume panel or even time-series data but is more general. You should find it easy
to download linkplot using ssc and to explore its possibilities yourself.

9 Conclusion

Stata graphics takes one from the lows of struggling to get the details you desire to the
highs of being able to think freely about the aim, form, and content of your displays.
The richness of commands on offer is all based on the completely rewritten (and still
evolving) Stata 8 graphics engine. In this column, we have looked at a classic and
fundamental problem in statistical science, assessing agreement on a shared scale. Key
to graphical success, both here and elsewhere, is linking the design of graphics to the
questions of greatest importance and interest. Surprisingly often, commonly used plots
(such as scatterplots of highly correlated variables or plots of values measured “before”
and “after” using tilted line segments) can be ineffective because they fail to show the
most pertinent quantities directly.

Those who have been following these columns will recognize how many of the ideas
can be traced directly to John W. Tukey (1915–2000) or to his students and collab-
orators; see Brillinger (2002) and related papers for excellent recent appreciations of
Tukey’s work. In one classic paper, Tukey (1972, 293) distinguishes between various
kinds of graphs, including propaganda graphs “intended to show the reader what has
already been learnt” and analytical graphs “intended to let us see what may be hap-
pening over and above what we have already described”. Arguably, there are too many
propaganda graphs, even in statistical science. Fortunately, many forms of analytical
graphs have been devised that are easy to understand and to use, such as those based on
horizontal reference patterns, changes plotted as parallel lines, or parallel coordinates
plots.

In the next issue, we will complete the quartet of graphics columns promised for
2004 by discussing plots for model diagnostics.
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