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Understanding the multinomial-Poisson

transformation

Paulo Guimarães
Medical University of South Carolina

Abstract. There is a known connection between the multinomial and the Poisson
likelihoods. This, in turn, means that a Poisson regression may be transformed
into a logit model and vice versa. In this paper, I show the data transforma-
tions required to implement this transformation. Several examples are used as
illustrations.
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1 Introduction

Following McFadden’s (1974) conditional logit model, the probability that individual i

selects choice j among a set of Ji alternatives is given by

Pij =
exp(β′xij)

∑Ji

j=1
exp(β′xij)

where β is a vector of unknown parameters and the xij are covariates that may change
with individual, choice, or both. This logit formulation is quite general and is sta-
tistically equivalent to the multinomial logit model, when covariates are restricted to
characteristics of the individual, as well as to the conditional logistic model with one
case and (possibly) multiple controls (see [R] clogit). If we let dij be an indicator vari-
able that takes the value one if individual i selects choice j and zero otherwise, we can
write the log-likelihood function for the conditional logit model as

LLcl =
N

∑

i=1

Ji
∑

j=1

dij lnPij (1)

where N is the total number of individuals. Several authors (e.g., Palmgren [1981],
Baker [1994], Lang [1996], and Guimarães, Figueiredo, and Woodward [2003]) have
shown that a multinomial likelihood can be transformed into a Poisson likelihood with
additional parameters. Indeed, maximization of the following Poisson likelihood

LLP =

N
∑

i=1

Ji
∑

j=1

− exp(αi + β′xij) + dij(αi + β′xij) − log(dij !) (2)

where the αis are additional parameters per individual will yield exactly the same esti-
mates for β and the same asymptotic variance–covariance matrix as the maximization
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266 Multinomial Poisson

of the conditional logit likelihood in (1). Because the Poisson log likelihood is a less
complex function, in some particular settings it may be simpler to maximize (2) instead
of (1), despite the penalty incurred by the additional number of parameters that need
to be estimated.

In this article, we show how to manipulate the data in Stata 8 to implement this
transformation. Because this approach relies on a simple set of rules, it is easy to
understand. Researchers may be interested in learning this relation for two reasons: it
may simplify the estimation problem at hand, and it may help interpretation of results
derived from different approaches.

2 Implementing the multinomial-Poisson transformation

To fit the conditional logit model in Stata, one needs to lay out the data (ignoring
identifier variables) in a particular way

A =

⎡

⎢

⎢

⎣

y1 X1

y2 X2

. . . . . .

yN XN

⎤

⎥

⎥

⎦

where each (block) row is a group of observations, such that yi is a vector with one
element set to one and the remaining equal to zero and Xi is a matrix containing the
different covariates for each choice (see [R] clogit). The multinomial-Poisson trans-
formation discussed above implies that if we expand our set of covariates to include a
dummy variable per group, as in

B =

⎡

⎢

⎢

⎣

y1 X1 1 0 . . . 0

y2 X2 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

yN XN 0 0 . . . 1

⎤

⎥

⎥

⎦

then a Poisson regression of the y variable on all other covariates will yield the same
coefficients for the X variables as the conditional logit model. In this case, the Poisson
regression requires the estimation of an additional N − 1 coefficients and the use of
a substantially larger dataset (note that one dummy would have to be dropped for
identification purposes). However, if the information for the X covariates is identical for
groups of observations, the data may be collapsed before applying the Poisson regression.
To see how this can be done, consider the situation where X1 = X2. In this case, we
could condense the submatrix consisting of the first two (block) rows of B using a single
dummy variable to represent both groups, as in

B1 =

[

y1 X1 1 0 . . . 0

y2 X1 1 0 . . . 0

]
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or, even better, dropping one group and modifying the dependent variable to be the
sum of the dependent variables for both groups:

B2 =
[

y1 + y2 X1 1 0 . . . 0
]

Now if we apply a Poisson regression to the data matrix B where the first two
(block) rows are replaced by either B1 or B2, we still obtain the same estimates for the
coefficients on the X variables, but we will be using a smaller dataset. We can extend this
logic to collapse all groups with identical sets of covariates X, and depending on the type
of data, we could possibly achieve a substantial reduction in the size of the data matrix.
Note that we can also “travel” backwards and transform any Poisson regression into
a conditional logit model. In this latter case, we could possibly use dummy variables
in the set of covariates of the Poisson regression to define artificial choice sets and,
thus, establish a relation with alternative conditional logit model specifications. We
next provide several examples of applications of the multinomial-Poisson transformation
using online datasets from the Stata 8 Reference Manuals.

3 Examples

3.1 Example 1

Consider the dataset used in the Stata Base Reference Manual to illustrate the use of
the Poisson regression command. The data are loaded with the command

. use http://www.stata-press.com/data/r8/airline, clear

and we can run the following Poisson regression:

. poisson injuries n XYZowned, nolog

Poisson regression Number of obs = 9
LR chi2(2) = 18.46
Prob > chi2 = 0.0001

Log likelihood = -22.681583 Pseudo R2 = 0.2892

injuries Coef. Std. Err. z P>|z| [95% Conf. Interval]

n 11.61203 2.971555 3.91 0.000 5.787893 17.43617
XYZowned .650753 .3878742 1.68 0.093 -.1094665 1.410973

_cons .2992084 .5131932 0.58 0.560 -.7066318 1.305049

We can expand the data to be as in matrix A:

. expand _N
(72 observations created)

. by airline, sort: gen choiceid=_n

. gen y=(choiceid==airline)

. gsort choiceid -y

. by choiceid: gen weight=sum(y*injuries)
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If we now run a Poisson regression on this dataset and include dummy variables for
each block row of the data, we obtain

. xi: poisson y n XYZowned i.choiceid [fweight=weight], nolog
i.choiceid _Ichoiceid_1-9 (naturally coded; _Ichoiceid_1 omitted)

Poisson regression Number of obs = 576
LR chi2(10) = 18.46
Prob > chi2 = 0.0477

Log likelihood = -195.39419 Pseudo R2 = 0.0451

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

n 11.61203 2.971555 3.91 0.000 5.787893 17.43617
XYZowned .650753 .3878742 1.68 0.093 -.1094665 1.410973

_Ichoiceid_2 -4.77e-17 .4834938 -0.00 1.000 -.9476304 .9476304
_Ichoiceid_3 -6.28e-17 .4834938 -0.00 1.000 -.9476304 .9476304
_Ichoiceid_4 6.38e-17 .3788676 0.00 1.000 -.7425669 .7425669
_Ichoiceid_5 -1.57e-16 .4494666 -0.00 1.000 -.8809383 .8809383
_Ichoiceid_6 9.63e-17 .5838742 0.00 1.000 -1.144372 1.144372
_Ichoiceid_7 1.73e-17 .6513389 0.00 1.000 -1.276601 1.276601
_Ichoiceid_8 9.03e-17 1.044466 0.00 1.000 -2.047116 2.047116
_Ichoiceid_9 6.50e-17 .6513389 0.00 1.000 -1.276601 1.276601

_cons -3.859675 .5819376 -6.63 0.000 -5.000251 -2.719098

Despite now having 576 observations, we still obtain the same results for the variables
n and XYZowned. But there is no need to add the dummy variables because the Xi are
identical for all blocks of data:

. poisson y n XYZowned [fweight=weight], nolog

Poisson regression Number of obs = 576
LR chi2(2) = 18.46
Prob > chi2 = 0.0001

Log likelihood = -195.39419 Pseudo R2 = 0.0451

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

n 11.61203 2.971555 3.91 0.000 5.787893 17.43617
XYZowned .650753 .3878742 1.68 0.093 -.1094665 1.410973

_cons -3.859675 .5131932 -7.52 0.000 -4.865515 -2.853835

Given that the data are as in matrix A, we can obtain the same estimates for the
coefficients of the variables n and XYZowned by means of a conditional logit model:

. clogit y n XYZ [fweight=weight], group(choiceid) nolog

Conditional (fixed-effects) logistic regression Number of obs = 576
LR chi2(2) = 18.46
Prob > chi2 = 0.0001

Log likelihood = -131.39419 Pseudo R2 = 0.0656

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

n 11.61203 2.971555 3.91 0.000 5.787892 17.43618
XYZowned .650753 .3878742 1.68 0.093 -.1094665 1.410973
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Suppose now that our interest was restricted to the coefficient on the variable n. In
this case, we can use the different levels of the variable XYZowned to define artificial
choice sets for the conditional logit model. We can load the dataset again

. use http://www.stata-press.com/data/r8/airline, clear

and reshape it to make it look like matrix A:

. by XYZowned, sort: gen nchoice=_N

. by XYZowned: gen choiceid=_n

. expand nchoice
(36 observations created)

. by XYZowned choiceid,sort: gen groupid=_n

. egen group2id=group(XYZowned groupid)

. gen y=(choiceid==groupid)

. gsort XYZowned group2id -y

. by XYZowned group2id: gen weight=sum(y*injuries)

. sort XYZowned groupid choiceid

Now, whether we apply the Poisson regression

. poisson y n XYZowned [fweight=weight], nolog

Poisson regression Number of obs = 330
LR chi2(2) = 23.21
Prob > chi2 = 0.0000

Log likelihood = -157.36986 Pseudo R2 = 0.0687

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

n 11.61203 2.971555 3.91 0.000 5.787893 17.43617
XYZowned 1.589023 .3878742 4.10 0.000 .8288031 2.349242

_cons -3.529433 .5131932 -6.88 0.000 -4.535273 -2.523593

or fit the discrete-choice model using XYZowned to define the choice set

. clogit y n XYZ [fweight=weight], group(group2id)

note: XYZowned omitted due to no within-group variance.
Iteration 0: log likelihood = -99.602856
Iteration 1: log likelihood = -93.435036
Iteration 2: log likelihood = -93.369897
Iteration 3: log likelihood = -93.369864

Conditional (fixed-effects) logistic regression Number of obs = 330
LR chi2(1) = 17.65
Prob > chi2 = 0.0000

Log likelihood = -93.369864 Pseudo R2 = 0.0864

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

n 11.61203 2.971554 3.91 0.000 5.787895 17.43617

we still obtain the same estimates for the coefficient (and standard deviation) on n.
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3.2 Example 2

Consider now the following dataset, which was used as an example for the clogit

command in the Stata Base Reference Manual

. use http://www.stata-press.com/data/r8/choice, clear

and fit the following discrete-choice model:

. clogit choice dealer, group(id) nolog

Conditional (fixed-effects) logistic regression Number of obs = 885
LR chi2(1) = 126.68
Prob > chi2 = 0.0000

Log likelihood = -260.74988 Pseudo R2 = 0.1954

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

dealer .0962276 .0090957 10.58 0.000 .0784004 .1140548

Because this data is already arranged as in matrix A, we can apply a Poisson re-
gression, as long as we introduce a dummy variable for each one of the choices:

. xi: poisson choice dealer i.id, nolog
i.id _Iid_1-295 (naturally coded; _Iid_1 omitted)

Poisson regression Number of obs = 885
LR chi2(295) = 126.68
Prob > chi2 = 1.0000

Log likelihood = -555.74988 Pseudo R2 = 0.1023

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

dealer .0962276 .0090957 10.58 0.000 .0784004 .1140548
_Iid_2 .1486226 1.414251 0.11 0.916 -2.623258 2.920503

(output omitted )
_Iid_295 -.0375944 1.4143 -0.03 0.979 -2.809571 2.734382

_cons -2.243873 1.007488 -2.23 0.026 -4.218513 -.2692327

This amounts to adding 295 dummy variables. However, the data can be collapsed
if there are blocks of data identical across choices. We can reduce the dataset in the
following manner

. by id: gen nn=_n

. by id: gen unique=dealer[1]+100*dealer[2]+10000*dealer[3]

. collapse (sum) choice, by (nn unique dealer)

. by nn: gen nnn=_n

and we can now apply a Poisson regression to the collapsed dataset
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. xi: poisson choice dealer i.nnn, nolog
i.nnn _Innn_1-34 (naturally coded; _Innn_1 omitted)

Poisson regression Number of obs = 102
LR chi2(34) = 143.46
Prob > chi2 = 0.0000

Log likelihood = -309.7318 Pseudo R2 = 0.1880

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

dealer .0962276 .0090957 10.58 0.000 .0784004 .1140548
_Innn_2 -.3251537 .5012864 -0.65 0.517 -1.307657 .6573496

(output omitted )
_Innn_34 -.8581789 .5092949 -1.69 0.092 -1.856379 .1400208

_cons .277042 .3621829 0.76 0.444 -.4328234 .9869073

and still obtain the same estimate for the coefficient associated with the variable dealer.

3.3 Example 3

Our final example illustrates a situation in which the multinomial-Poisson relation is
particularly useful. Let us load the dataset used to illustrate the application of the
xtpoisson command in the Stata Cross-Sectional Time-Series Reference Manual:

. use http://www.stata-press.com/data/r8/ships, clear

. drop if accident==.|op_75_79==.|co_65_69==.|co_70_74==.|co_75_79==.
(6 observations deleted)

We can estimate a fixed-effect Poisson regression by adding dummy variables for
each “individual”, as in

. xi: poisson accident op_75_79 co_65_69 co_70_74 co_75_79 i.ship, nolog
i.ship _Iship_1-5 (naturally coded; _Iship_1 omitted)

Poisson regression Number of obs = 34
LR chi2(8) = 475.45
Prob > chi2 = 0.0000

Log likelihood = -118.47588 Pseudo R2 = 0.6674

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .2928003 .1127466 2.60 0.009 .071821 .5137796
co_65_69 .5824489 .1480547 3.93 0.000 .2922671 .8726308
co_70_74 .4627844 .151248 3.06 0.002 .1663437 .7592251
co_75_79 -.1951267 .2135749 -0.91 0.361 -.6137258 .2234724
_Iship_2 1.79572 .1666196 10.78 0.000 1.469151 2.122288
_Iship_3 -1.252763 .3273268 -3.83 0.000 -1.894312 -.6112142
_Iship_4 -.9044563 .2874597 -3.15 0.002 -1.467867 -.3410457
_Iship_5 -.1462833 .2351762 -0.62 0.534 -.6072202 .3146537

_cons 1.308451 .1972718 6.63 0.000 .9218049 1.695096

or we can use the conditional fixed-effects estimator of Hausman, Hall, and Griliches
(1984):
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. xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, i(ship) fe nolog

Conditional fixed-effects Poisson regression Number of obs = 34
Group variable (i): ship Number of groups = 5

Obs per group: min = 6
avg = 6.8
max = 7

Wald chi2(4) = 30.48
Log likelihood = -104.83697 Prob > chi2 = 0.0000

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .2928003 .1127466 2.60 0.009 .071821 .5137796
co_65_69 .5824489 .1480547 3.93 0.000 .2922671 .8726308
co_70_74 .4627844 .151248 3.06 0.002 .1663437 .7592251
co_75_79 -.1951267 .2135749 -0.91 0.361 -.6137258 .2234724

However, we can think of all the “dummy” variables for individuals as defining
artificial choice sets. Rearranging the data to be as matrix A, we can make the data
suitable for application of the conditional logit estimator, thus avoiding the estimation
of the coefficients for all the “individual” dummy variables. The data are transformed
by doing

. sort ship

. by ship: gen nchoice=_N

. by ship: gen choiceid=_n

. expand nchoice
(198 observations created)

. by ship choiceid, sort: gen groupid=_n

. egen group2id=group(ship groupid)

. gen y=(choiceid==groupid)

. gsort ship group2id -y

. by ship group2id: gen weight=sum(y*accident)

. sort ship groupid choiceid

. drop if weight==0
(55 observations deleted)

We are now ready to apply the conditional logit estimator:

. clogit y op_75_79 co_65_69 co_70_74 co_75_79 [fweight=weight],
> group(group2id) nolog

Conditional (fixed-effects) logistic regression Number of obs = 2460
LR chi2(4) = 31.62
Prob > chi2 = 0.0000

Log likelihood = -671.99869 Pseudo R2 = 0.0230

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .2928003 .1127466 2.60 0.009 .071821 .5137796
co_65_69 .5824489 .1480547 3.93 0.000 .2922671 .8726308
co_70_74 .4627844 .151248 3.06 0.002 .1663437 .7592251
co_75_79 -.1951267 .2135749 -0.91 0.361 -.6137258 .2234724
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4 Conclusion

In this paper, we have shown how the multinomial-Poisson transformation may be used
in practice. We have used several examples to show the data manipulations required
in Stata to estimate equivalent Poisson and logit regressions. Understanding the data
arrangement required for each model helps students and practitioners identify which
equivalent approaches may be used for estimation and, thus, whether it is advantageous
to consider the application of this transformation.
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