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Graphing confidence ellipses: An update of ellip
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Abstract. This paper describes an update of the ellip command for graphing
confidence ellipses in Stata 8. Two of the most notable new features are the option
to graph confidence ellipses around variable means and the ability to add inscribed
lines. These features allow a geometric characterization of linear regression with
unequal error variances, as in McCartin (2003).
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1 Introduction

This paper describes an update of the ellip command (Alexandersson 1998) for graph-
ing confidence ellipses in Stata 8. Most notably, the new features allow a geometric
characterization of linear regression with unequal error variances, as in McCartin (2003).

The concept of an ellipse is over 2,000 years old.1 Since Descartes (1596–1650), the
“standard” or “normal” ellipse usually refers to an ellipse with a boundary constant of
1, centered at the origin and rotated along the Cartesian axes (nonrotated). This paper
views the ellipse as a set of points, a point-conic, which may degenerate to a point.

The confidence ellipse has a much shorter history than the ellipse and is a more
contested concept. The confidence ellipse is defined broadly as an ellipse-shaped joint
100(1 − α)% confidence region for two parameters. The larger the confidence level is,
the larger the confidence ellipse will be. The paper will discuss three related topics
that should help to clarify the use and misuse of confidence ellipses and of the updated
program: the geometry of linear regression, the boundary constant of confidence ellipses,
and elliptical distributions.

2 The geometry of linear regression

It was Bravais who discovered the confidence ellipse mathematically. Bravais (1846, 273)
graphed the regression line together with the “ellipse fondamentale” and its horizontal
tangent. However, it was Galton (see http://galton.org) who discovered the confidence
ellipse and regression empirically. Galton (1886, 245) had collected family height data

1Menaechmus (c. 375–325 BC) discovered the (nondegenerate) conics or, more revealing, the conic
sections. Apollonius of Perga (c. 292–190 BC) based the theory of conics on one type of cone and used
the names ellipse, parabola, and hyperbola. It is debatable whether Apollonius introduced or canonized
the improved theory of conics and the new names; e.g., see Toomer (1976, 14–15).

c© 2004 StataCorp LP gr32 1
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and found that the isodensity contour lines from the bivariate normal distribution are
“concentric and similar ellipses”. Galton (1886, Plate X) graphed one such ellipse with
its axes, the two regression lines, and its horizontal and vertical tangents.

Galton allowed only one of the variables to contain errors and used coordinate re-
gression. Pearson (1901, 566) extended Galton’s geometrical work by allowing both
variables to contain errors. Pearson assumed equal error variances and, instead, used
orthogonal regression and his χ2 distribution. Pearson called the best and worst lines of
fit the major and minor axes. Pearson distinguished between the “ellipse of residuals”
and the “correlation ellipse”.2

Jones (1937, 25) graphed a scatterplot and the Pearson correlation ellipse to show
that the slopes of the major and minor axes vary depending on the relative values of the
standard deviations. One of several ways to handle the problem of scale is to convert the
variables to standardized variables. The result is called a reduced major axis, or geomet-
ric mean regression line. It minimizes the areas of the triangles between the points and
the best fit lines and is easily calculated as the slope of the least-squares line divided by
the correlation coefficient. Orthogonal regression is a difficult and controversial topic;
Stata Journal 3(4) was devoted to the closely related topic of measurement error.

McCartin (2003) did not mention Jones’ article and the related controversies but, in
effect, provided an elegant graphical improvement. Let the ratio of the variance of y-
error to the variance of x-error be the error variance ratio: λ = σ2

y/σ2
x. Further, m is the

slope of the best line of λ-regression, s is the slope of the worst line of λ-regression, and
n is the slope of the normal, n = −1/s. McCartin found that the best and worst line of
λ-regression are conjugate diameters of the so-called Cramér concentration ellipse, the
product of whose slopes equals −λ; that is, m ∗ s = −λ. The ratio of the λ-regression
slope to the normal slope of the ellipse equals the ratio of the error variances; that is,
m/n = λ. The SAS software JMP has a good graphical implementation of λ-regression;
e.g., it is interactive. But JMP does not inscribe the best line in the ellipse, and JMP

does not easily graph s or n.

3 The boundary constant of confidence ellipses

Hotelling (1931) derived the generalized means test T 2 = p(n− 1)/(n− p) ∗F (p, n− p),
where p is the number of parameters. Hotelling concluded that T 2 can be used for
determining the ellipse with a certain confidence. The empirical probability, P , that a
random point falls into the corresponding ellipse is determined by the χ2 distribution
with 2 degrees of freedom, that is, the boundary constant c = χ2(1 − P, 2). Shewhart
(1931, 109–112) illustrated the empirical probability with “control ellipses” for variable
means. Shewhart noted that, for the bivariate normal distribution of the standard
ellipse, the probability P = 1 − exp(−c/2). Like Shewhart, Jackson (1956) graphed
control ellipses for variable means. But unlike Shewhart, Jackson used the Hotelling T 2

as the boundary constant.

2In comparison, Edgeworth (1887, 284) suggested the name “probabiloid” but it never became
widely used.
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Cramér (1946, 275–276 and 283–285) coined the terms inertia and concentration
ellipses. The inertia ellipse is an ellipse with a boundary constant of 1/moment of
inertia. The concentration ellipse is an ellipse with a boundary constant of 4 because
it has the same first- and second-order moments as the given distribution. McCartin
(2003) suggested that the Cramér concentration ellipse is the most representative of the
data points without any a priori statistical assumptions concerning their origin.

When the sample size n is large, the distribution 2 ∗ F (2, n − 2) approaches the χ2

distribution with 2 degrees of freedom. If we know the sampling distribution, which
is often the case in linear regression, this statistic is preferred because the confidence
ellipse is smaller. Most of the multivariate adjustments, for example Bonferroni, produce
rectangular regions instead of ellipses. The Scheffé confidence ellipse is the projection
of the ellipsoid in p dimensions on the confidence ellipse, that is, c = p ∗ F (p, n − p).
Durand (1954) extended the Scheffé confidence ellipse for the analysis of variance to
multiple regression and was the first to explicitly use the wording “confidence ellipse”.

The confidence ellipse for predicting the next single observation in the population,
or prediction ellipse, approximates a confidence ellipse containing a specified percentage
of the population, or tolerance ellipse. Chew (1966) distinguished between formulas for
confidence, prediction, and tolerance regions for the multivariate normal distribution
according to the cases of known and unknown mean vector µ and covariance matrix Σ.
For samples, Chew divided the χ2 and T 2 boundary constants by the sample size n. For
large samples, if Σ is known but µ is unknown, Chew recommended using χ2/n for the
confidence ellipse and χ2/n∗ (n+1) for the prediction ellipse. For small samples, if Σ is
unknown, Chew recommended using T 2/n for the confidence ellipse and T 2/n ∗ (n + 1)
for the prediction ellipse, which are what SAS has implemented. However, SAS allows
only two parameters; that is, in SAS, T 2 = 2(n − 1)/(n − 2) ∗ F (2, n − 2). Chew also
referred to more complex boundary constants for small samples.

Batschelet (1981, 141) distinguished between the standard ellipse, which has a
boundary constant of 1, and the Hotelling confidence ellipse. Batschelet argued that the
standard ellipse is a descriptive tool, whereas the Hotelling confidence ellipse is a tool
for statistical inference. A similar but more general distinction between data ellipses
and confidence ellipses exists, and it corresponds to the distinction emphasized in this
paper between confidence ellipses for means and confidence ellipses for regression coef-
ficients. Except for a constant scale factor and their respective centers, the two types
of confidence ellipses are inverses of each other. For instance, if the confidence ellipse
for means is positively tilted, then the confidence ellipse for regression coefficients is
negatively tilted.

The standard ellipse is sometimes referred to as a standard deviation ellipse because
the standard deviations are the half-widths of its shadows on the axes. But rotating
the ellipse can lead to misleading results. The locus of the standard deviations of the
x coordinates forms a closed curve as the system is rotated around the origin. This
standard deviation curve can be, but does not have to be, an ellipse; see Gong (2002).
Distances from the ellipse center to the ellipse boundary do not describe the standard
deviations along directions other than the principal or major axis.
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4 Elliptical distributions

Much of the work in the last two decades on confidence ellipses no longer assumes
the normal distribution. For example, Goldberg and Iglewicz (1992) suggested the ro-
bust elliptical plot (“relplot”) for symmetric data and the robust quarter elliptical plot
(“quelplot”) for nonsymmetric data. Among the non-normal distributions, the ellipti-
cally contoured distributions, or elliptical distributions, have attracted much attention.
The contours of constant density are ellipsoids

(x − µ)′Σ−1(x − µ) = constant

which leads to the name “elliptically contoured distribution”.

Elliptical distributions extend the multivariate normal distribution Np(µ,Σ). For a
recent overview article on elliptical distributions, see Fang (2004). Elliptical distribu-
tions contain the normal, contaminated normal, Cauchy, and Student’s t-distributions
among others. Olive (2002) used the plot of classical versus robust Mahalanobis distance
(DD plot) to diagnose elliptical symmetry, to detect outliers, and to assess numerical
methods for transforming data toward an elliptical distribution. It is beyond the scope
of this paper to implement DD plots. But there is a need for similar plots, especially
since StataCorp has deprecated the only command in Stata, hadimvo, for detecting
multivariate outliers. hadimvo has been deprecated, at least in part, because the confi-
dence ellipses in the earlier Stata manuals could not be replicated from the data. The
problem of replication is not unique to hadimvo. The following sections will present and
discuss the ellip program. One of the program examples will illustrate that also the
most famous confidence ellipse, Galton’s “Plate X,” cannot easily be replicated from
the data.

5 The ellip command

5.1 Syntax

ellip yvar xvar
[

if exp
] [

in range
] [

, means common options
]

ellip yvar
[

xvar
] [

if exp
] [

in range
]

, coefs
[

pool(#) plopts(line options)

pcopts(connect options) common options
]

where common options are

constant(statname
[

#
]

|#) level(#) formula(acosr | theta)
generate(ynewvar xnewvar) nograph replace evr(#) from(#) to(#)

npoints(#) overlay total tlabel(label) diameter(#) dlopts(line options)

plot(plot) connect options twoway options
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5.2 Description

Stata does not offer an official command for graphing confidence ellipses. Alexandersson
(1998) provided the program ellip for Stata 5, which graphs confidence ellipses for
linear regression coefficients. The program ellip has been rewritten for Stata 8.2 as
version 2.3 Two of the most notable new features are the option to graph confidence
ellipses around variable means and the ability to add inscribed lines, such as the major
and minor axes and the normals of the major axis.

The Statistical Software Components (SSC) archive (see [R] ssc) contains the test
script package for the ellip program. To learn more about and to install the test
scripts, type

. ssc describe ellip

5.3 New or improved options

means | coefs specifies how to center the confidence ellipse. The default and the means

option use two variable means, whereas coefs uses the first two regression coefficients
from an immediately preceding regress. Default subtitles are “Means centered” and
“Coefficient centered”, respectively. If you restrict regress to a portion of the data
using if or in, you generally want to use the same conditions with coefs. coefs is
not allowed with by() because it would be misleading, since Stata remembers only
the last set of estimates.

constant(statname
[

#
]

|#) calculates or specifies the boundary constant c. The over-
all and means default is constant(4) and corresponds to a joint confidence interval
of 1 − exp(−c/2) ∗100 or 86%. The coefs default is constant(f 2). Available stat-

names are specified in table 1.

(Continued on next page)

3Updated versions of ellip for Stata 6 and Stata 7 were posted on the SSC archive. The older
versions are now named ellip5, ellip6, and ellip7, respectively.
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Table 1: Choices for constant(statname
[

#
]

)

statname Definition; calculation of c
sd Standard deviation; c = #

Cannot be used with level(#)

t2 Hotelling T 2/n; c = #(n − 1)/n(n − #) ∗ F (#, n − #)
pt2 Prediction T 2; c = t2 ∗ (n + 1)
chi2 (True) χ2; c = chi2(#)
chi2 n Sample-adjusted χ2; c = chi2(#)/n
pchi2 n Prediction χ2; c = chi2(#)/n ∗ (n + 1)
f (Multiplier-fixed) F; c = 2 ∗ F (#, n − #)
f scheffe Scheffé-adjusted F; c = # ∗ F (#, n − #)
fadj Adjusted F (denominator); c = 2 ∗ F (2, n − #)

plopts(line options), to be used with pool(), affects the rendition of the pooled con-
fidence ellipse; see [G] line options.

pcopts(connect options), to be used with pool(), specifies how points in the fraction-
ally pooled curve are to be connected; see [G] connect options. Sort options are
ignored.

formula(acosr | theta) is included only for curious users to show that two seemingly
different formulas are equivalent. formula(acosr) is based on the angular distance,
acos(r), and on the amplitudes. formula(acosr) is the default. formula(theta)

is based on the rotation angle of the major axis against the x-axis, θ, and on the
semimajor and semiminor axes, a and b.

nograph specifies that no graph be constructed. In contrast, the built-in nodraw option
merely suppresses the display of the graph. nograph is often used together with
generate().

replace replaces any existing variables in generate().

evr(#) specifies the error-variance ratio of yvar to xvar as a floating-point number
between 0 and 99999. The default is 1 and corresponds to the major axis (classical
orthogonal regression). A ratio of 0 corresponds to regression of x on y (reversed re-
gression with horizontal tangents), and a very large number, say 99999, corresponds
to regression of y on x (with vertical tangents); see McCartin (2003).

from(#) specifies the value from which the ellipse parameter runs. The default is 0.
Specify this option only if you do not want to display the beginning of an ellipse.

to(#) specifies the value to which the ellipse parameter runs. The default is 2π. Specify
this option only if you do not want to display the end of an ellipse. If from() is
smaller than to(), as by default, the parameter runs clockwise. Otherwise, the
parameter runs counterclockwise.
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overlay, to be used with by(), creates an overlaid graph for all by-groups. Despite the
use of by(), the graph has only one plot. The overlay option cannot be used with
by(, total).

total, to be used with by(), adds an extra graph with one confidence ellipse for the
entire dataset. The extra graph is located immediately after the graphs for each
by-group. The default label is “Total”. The label is repeated for each variable in
the varlist; a better solution will probably require changes to internal by-graph files,
which is beyond the scope of this paper.

tlabel(label), to be used with total, replaces the default label, “Total”, with a user-
specified label. The label is repeated for each variable in the varlist. In contrast,
you cannot easily change the label or subtitle “Total” in by(); you would have to
manually create the parts.

diameter(#) adds a diameter of the ellipse with slope −999999 ≤ # ≤ 999999. A
diameter of the ellipse is any chord that goes through the center of the ellipse.
diameter() is incompatible with pool().

dlopts(line options), to be used with diameter(), affects the rendition of the diameter;
see [G] line options.

plot(#) adds other plots to the generated graph; see [G] plot option. By default,
when this option is specified, the legend appears; see [G] legend option. By default,
the descriptive text in the legend is obtained from the y-variables’ variable labels.
Examples of such plots are another confidence ellipse, a regression line, inscribing
reference lines, and a scatterplot of yvar and xvar and of the midpoint.

connect options are any of the options documented in [G] connect options. The
options sort[(varlist)] and cmissing(y | n ...) are ignored. The default is
cmissing(n ...), meaning that ellipses are not connected to each other.

twoway options are any of the options documented in [G] twoway options. These in-
clude options for titling the graph (see [G] title options), options for saving the
graph to disk (see [G] saving option), and the by() option, which allows you
to simultaneously graph confidence ellipses for different subsets of the data (see
[G] by option). The by() option is not allowed with the option coefs. The by()

suboptions missing and total are allowed. The by() suboption total may not be
used with the option overlay.

5.4 Dialog

The ellip package includes a dialog-box program for ellip, ellip.dlg. To launch the
dialog interactively, type db ellip from within Stata 8. Alternatively, GUI users can
add ellip permanently to the Graphics submenu of the User menu by including the
following in profile.do:
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if _caller() > 7 {
if "‘c(console)’"=="" {

window menu append submenu "stUserGraphics" ///
"Confidence Ellipses"

window menu append item "Confidence Ellipses" ///
"for Means" "db ellip_means"

window menu append item "Confidence Ellipses" ///
"for Regression Coefficients" "db ellip_coefs"

}
}

For information on customizing your User menu, see [P] window menu.

5.5 Saved Results

ellip saves in r():

Scalars
r(mean x) mean of x r(mean y) mean of y
r(min x) minimum of x r(min y) minimum of y
r(max x) maximum of x r(max y) maximum of y
r(ymin x) x at ymin r(xmin y) y at xmin
r(ymax x) x at ymax r(xmax y) y at xmax
r(amin x) x at amin r(amin y) y at amin, min y for n1
r(amax x) x at amax, max y for n2 r(amax y) y at amax
r(bmin x) x at bmin r(bmin y) y at bmin
r(bmax x) x at bmax r(bmax y) y at bmax
r(s x) se or sd of x r(s y) se or sd of y
r(lambda1) first eigenvalue of Σ r(lambda2) second eigenvalue of Σ
r(m1) slope of best fit r(m2) slope of worst fit
r(evr) error-variance ratio r(n) slope of normals n1, n2
r(a) semimajor axis r(b) semiminor axis
r(a evr) evr-adjusted a r(b evr) evr-adjusted b
r(c) boundary constant r(theta) rotation angle (radians)
r(e2) eccentricity squared r(r) correlation coefficient
r(n1min x) min x for n1 if r < 0 r(n1max x) max x for n1 if r > 0
r(n2min x) min x for n2 if r > 0 r(n2max x) max x for n2 if r < 0
r(n1max y) max y for n1 r(n2min y) min y for n2
r(mmin x) min x for diameter slope m r(mmin y) min y for diameter slope m
r(mmax x) max x for diameter slope m r(mmax y) max y for diameter slope m

6 Remarks

6.1 Example 1: the option by(, total)

The first example will illustrate the options total and overlay, both of which are used
with the option by(). To illustrate by(), the Stata 8 graphics manual uses the familiar
auto dataset and on page 81 mentions the scatterplot example:

. sysuse auto, clear

. scatter mpg weight, by(foreign, total)
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The by() suboption total adds an extra graph for all by-groups combined, in ad-
dition to the graphs for each by-group. In ellip, the by() suboption total adds the
extra graph as overlaid confidence ellipses:

. ellip mpg weight, by(foreign, total)

The option total is used with by() to add a graph with one confidence ellipse for
the total data. To add the scatterplots to the confidence ellipses, type

. ellip mpg weight, by(foreign, legend(off)) total plot(scatter mpg weight)

Use the option tlabel() with the option total to specify another label than “To-
tal”. Figure 1 is the output of this command:

. ellip mpg weight, by(foreign, total legend(off))
> total tlabel(Total as a by-group) plot(scatter mpg weight)
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Figure 1: The option by(, total) on the auto dataset.

In figure 1, there are four graphs in a 2×2 array; the option by(, total) produced
the (2,1) graph and the option total produced the (2,2) graph.

While the option total adds a by-graph, the option overlay is used with by() to
reduce the number of by-graphs to just one overlaid graph, that is, to one graph with
multiple plots. You may want to use a legend, but the default legend key from plot()

may be misleading.

You may want to compare figure 1 with the output of this command:

. ellip mpg weight, by(foreign) total overlay plot(scatter mpg weight)

The result is one graph; the option total overlaid an extra confidence ellipse, and the
option overlay produced the overlaying. If you want more flexibility, you may want to
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use the plot() option or start over with the generate() option followed by overlaid
twoway plots. For example, you might want to have different scatter symbols according
to by-group.

6.2 Example 2: A geometric characterization of linear regression

ellip is a nongraph graphics command, that is, a graphics command implemented in
terms of graph twoway. In [G] plot option, it is noted that the trade-off between graph
and nongraph commands is one of greater flexibility versus easier use. To illustrate the
trade-off, consider the perhaps most famous ellipse, that is, Galton (1886, Plate X). We
can reproduce Galton’s ellipse with the following four lines of code without using the
ellip program:

. range t 0 ‘=2*_pi’ 400

. generate x = 68.25 + 4 * cos(t)

. generate y = 68.25 + 3 * cos(t + acos(‘=(4/3)/3’))

. twoway (line y x, yvarf(%4.2f) xvarf(%4.2f)), ylab(minmax) xlab(minmax)

In contrast, ellip has about 800 lines of code, and the certification script has more
than 2,000 lines of code. The first line above constructs the variable t, taking on values
from 0 to 2π, inclusive, with 400 observations. The second line generates the variable
x with mean 68.25 and amplitude 4. The third line generates the variable y with mean
68.25, and amplitude 3, and correlation 4/9. Galton did not introduce the term “co-
relation” or correlation until later, in 1888. But the correlation can be calculated as the
ratio of the vertical tangent height to the shadow of the ellipse onto the y-axis, that is,
as (4/3)/3. Marks (1982) showed that the slope of the line tangent to the ellipse when
x = 0 is the correlation. When the correlation is 0, the ellipse is a circle, the tangent
has slope 0, and the regression line is horizontal. When the correlation is 1 or −1, the
ellipse is a straight line with slope 1 or −1, respectively, and is the major axis of the
ellipse. The last line above graphs the ellipse in terms of twoway line.

Wachsmuth, Wilkinson, and Dallal (2003) suggested that Galton’s height data are
better fitted by a piecewise linear model than by a simple linear model. Using piecewise
linear models is one way to find a more reasonable specification if we can reject the
linearity assumption in simple linear regression. McCartin (2003, 9) suggested using e2

as a measure of linearity instead of the correlation coefficient r because r can be zero,
even when the ellipse is very elongated. The linearity of the ellipse can be defined as
e2 = 1 − (b/a)2 where 0 < e < 1 is the eccentricity of the ellipse. For ellip parentht

childht on Galton’s data, e2 is approximately .7, whether you use the table 1 data
[N=928], the Plate X data [N=314], or the fictional ellipse data. In comparison, for
ellip mpg weight on the Stata auto data, e2 equals .999. From this perspective, the
authors correctly concluded that the Galton family-height dataset is not the preeminent
linear regression dataset. But Galton never claimed that it was, and McCartin showed
that Galton’s concept of linear regression has not lost its power to surprise. To illustrate
McCartin’s (2003, 14) main results, consider the following Stata code, which creates the
graph in figure 2:
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. * reproduce Galton’s confidence ellipse data

. range t 0 ‘=2*_pi’ 4000
obs was 74, now 4000

. generate x = 68.25 + 4 * cos(t)

. generate y = 68.25 + 3 * cos(t + acos(‘=(4/3)/3’))

. * extract major axis

. ellip y x, constant(2) nograph

. local m1 = r(m1)

. * create inscribing lines for best fit m1 and normal n2 for evr(.3)

. ellip y x, constant(2) evr(.3) nograph

. assert reldif( 1.067779930389807, r(m1)) < 1e-5

. assert reldif( -.2809567697067325, r(m2)) < 1e-5

. assert reldif( 3.559266434632692, r(n)) < 1e-5

. assert reldif( r(m1)/r(n), r(evr)) < 1e-5

. assert reldif( r(m1)*r(m2), -r(evr)) < 1e-5

. generate m_y = r(amin_y)

. quietly replace m_y = r(amax_y) in 2/2

. generate m_x = r(amin_x)

. quietly replace m_x = r(amax_x) in 2/2

. generate n2_y = r(n2min_y)

. quietly replace n2_y = r(amax_y) in 2/2

. generate n2_x = r(n2min_x)

. quietly replace n2_x = r(amax_x) in 2/2

. * reproduce Galton’s confidence ellipse

. ellip y x, constant(2) legend(off) plot(
> line m_y m_x, clpat(solid) text(70.5 70 "m") ||
> line n2_y n2_x, clpat(solid) text(67 70 "n"))
> ylab(65.25 68.25 71.25) xlab(64.25 68.25 72.25, grid)
> ytick(65.25(1)71.25) xtick(64.25(1)72.25)
> ytitle("Mid-parents") xtitle("Adult children")
> diameter(‘m1’) dlopts(clpat(dot))

. assert reldif( .6759268231824285, r(e2)) < 1e-5

(Continued on next page)
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Figure 2: Error-variance regression for Galton’s confidence ellipse (m/n = λ).

In figure 2, m refers to the best fit of the error-variance regression, n refers to its
normal, and the dotted line is the major axis. Figure 2 does not have a legend in
order to reproduce more closely McCartin’s figure 8. In ellip, the equivalent saved
results for McCartin’s symbols m, s, n, and λ are r(m1), r(m2), r(n), and r(evr).
McCartin found that m/n = λ and m ∗ s = −λ. Therefore, 1.0677/3.5593 = .3, and
1.0677 ∗ (−.2810) = −.3. In addition to being useful for experimental data analysts,
McCartin’s geometric characterization of error-variance regression is likely to be a useful
tool for teaching the concept of linear regression and the relationship between least
squares and orthogonal regression.

6.3 Methods and formulas

Two versions of the parametric scalar equations of the confidence ellipse are implemented
in the option formula(acosr | theta). In the following equations, x and y are two arcs
or variables that define the confidence ellipse in the (X,Y) coordinate system, x and y
are the means for x and y, a is the major axis, b is the minor axis, θ is the rotation
angle of the major axis around the x-axis, t is the variable angle that goes through the
ellipse (0 ≤ t ≤ 2π radians), and r is the linear correlation coefficient. Further, xamp

and yamp are the amplitudes sx
√

c and sy
√

c, where c is the boundary constant. In
confidence ellipses for means, sx and sy are the standard deviations for x and y. In
confidence ellipses for regression coefficients, sx and sy are the standard errors for x and
y, respectively.
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Batschelet (1981) and others use the formula(theta) equations

x = x + a ∗ cos(θ)cos(t) − b ∗ sin(z)sin(t)

y = y + a ∗ sin(θ)cos(t) + b ∗ cos(θ)sin(t)

but ellip defaults to the formula(acosr) equations

x = x + xampcos(t)

y = y + yampcos{t + acos(r)}

because r is easier to calculate and explain than θ. The shorter arc includes the term
acos(r), which Batschelet (1981, 242) referred to as the “angular distance”. The SSC

package ellip provides formal derivations of the formula(acosr) equations.

7 Statistical applications and possibilities

ellip is useful to the practitioner, not only to illustrate ideas about linear regression
and to plot parameter estimates, but also in statistical applications. A typical appli-
cation is to overlay confidence ellipses on top of scatterplots to display the location,
shape, and outliers of elliptical distributions. In addition to example 1, the certifica-
tion script in the SSC archive provides several examples with ellipse-enhanced scatter-
plots. When two confidence ellipses served as a hinge and a fence of the scatterplot,
Goldberg and Iglewicz (1992) viewed this as an extension of the boxplot.

To overlay graphs in Stata 8, the commands must be graph twoway or be imple-
mented in terms of graph twoway with the plot() option. This requirement limits
the plottypes on which you can overlay ellip. Two possibilities are the scatterplot
matrix (graph matrix) and convex hull plots (cvxhull in the SSC archive). The scat-
terplot matrix is a clever arrangement of two-dimensional scatterplots but tends to get
cluttered when there are many variables. Convex hull plots can replace scatterplots to
reduce clutter from multigroup scatterplots of large datasets. Friendly (2002) suggested
enhancing or replacing the plots in the scatterplot matrix with confidence ellipses and
lowess smoothing. When the plots were replaced, Friendly called the result a correlation
matrix graph.

Although newer applications tend to have less impact, the pool() option in ellip is
useful for checking the robustness of pooling observations. McCartin’s geometric inter-
pretation of regression, which was illustrated in example 2, is another novel application
of confidence ellipses and is useful to the experimenter who needs to allow unequal error
variances.

Confidence ellipses functioning as control ellipses have long been used to identify
outliers in one cluster. ellip works well with hadmimvo to identify multivariate outliers
in one cluster. However, little is generally known about the distributions of the clusters
representing the outliers. As the joke goes, “I’m not an outlier. I just haven’t found
my distribution yet!” Nevertheless, if the distributions are elliptical, consider displaying
them with confidence ellipses.
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