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Abstract. Bootstrapping techniques have become increasingly popular in applied
econometrics and other areas. This article presents several methods and shows
how to implement them using Stata’s bootstrap command.
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1 Introduction

In a past installment of From the help desk, Guan (2003) discusses how to use Stata
to obtain bootstrapped standard errors. This article introduces several more boot-
strapping techniques. First we show how to obtain bootstrapped confidence intervals
for parameters based on asymptotically pivotal statistics. We then illustrate a simple
technique that can be used for bootstrapping time-series data. Finally, we introduce a
method and Stata command to help us choose the number of bootstrap replications.

Suppose that there is a population distribution F and that we are interested in
estimating a parameter θ = θ(F). We have a sample of data F and obtain the estimate

θ̂ = θ(F ). Let N denote the number of observations in F . In the simplest case, the
bootstrap proceeds as follows. We draw a random sample Fi of size N with replacement
from F and compute θ̂i = θ(Fi). We repeat this many times, obtaining the set of

estimates {θ̂i}i=B
i=1 , where B is a large number, such as 1,000. Later we will discuss a

method for choosing B, but for now any large value will suffice. Guan (2003) emphasizes

using the standard deviation of {θ̂i} as the standard error of θ̂. We instead discuss how

to use {θ̂i} to obtain confidence intervals for θ.

2 Confidence intervals

We consider four ways to use {θ̂i} to construct a 1−α confidence interval for θ̂. The nor-
mal approximation, percentile, and bias-corrected methods are implemented by Stata’s
bootstrap command. The fourth, the percentile-t method, is not difficult to implement
in many cases, and both theory and Monte Carlo evidence have shown that it provides
quite accurate confidence intervals in many applications.

c© 2004 StataCorp LP st0073
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2.1 Normal approximation confidence intervals

One way to obtain a confidence interval for θ is to use a normal approximation. Let σbθ

denote the standard error of θ̂. Then a symmetric 1 − α confidence interval would be

(
θ̂ − σbθz1−α/2, θ̂ + σbθz1−α/2

)
(1)

where z1−α/2 is defined such that Φ(z1−α/2) = 1 − α/2 and Φ(·) denotes the stan-
dard normal distribution function. Traditionally, σbθ is estimated using an asymptotic
formula. For example, if θ is a maximum likelihood estimator, σbθ could be based on
Fisher’s information matrix. If N is small, a t distribution with N−1 degrees of freedom
could be used instead of the normal.

In finite samples, however, an asymptotically justified estimator of σbθ may perform
poorly. Instead, we could estimate σbθ by calculating the sample standard deviation of

{θ̂i} and then use (1) to compute the confidence interval. Such a confidence interval
is known as a “bootstrapped normal-approximation confidence interval”, the key being
that we use the sampling distribution of the bootstrapped {θ̂i} to approximate the true
sampling distribution of the estimator. The normal approximation confidence interval is
justifiable if the estimator used to obtain θ̂ has an asymptotically normal distribution,
as most estimators typically used in econometrics do. As Mooney and Duval (1993,

36) point out, this method only makes use of the standard deviation of {θ̂i} and does

not exploit the entire sampling distribution of {θ̂i}, so other methods may provide
confidence intervals with better coverage.

2.2 Percentile confidence intervals

Alternatively, we could calculate a confidence interval for θ̂ by using {θ̂i} as the empirical

distribution function for θ̂. To obtain an asymmetric percentile confidence interval, we
simply find cα/2 and c1−α/2, the α/2 and 1− α/2 centiles of {θ̂i}. For the endpoints of
the confidence interval to be exact, α(B + 1)/2 must be an integer; if not, interpolation

can be used to estimate cα/2 and c1−α/2. Typically θ̂ will not lie at the midpoint of
cα/2 and c1−α/2, and asymmetric percentile confidence intervals will therefore provide

better coverage than normal approximations when {θ̂i} is skewed or even polymodal.
Asymmetric percentile confidence intervals are also known as equal-tailed percentile
confidence intervals, because equal probability is placed in each tail.

2.3 Bias-corrected and BCa confidence intervals

Both methods discussed so far assume that θ̂ is an unbiased estimator of θ. In many
cases, θ̂ may be consistent but nevertheless biased in finite samples. Moreover, the
standard error of θ̂ often depends on θ, and percentile methods tend not to work well in
these cases (Davison and Hinkley 1997, 195). Bias-corrected (BC) confidence intervals
are designed for these situations and assume that there is a monotonic transformation φ
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such that [φ(θ̂)−φ(θ)]
D−→ N(−z0, τ

2), where z0 is a bias constant and τ is the constant

standard error of φ(θ̂). Conditional on z0, we can then use that limiting distribution

to obtain a confidence interval for φ(θ̂) and then apply the inverse function φ−1 to the

endpoints to obtain the confidence interval for θ̂. In fact, we need not even know the
functional form of φ; all we require is that such a function exist.

Bias-corrected and accelerated (BCa) confidence intervals improve on their bias-

corrected counterparts by allowing the variance of φ(θ̂) to depend on θ. Specifically, BCa

confidence intervals are predicated on the assumption [φ(θ̂) − φ(θ)]
D−→ N(−z0τφ, τ2

φ),

where τφ = 1 + aφ(θ̂) and a is known as an acceleration parameter. Efron (1987) shows
that these confidence intervals have better asymptotic properties than the traditional
ones based on a normal approximation. To implement BC confidence intervals, we must
know z0, and to implement BCa, we must also know a. Derivations of estimators of these
parameters are given in Efron (1987) and Davison and Hinkley (1997, section 5.3), and
the formulas are also shown in [R] bootstrap.

2.4 Percentile-t confidence intervals

Hall (1992), Horowitz (2001), and others have argued that bootstrap methods based on
asymptotically pivotal statistics usually provide better coverage properties than those
that are based on nonpivotal statistics. As an example, suppose that we wish to obtain
a bootstrapped confidence interval for β1 in the simple linear regression model

yi = β0 + β1xi + ǫi (2)

where we assume that ǫi has zero mean and is independent of ǫj for j �= i. As described
above, one way to proceed would be to draw random samples Fi with replacement
from F and record the sequence {β̂1i}. We could then use the normal approximation,
percentile, or BCa methods to obtain a confidence interval.

Alternatively, suppose that, instead of recording β̂1i at each bootstrap replication,
we record the statistic ti = (β̂1i − β̂1)/σ̂bβ1i

, where σ̂bβ1i

is an estimate of the standard

error of β̂1i and β̂1 is the estimate of β1 using the original dataset. ti is asymptotically
pivotal, since under very mild conditions (β̂1i − β̂1)/σ̂bβ1i

converges in distribution to
a random variable following Student’s t-distribution with the appropriate degrees of
freedom.

The notation ti is not accidental, for it is immediately recognized as the usual t
statistic for the hypothesis test H0 : β̂1i = β̂1. In fact, constructing a confidence interval
can be viewed as an exercise in which we treat β̂1 as a fixed parameter and then find the
set of β̂1is for which H0 cannot be rejected. The following is known as the percentile-t
confidence interval method. Suppose that we want confidence intervals for β̂0 and β̂1.
The technique involves several steps:
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1. Fit (2) by OLS using the original dataset F and obtain β̂0 and β̂1; these are the
point estimates for the model. Also record their estimated standard errors σ̂bβ0

and σ̂bβ1

.

2. Draw a random sample of size N with replacement from F , fit (2) by OLS, and
compute

tβ0i
= (β̂0i − β̂0)/σ̂bβ0i

and tβi
= (β̂1i − β̂1)/σ̂bβ1i

3. Repeat step 2 B times, obtaining the sequences {tβ0i
}i=B

i=1 and {tβ1i
}i=B

i=1 .

4. Find the α/2 and 1 − α/2 centiles of {tβ0i
}; call them tLβ0

and tHβ0
, respectively.

The 1 − α confidence interval for β0 is then

[
β̂0 − tHβ0

σ̂bβ0

, β̂0 − tLβ0
σ̂bβ0

]

5. Repeat step 4 for {tβ1i
}, yielding

[
β̂1 − tHβ1

σ̂bβ1

, β̂1 − tLβ1
σ̂bβ1

]

Of course, one shortcoming of the percentile-t method is the need to have an available
estimate of the standard error of the parameter of interest for each bootstrap repli-
cate. In many cases, the bootstrap is used precisely because we have no way to obtain
such standard errors analytically. However, for regression models, a heteroskedasticity-
consistent covariance matrix is readily available, and for maximum likelihood models,
one of several covariance matrix estimators could be employed.

Another alternative is to use a bootstrap-within-bootstrap procedure, also known as
a nested bootstrap. Suppose that we wish to obtain the percentile-t confidence interval
for a parameter θ but we do not have an analytic formula for its standard error. In a
nested bootstrap procedure, we again begin by drawing a bootstrap sample from the
original dataset and compute θ̂i. We then treat this bootstrap sample as if it were our
original dataset and perform bootstrapping on it to obtain an estimate of the standard
error of θ̂i, which we can then use to compute a t statistic. We repeat this entire process
many times and then calculate the percentile-t confidence interval.

2.5 A Stata example

Using the venerable auto dataset, we illustrate how to obtain nominal 95% percentile-t
confidence intervals for β0, β1, and β2 in the regression model

mpgi = β0 + β1gear ratioi + β2foreigni + ǫi

Note that, instead of recording the t statistics at every bootstrap replication, we can
just record the estimated parameters and their standard errors and then compute the t
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ratios later. That shortcut simplifies the use of the bootstrap command. To allow for
the possibility of heteroskedasticity of ǫi, we use the hc2 option with regress to obtain
heteroskedasticity-consistent standard errors.

First we load the dataset and perform the bootstrap:

. sysuse auto, clear

. set seed 1

. bootstrap "regress mpg gear_ratio foreign, hc2" _b _se, reps(1000) dots
> saving(bsdata) replace

The output shows the normal approximation, percentile, and bias-corrected con-
fidence intervals discussed above for both the parameters and their standard errors.
Typically, we are not concerned with obtaining confidence intervals for estimated stan-
dard errors, but they are included in the output since we told the bootstrap command
to record the standard errors.

Next we estimate the parameters using the original dataset and then generate the t
ratios:

. regress mpg gear_ratio foreign, hc2

. use bsdata

. generate t_gear_ratio = (b_gear_ratio - _b[gear_ratio]) / se_gear_ratio

. generate t_foreign = (b_foreign - _b[foreign]) / se_foreign

. generate t_cons = (b_cons - _b[_cons]) / se_cons

Finally we find the 2.5th and 97.5th centiles of the t ratios and calculate the confi-
dence intervals. For gear ratio, we have

. _percentile t_gear_ratio, percentiles(2.5 97.5)

. display _b[gear_ratio] - _se[gear_ratio]*r(r2)
5.7053247

. display _b[gear_ratio] - _se[gear_ratio]*r(r1)
11.686533

Thus the percentile-t confidence interval for β̂1 is [ 5.705, 11.687 ]. You may verify

that the percentile-t confidence interval for β̂0 is [−12.769, 3.990 ] and that for β̂2 it is
[−4.252, 2.478 ].

3 Dependent processes

Thus far we have assumed that the observations within the dataset F are independently
distributed, and that has allowed us to resample observations from the dataset to gen-
erate bootstrap samples. While that assumption is certainly plausible with randomly
sampled cross-sectional datasets, it is too restrictive for use with time-series data. An
observation on a variable x taken at time t is often correlated with the value of x taken at
time t− 1 and perhaps other time periods as well. Treating xt as a completely random
observation in a bootstrap resampling scheme is inappropriate, because the resulting
bootstrap sample would not reflect the fact that xt depends on xt−1. We therefore need
another way to generate bootstrap samples that preserves the temporal dependence of
the data.
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3.1 Creating bootstrap samples

We illustrate how to create bootstrap samples by using one of the most common appli-
cations. Consider a simple linear regression on time-series data with first-order serially
correlated errors:

yt = β0 + β1xt + ǫt, ǫt = ρǫt−1 + νt (3)

where νt is white noise and our sample ranges from t = 1 . . . T . For the moment, we will
also assume that νt is N(0, σν), though later we will relax the normality assumption.
To account for the serially correlated errors, we use Prais–Winsten regression on our
dataset to obtain β̂0, β̂1, ρ̂, and σ̂ν . We then use these estimates to calculate the
residuals ǫ̂t = yt − β̂0 − β̂1xt.

Obtaining bootstrapped standard errors or confidence intervals for β0, β1, and ρ
involves simulating the data-generating process for ǫt. First consider period t = 1. We
have ǫ1 = ρǫ0 + ν1. The unconditional expected value of ǫt is zero for all t, so we could
create a simulated value ǫ∗1 by taking a random draw from the N(0, σ̂ν) distribution.
For t = 2, we have ǫ2 = ρǫ1 + ν2, and we can simulate this value as ǫ∗2 = ρ̂ǫ∗1 + ν∗

2 , where
we again draw from the N(0, σ̂ν) distribution to obtain a value for ν∗

2 . We then repeat
this process for the remaining observations, obtaining the sequence ǫ∗1, . . . , ǫ

∗

T .

Now we form a bootstrap sample as

y∗

t = β̂0 + β̂1xt + ǫ∗t

where, by construction, ǫ∗t = ρ̂ǫ∗t−1 + ν∗

t and ν∗

t is a white noise process with a N(0, σ̂ν)
distribution. Notice the striking similarity between our bootstrap sample and the un-
derlying data-generating process shown in (3). The only difference is that our bootstrap
sample was constructed using consistent estimates of the population parameters. As in
any bootstrapping procedure, the goal is to draw bootstrap samples that approximate
the true data-generating process as closely as possible.

We use Prais–Winsten regression on this bootstrap sample, obtaining estimates β̂01,
β̂11, and ρ̂1. Repeatedly creating bootstrap samples and fitting the model yields a
sequence of parameter estimates. To obtain bootstrapped standard errors, we simply
calculate the sample standard deviations of {β̂0i}, {β̂1i}, and {ρ̂i}. To obtain confidence
intervals, we can use any of the techniques discussed in section 2.

Two shortcomings of the previous procedure are the conditioning on ǫ0 = 0 and the
assumption of normality of νt. Instead of simply setting ǫ0 to zero, we could instead pick
a random number s between 1 and T and set ǫ0 = ǫ̂s. To relax the normality assumption,
we can use a technique known as “residual resampling”. Given the residuals ǫ̂t and ρ̂
for t = 2 . . . T , we can compute

ν̂t = ǫ̂t − ρ̂ǫ̂t−1

In computing the bootstrap samples, instead of drawing ν∗

t from a N(0, σ̂ν) distribution,
we pick a random number r between 2 and T and set ν∗

t = ν̂r. This is often called a
nonparametric bootstrap, in contrast to a parametric bootstrap in which we draw ν∗

t

from a N(0, σ̂ν) distribution. However, in the literature on bootstrapping time-series
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data, the terms parametric and nonparametric are often used more generally. Both of
the techniques we have discussed are parametric bootstraps in the sense that we have
parametrized the data-generating process for yt by (3)1.

Many time-series applications, such as ARIMA and VAR models, do not contain any
exogenous variables, so a further refinement is possible. Consider the simple AR(1)

model
yt = ρyt−1 + νt

where again νt is white noise. Instead of creating a series of length T as before, we can
instead create a series of length T0 + T , where T0 is, say, 1, 000. We then discard the
first T0 observations and estimate the parameters of our model using the remaining T
observations. By doing this, the series is not influenced as much by the starting value
y0 used.

3.2 A Stata example

The manual entry [TS] prais fits the model

usrt = β0 + β1idlet + ǫt

where ǫt is believed to exhibit serial correlation. Here we will illustrate how to obtain
bootstrapped standard errors and percentile-t confidence intervals for β0 and β1 esti-
mated using the Prais–Winsten technique. Because Stata’s bootstrap command is not
amenable to residual resampling, we will create our own bootstrap samples and use the
post commands to save the results to a file. We can, however, use the bstat command
afterward to obtain the standard errors and several confidence intervals.

The first step is to fit the model on the original dataset and save all the estimated
parameters and variables that we will need later on:

. webuse idle, clear

. tsset t

. prais usr idle

. predict double ehat, residuals

. scalar bidle = _b[idle]

. scalar bcons = _b[_cons]

. scalar seidle = _se[idle]

. scalar secons = _se[_cons]

. scalar rho = e(rho)

. scalar sigmanu = e(rmse)

. scalar N = e(N)

. generate double nuhat = ehat - rho*L.ehat

With these estimates in hand, we now write a short program that opens a post file,
repeatedly creates bootstrap samples using the nonparametric technique just discussed,
calls prais, and posts the results. Our program takes two arguments: the number
of observations in the dataset and the number of bootstrap replications to perform.

1See Berkowitz and Kilian (2000) for an overview of parametric and nonparametric bootstrap pro-
cedures for time-series data.
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Because we are interested in obtaining both standard errors and percentile-t confidence
intervals, we record the parameter estimates. If we were only interested in the percentile-
t confidence intervals, we could instead record the t ratios directly and save a couple of
lines of code later.

program bootit

version 8.2
args capt numboots

tempname results
postfile ‘results’ b_idle b_cons se_idle se_cons ///

using bsdata, replace
tempvar usrhat eps
forvalues i = 1/‘numboots’ {

local s = int(uniform()*‘capt’ + 1) // For e_0
local r = int(uniform()*(‘capt’ - 1) + 2) // For nu_1
quietly {

generate double ‘eps’ = ehat[‘s’] + nuhat[‘r’] in 1
replace ‘eps’ = rho*L.‘eps’ + ///

nuhat[int(uniform()*(‘capt’ - 1) + 2)] ///
in 2/‘capt’

generate double ‘usrhat’ = bcons + bidle*idle + ‘eps’
prais ‘usrhat’ idle

}
post ‘results’ (_b[idle]) (_b[_cons]) (_se[idle]) (_se[_cons])
drop ‘usrhat’ ‘eps’
display "." _c

}
display
postclose ‘results’

end

Next we set the random number seed so that the results are replicable, and we call
the program with the sample size we previously stored in the scalar N and the number
of replications we want:

. set seed 1

. bootit ‘=N’ 1000

Stata’s bstat command produces a table of standard errors and confidence intervals
using our post file if we pass it a matrix containing the parameter estimates of the model
obtained using the original dataset:

. matrix stats = (bidle, bcons)

. bstat b*, stat(stats)

Finally we compute the percentile-t confidence intervals using the procedure illus-
trated in section 2.5. The table below summarizes the results:
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Parameter Observed Asy. SE BS SE 95% Conf. Interval Type*

β0 15.2042 4.1604 4.5589 6.2580 24.1503 (N)
6.1315 24.4168 (P)
6.0490 24.2711 (BC)
4.5666 25.9120 (Pt)

β1 −0.1357 0.0472 0.0518 −0.2373 −0.0340 (N)
−0.2374 −0.0300 (P)
−0.2359 −0.0277 (BC)
−0.2622 −0.0181 (Pt)

* Denotes the type of bootstrapped confidence interval: (N) normal approximation,
(P) percentile, (BC) bias-corrected, and (Pt) percentile-t

In this particular case, the bootstrapped standard errors exceed their asymptotic
counterparts reported by prais, and the percentile-t confidence intervals are somewhat
wider than the others. Since the dataset has only 30 observations, we are not surprised
by either of these findings.

4 On the number of replications

In the previous examples, we have chosen to use 1,000 bootstrap replications, though
we have not given any formal justification for using this number. On the one hand,
using more replications provides more accurate bootstrapped statistics, yet in practice
we must weigh the benefit of more bootstrap replications against the computational
cost associated with them. Usually, we tend to use fewer replications with complicated
estimators that require computationally intensive iterative procedures because of the
time involved, yet arguably those estimators require more replications.

In this section, we outline a method of choosing the number of bootstrap replications
B developed by Andrews and Buchinsky (2000), and we present a Stata command to
help automate the process. Andrews and Buchinsky’s method applies to a wide variety
of bootstrapped statistics and applications, though here we focus on selecting B only for
standard errors and percentile-t confidence intervals. Davidson and MacKinnon (2000)
develop an alternative method for choosing the number of replications, and they show
that their method typically selects a smaller B than Andrews and Buchinsky’s method;
however, Davidson and MacKinnon’s method applies only to bootstrap p-values, so we
do not consider their method here.

We have an estimator θ and are interested in λ, a measure of the reliability of θ.
For example, λ could be the standard error or an endpoint of a percentile-t confidence
interval of a regression coefficient. If bootstrap replications were costless, we would use
an infinite number of them and obtain the “ideal” bootstrap estimator λ̂∞. However,
bootstrap replications are costly, at least in terms of time, so we perform a finite number
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B of them, yielding the estimator λ̂B. We want to choose B such that λ̂B is “close” to
λ̂∞.

The method developed by Andrews and Buchinsky (2000) requires us to specify
two parameters. The percentage deviation, or pdb, indicates the maximum desired
percentage difference between λ̂B and λ̂∞. A typical value of pdb would be 5% or 10%.
The second parameter, τ , defines the probability 1− τ with which λ̂B and λ̂∞ differ by
more than pdb percent. If pdb = 5% and τ = 0.10, Andrews and Buchinsky’s method
lets us choose B such that

Pr

⎛

⎝100

∣∣∣λ̂B − λ̂∞

∣∣∣

λ̂∞

≤ 5%

⎞

⎠ = 0.90

Note that we are not making any claims about the relationship between λ̂B and any
asymptotic estimator of λ or the “true” value of λ; we are only comparing λ̂B with λ̂∞.
If the bootstrap is an inconsistent estimator of λ, the choice of B is moot2.

4.1 Standard errors

First consider the case in which λ is a standard error. Andrews and Buchinsky (2000)
show that

√
B

λ̂B − λ̂∞

λ̂∞

D−→ N(0, ω) (4)

where

ω =
2 + γ

4

and γ is a measure of the excess kurtosis of {θ̂i}i=B
i=1 :

γ ≡
E

[{
θ̂i − E

(
θ̂i

)}4
]

(
E

[{
θ̂i − E

(
θ̂i

)}2
])1/2

− 3

In the case of standard errors, convergence is defined in terms of a fixed sample size and
B tending to infinity, while for sample quantiles (as used, for example, with percentile-t
confidence intervals), convergence is defined in terms of both the sample size and B
tending to infinity. Given the result shown in (4), we can write

Pr

⎧
⎨

⎩

∣∣∣λ̂B − λ̂∞

∣∣∣

λ̂∞

≤ z1− τ

2

( ω

B

)1/2

⎫
⎬

⎭ −→ 1 − τ

2An example in which the bootstrap is inconsistent is a bootstrap hypothesis test of a parameter
on the boundary of the parameter space, such as a test that a variance term is zero.
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or

pdb ≈ 100z1− τ

2

( ω

B

)1/2

(5)

so that
B ≈ 10, 000z2

1− τ

2

ω/pdb2 (6)

Because γ is unknown, Andrews and Buchinsky propose a three-step method for choos-
ing B:

1. Set γ equal to zero and evaluate (6) to obtain an initial estimate B1 of B. Setting

γ to zero corresponds to assuming that {θ̂i} has no excess kurtosis.

2. Perform B1 bootstrap replications, and then compute

ω̂B =
2 + γ̂B

4

where

γ̂B ≡
1

B1−1

∑i=B1

i=1

(
θ̂i − 1

B1

∑j=B1

j=1
θ̂j

)4

{
1

B1−1

∑i=B1

i=1

(
θ̂i − 1

B1

∑j=B1

j=1
θ̂j

)2
}1/2

3. Re-evaluate (6) using ω = ω̂B , and then choose B∗ = max(B1, B). If B1 ≥ B∗,
compute the bootstrapped statistics of interest. If B1 < B∗, perform an additional
B − B1 replications, then compute the bootstrapped statistics of interest.

In practice, we are usually interested in obtaining bootstrapped confidence intervals
or standard errors for several parameters at once. In those cases, we calculate B1 for
each statistic individually and then take the maximum as our final choice. Similarly, in
the second and third steps, we compute ω̂B and B∗ for each statistic individually and
then choose as our final value of B∗ the maximum calculated for each statistic. If we
use the same (pdb, τ) pair for each statistic, we only need to calculate a single B1, since
it will be the same for all statistics.

4.2 Percentile-t confidence intervals

The three-step method can also be used for percentile-t confidence intervals with a
few modifications. Consider a 1 − 2α confidence interval. There are two bootstrapped
statistics with which we are concerned: the α centile of {ti} and the 1 − α centile of
{ti}, where {ti} is the sequence of bootstrapped t statistics. To avoid having to use

interpolation to find the α and 1 − α quantiles of {θ̂i}, we will choose B in such a way
that η/(B + 1) = 1 − α where η is a positive integer, α = α1/α2, and α1 and α2 are
positive integers with no common divisors.

Andrews and Buchinsky show that, in the case of percentile-t confidence intervals,
(4) continues to hold with

ω =
α(1 − α)

z2
1−αφ2(z1−α)

(7)
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For the 1 − α centile, the three-step method proceeds as follows:

1. Compute ω as given in (7), and then compute

B1 = α2h1 − 1

where

α = α1/α2 (fraction in reduced form)

h1 = int

(
10, 000z2

1−τ/2
ω

pdb2α2

)

2. Perform B1 bootstrap replications, and then compute

ω̂B =
α(1 − α)(1/ĝB)2

q̂1−α,B

where

1/ĝB =
B

2m̂B
(tη+ bmB

− tη−bmB
)

η = (1 − α)(B + 1)

m̂B = int(cαB2/3)

q̂1−α,B = tη

tη = ηth order statistic of {ti}i=B1

i=1

cα =

{
1.5z2

1−α/2
φ2(z1−α)

2z2
1−α/2

+ 1

}1/3

3. Compute B as in step 1, using ωB in place of ω, and set B∗

1−α = max(B1, B).

The same steps are used for the α centile, except that η = α(B +1) and q̂α,B is used
in place of q̂1−α,B . The total number of bootstrap replications needed is then B∗ =
max(B∗

1−α, B∗

α). As in the case for standard errors, if you are bootstrapping multiple
confidence intervals at once, choose B∗ to be the maximum number of replications
calculated for any single confidence interval.

4.3 Postestimation analysis

Recall that (5) expresses pdb as a function of B, and note that we can rewrite (6) as

τ = 2

[
1 − Φ

{
pdb (B/ω)

1/2

100

}]
(8)
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Thus given a set of bootstrap estimates {θ̂i}i=B
i=1 , we can use step 2 of the three-step

method to obtain an estimate of ω. We can then use (5) to answer the question “With
probability 1− τ , what is the maximum percentage by which our bootstrapped statistic
differs from the one we would obtain if we performed an infinite number of replications?”
Equation (8) answers the question, “What is the probability that our bootstrapped
statistic differs from the ideal bootstrap by more than pdb percent?”

4.4 Stata implementation

The command bssize accompanying this article makes the preceding method easy to
use. We first provide the syntax diagrams and summary of the options, and then we
give an example showing how to use it.

Syntax

bssize initial ,
[
tau(#) pdb(#) pctt(#)

]

bssize refine using filename

bssize analyze
[
using filename

]
,
[
tau(#) pdb(#) append(filename)

]

bssize cleanup

filename is the name of a file created by the bootstrap command or the postfile command.

Description

bssize initial provides an initial estimate of the number of bootstrap replications
needed; it corresponds to step 1 of Andrews and Buchinsky’s three-step method.

bssize refine takes as input a file containing the bootstrapped values of the statis-
tics and produces a refined estimate of the number of bootstrap replications needed; it
corresponds to steps 2 and 3 of the three-step method.

bssize analyze takes as input a file containing the bootstrapped values of the
statistics and performs postestimation analysis of the accuracy of the bootstrapped
standard errors. See section 4.3 above. bssize analyze is not implemented for use
with percentile-t confidence intervals.

bssize cleanup clears all the global macros set by bssize initial to store and
pass information to bssize refine. All such macro names begin with BSS .
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Options

tau(#) specifies the probability 1 − τ with which λ̂B and λ̂∞ differ by no more than
pdb percent. The default for bssize initial is 0.05. tau() is required with bssize

analyze if pdb() is not specified.

pdb(#) specifies the maximum percentage deviation between λ̂B and λ̂∞ that is ac-
ceptable with probability 1 − τ . The default for bssize initial is 5%. pdb() is
required with bssize analyze if tau() is not specified.

pctt(#) specifies the size, as a percentage, of the percentile-t confidence intervals being
produced. If pctt() is not specified, bssize assumes that standard errors are being
bootstrapped instead of confidence intervals.

append(filename) (bssize analyze only) indicates an additional file that is to be ap-
pended to the using file before doing the postbootstrap analysis. For example, you
might perform an initial number of bootstrap replications, save the results under one
file name, perform additional replications, and save them under a different name.
append() obviates the need to use Stata’s append command to create one dataset
before calling bssize analyze.

Remarks

If standard errors are being bootstrapped, the using dataset must contain a variable
named b statistic for each statistic being bootstrapped.

For percentile-t confidence intervals, the using dataset must either contain the vari-
ables b statistic and se statistic representing the point estimate and standard error of
statistic for each bootstrap replication or contain a variable named t statistic represent-
ing the t statistic for each statistic. If the t statistics variables do not exist, the point
estimates of statistics used to compute the t statistics are obtained from characteristics
named b statistic[observed]; these characteristics are stored with the dataset produced
by the bootstrap command, so you probably will not need to define the characteristics
manually.

Example

Using the auto dataset, we want to estimate the parameters of the model

mpgi = β0 + β1foreigni + β2displacementi + ǫi

and obtain bootstrapped standard errors for β0, β1, and β2. With probability 0.99, we
do not want our standard errors to deviate by more than 5% from the ideal bootstrapped
values. Thus we choose pdb = 5 and τ = 0.01.

The first step is to call bssize initial and obtain an estimate of the number of
bootstrap replications needed:
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. bssize initial, tau(0.01) pdb(5)

Initial estimate of bootstrap size needed for standard errors

Percent deviation from Binfinity (pdb) 5.000
Probability (1 - tau) 0.990

Required size (B1) 1326

Next we call bootstrap and perform 1,326 replications. We save the results in the
file one.dta.

. sysuse auto, clear

. set seed 1

. bootstrap "regress mpg foreign displacement" _b, reps(1326) saving(one)

With an initial set of bootstrap replications in hand, we can refine our estimate of
the final number needed:

. bssize refine using one

Refined estimate of bootstrap size needed for standard errors

Percent deviation from Binfinity (pdb) 5.000
Probability (1 - tau) 0.990

Parameter Initial Size Current Size Revised Size

foreign 1326 1326 1447
displacement 1326 1326 1454

cons 1326 1326 1383

Maximum revised size 1454
Additional replications needed 128

The column marked “Initial Size” contains the initial estimate of the number of
bootstrap replications needed, the column marked “Current Size” contains the number
of replications contained in the dataset, and the column marked “Revised Size” shows
the revised number of bootstrap replications needed based on steps 2 and 3 of Andrews
and Buchinsky’s method. In this case, we need to do an additional 128 replications.

. bootstrap "regress mpg foreign displacement" _b, reps(128) saving(two)

With all the bootstrapping done, we use append to join the two datasets and then
call the bstat command to obtain standard errors:
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. use one, clear
(bootstrap: regress mpg foreign displacement)

. append using two

. bstat

Bootstrap statistics Number of obs = 74
Replications = 1454

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

b_foreign 1454 -.8006818 -.0198747 1.420449 -3.587032 1.985668 (N)
-3.444365 2.136814 (P)
-3.393448 2.169905 (BC)

b_displace~t 1454 -.0469161 .0000582 .0058629 -.0584168 -.0354154 (N)
-.0585276 -.0360198 (P)
-.0594264 -.0367062 (BC)

b_cons 1454 30.79176 -.0504927 1.39613 28.05312 33.53041 (N)
27.99683 33.5871 (P)
28.05231 33.66282 (BC)

Note: N = normal
P = percentile
BC = bias-corrected

How confident can we be that our bootstrapped standard errors deviate by no more
than 2.5% from the ideal? We can use bssize analyze to find out:

. bssize analyze using one, append(two) pdb(2.5)

Analysis of bootstrap results for standard errors

Percent deviation (pdb) 2.500

Parameter Final Size tau 1 - tau

b_foreign 1454 0.195 0.805
b_displace~t 1454 0.197 0.803

b_cons 1454 0.185 0.815

Maximum 0.197 0.815

We see that there is a 19.7% chance that the standard error for the coefficient on
displacement is more than 2.5% away from the value we would obtain if we could
perform an infinite number of bootstrap replications.

5 Conclusion

With the power of modern computers, the bootstrap is a viable alternative to asymp-
totic standard errors and confidence intervals. This paper has illustrated an alternative
method of computing confidence intervals and has shown how to bootstrap simple time-
series models. The bssize commands introduced here allow you to select a reasonable
number of bootstrap replications.
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