

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2004)
4, Number 2, pp. 180–189

From the help desk: Polynomial distributed lag

models

Allen McDowell
StataCorp

Abstract. Polynomial distributed lag models (PDLs) are finite-order distributed
lag models with the impulse–response function constrained to lie on a polynomial
of known degree. You can estimate the parameters of a PDL directly via con-
strained ordinary least squares, or you can derive a reduced form of the model
via a linear transformation of the structural model, estimate the reduced-form
parameters, and recover estimates of the structural parameters via an inverse lin-
ear transformation of the reduced-form parameter estimates. This article demon-
strates both methods using Stata.

Keywords: st0065, polynomial distributed lag, Almon, Lagrangian interpolation
polynomials

1 Introduction

A polynomial distributed lag model is a pth-order distributed lag model of the form

yt =

p∑

i=0

βixt−i + ǫt (1)

where the impulse–response function is constrained to lie on a polynomial of degree q.
Requiring the impulse–response function to lie on a polynomial imposes p−q constraints
on the structural parameters of the model. Following Fomby, Hill, and Johnson (1984)
and Shiller (1973), we can determine the form of the constraints from the fact that
if fi is a polynomial of degree n whose domain is the integers, the first difference
Dfi = (1 − L)fi can be expressed as a polynomial of degree n − 1 in i. Consequently,
the (n+1)st difference Dn+1fi is the zero function. Thus, the constraints have the form

(1 − L)q+1βi = 0 i = q + 1, . . . , p (2)

Consistent and efficient estimates of the structural parameters, subject to the p − q

constraints, can be obtained via constrained ordinary least squares.

Alternatively, we can write the constraints as

βi = a0 + a1i + a2i
2 + · · · + aqi

q

c© 2004 StataCorp LP st0065

A. McDowell 181

Substituting the constraints into the finite-order distributed lag model yields a reduced-
form representation. Vandermonde matrices, which are square matrices of the form

V =

⎛

⎜⎜⎜⎝

1 1 . . . 1
τ0 τ1 . . . τn

...
...

. . .
...

τn
0 τn

1 . . . τn
n

⎞

⎟⎟⎟⎠

provide a convenient way to derive the reduced form of the model. For example, if we
make V a (p+1)× (p+1) matrix and substitute the lag index i for the τj , the resulting
matrix has the form

V =

⎛

⎜⎜⎜⎝

1 1 . . . 1
0 1 . . . p
...

...
. . .

...
0 1n . . . pn

⎞

⎟⎟⎟⎠

Finding a solution to
V′a = β

is equivalent to polynomial interpolation. Once a degree, q, for the polynomial has been
chosen such that q < p, we can simply replace V in the expression above with a matrix
consisting of the first q + 1 rows of V, and the pth-order impulse–response function is
constrained to lie on a polynomial of degree q. Letting Vq+1 denote a matrix consisting
of the first q +1 rows of V and substituting V′

q+1a for β in (1) yields the reduced-form
representation of the model:

y = Xβ + ǫ

= XV′

q+1a + ǫ

= Za + ǫ

where Z = XV′

q+1. The parameters of the reduced form can be estimated consistently
and efficiently via OLS. Estimates of the structural parameters and their variances can
be recovered via the relations

β̂ = V′

q+1â

and
Var(β̂) = V′

q+1Var(â)Vq+1

Cooper (1972) refers to this as the direct method.

An extension to the method just described was introduced by Almon (1965). Note
that the estimates of β are unique up to a nonsingular linear transformation. For
example, let J be any nonsingular (q + 1) × (q + 1) matrix. Let

a = J−1γ

It follows that
β = V′

q+1J
−1γ

182 From the help desk

If J is the transpose of a (q + 1) × (q + 1) Vandermonde matrix, the elements of a
general row of V′

q+1J
−1 are Lagrangian interpolation polynomials. Again, estimation

of the reduced-form parameters, γ, can be consistently and efficiently obtained via
ordinary least squares. Estimates of the structural parameters, β, and their variances
are recovered via

β̂ = V′

q+1J
−1γ̂

and

Var(β̂) = (V′

q+1J
−1)Var(γ̂)(V′

q+1J
−1)′

According to Cooper (1972), the Almon method is preferred in estimation since the
resulting weighting matrix will have a more irregular pattern of weights compared with
V′

q+1, reducing the likelihood that the artificial variables, Z, will be collinear.

2 Estimation using Stata

To demonstrate how to fit a polynomial distributed lag model in Stata using each of the
methods described above, let’s consider an example of a PDL model with p = 12 and
q = 4. First, let’s simulate some data:

* generate the pdl(12,4) data

clear
set seed 2001
sim_arma x, ar(.9) spin(10000) nobs(300)
tsset _t
gen double y = .8*x + .8^2*L.x + .8^3*L2.x + .8^4*L3.x ///

+ .8^5*L4.x + .8^6*L5.x + .8^7*L6.x ///
+ .8^8*L7.x + .8^9*L8.x + .8^10*L9.x ///
+ .8^11*L10.x + .8^12*L11.x + .8^13*L12.x ///
+ invnorm(uniform())

save pdl, replace

exit

The input variable, xt, follows an AR(1) process, and the impulse–response function
is a simple geometric series. xt was generated using the sim arma command, which
will simulate data from any ARMA process. sim arma was written by Jeff Pitblado of
StataCorp; it can be located and installed using the findit command or by issuing the
command

. net install http://www.stata.com/users/jpitblado/sim_arma

To fit the structural model via constrained OLS, we use the cnsreg command. The
constraints option of cnsreg accepts either a numlist that identifies the individual
constraints or the name of an existing constraint matrix. To employ the numlist , we
would have to define each constraint individually using the constraint command, and
we would have to redefine the constraints each time we altered the PDL model spec-
ification. While this is not particularly difficult, it can become rather tedious. It is
much simpler to write a general-purpose program that will construct an appropriate
constraint matrix for any PDL model specification.

A. McDowell 183

cnsreg fits a linear model, y = Xβ + ǫ, subject to Rβ = r. If we include an
intercept in the model, there will be p + 2 estimated parameters and p − q constraints.
Therefore, R will be a matrix of dimension (p − q) × (p + 2), and r will be a matrix
of dimension (p − q) × 1. As documented in [P] matrix constraint, Stata expects the
constraints to be represented by a single matrix constructed by concatenating R and r,
with r represented by the rightmost column of the constraint matrix.

A close inspection of (2) tells us that the elements of R will form a simple pattern.
There will be q + 2 nonzero elements in each row of R. In the first row of R, the first
q + 2 elements will be nonzero, their specific values being determined by a binomial
expansion, and the remaining elements will be zeros. In each subsequent row of R,
the same q + 2 nonzero elements will appear, but each time we move down a row, the
q + 2 nonzero elements will be shifted one column to the right. The following program
constructs such an R matrix, adding two columns of zeros; the first additional column
of zeros accounts for the intercept, and the second additional column represents r. The
program requires three arguments, p, q, and a matrix name. It is sufficiently general
for use with any PDL specification.

program pdlconstraints
version 8.2
args p q matname
local r = ‘p’ - ‘q’
local m = ‘q’ + 1
matrix ‘matname’ = J(‘r’,‘p’+3,0)
forvalues i = 1/‘r’ {

local x = ‘i’ + ‘q’ + 1
local k = -1
local d = 1
forvalues j = ‘x’(-1)‘i’ {

local k = ‘k’ + 1
matrix ‘matname’[‘i’,‘j’] = ‘d’*comb(‘m’,‘k’)
local d = -1*‘d’

}
}

end

(Continued on next page)

184 From the help desk

With our simulated data and a program to construct the constraint matrix, we can
now fit the PDL model by issuing the following commands:

. pdlconstraints 12 4 A

. cnsreg y L(0/12).x, constraints(A)

Constrained linear regression Number of obs = 288
F(5, 282) = 4117.51
Prob > F = 0.0000
Root MSE = .95335

(1) - x + 5 L.x - 10 L2.x + 10 L3.x - 5 L4.x + L5.x = 0
(2) - L.x + 5 L2.x - 10 L3.x + 10 L4.x - 5 L5.x + L6.x = 0
(3) - L2.x + 5 L3.x - 10 L4.x + 10 L5.x - 5 L6.x + L7.x = 0
(4) - L3.x + 5 L4.x - 10 L5.x + 10 L6.x - 5 L7.x + L8.x = 0
(5) - L4.x + 5 L5.x - 10 L6.x + 10 L7.x - 5 L8.x + L9.x = 0
(6) - L5.x + 5 L6.x - 10 L7.x + 10 L8.x - 5 L9.x + L10.x = 0
(7) - L6.x + 5 L7.x - 10 L8.x + 10 L9.x - 5 L10.x + L11.x = 0
(8) - L7.x + 5 L8.x - 10 L9.x + 10 L10.x - 5 L11.x + L12.x = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x
-- .7709161 .0382041 20.18 0.000 .6957146 .8461176
L1 .6378791 .0140968 45.25 0.000 .6101307 .6656275
L2 .5162648 .0216048 23.90 0.000 .4737377 .5587919
L3 .4100719 .0179107 22.90 0.000 .3748162 .4453276
L4 .32173 .0123709 26.01 0.000 .297379 .346081
L5 .2520991 .0139051 18.13 0.000 .2247281 .27947
L6 .2004697 .0159642 12.56 0.000 .1690456 .2318938
L7 .1645632 .0138539 11.88 0.000 .1372931 .1918333
L8 .1405315 .0123681 11.36 0.000 .116186 .1648769
L9 .1229569 .0179885 6.84 0.000 .0875481 .1583657
L10 .1048526 .021662 4.84 0.000 .0622129 .1474923
L11 .0776623 .0141234 5.50 0.000 .0498617 .1054629
L12 .0312602 .0385907 0.81 0.419 -.0447023 .1072227

_cons -.000655 .0566763 -0.01 0.991 -.1122174 .1109073

We can now fit the same model using the reduced-form representation of the model.
The basic algorithm for both the direct method and the Almon method is to

1. generate a weighting matrix,

2. generate the artificial variables,

3. fit the reduced-form model via OLS, and

4. reverse the transformation.

There are a number of ways we can proceed. For pedagogical reasons, the method
I have chosen will result in code that very closely follows the mathematical treatment
presented above. From a programming perspective, this is not the most efficient method.
For example, since both methods use Vandermonde matrices, I have produced a fairly
general program for generating Vandermonde matrices. This means that, along the
way, I will have to perform several operations on these matrices that could be avoided

A. McDowell 185

if I were attempting to write production quality code, but then the code would not
be as easy to follow, and its correspondence with the earlier discussion would be less
transparent.

The following program generates a Vandermonde matrix. It requires the user to
supply a name for the resulting matrix and a numlist that corresponds to the τj in the
discussion above.

program vandermonde
version 8.2
syntax name, Numlist(numlist)
local p: word count ‘numlist’
tokenize ‘numlist’
matrix ‘namelist’ = J(‘p’,‘p’,0)
forvalues c = 1/‘p’ {

forvalues r = 1/‘p’ {
matrix ‘namelist’[‘r’,‘c’] = (‘‘c’’)^(‘r’ - 1)

}
}

end

To get the matrix that we need for our PDL(12,4), we issue the command

. vandermonde V, n(0/12)

which produces a 13 × 13 Vandermonde matrix. Since we only need the first five rows
of V to constrain the parameters to lie along a fourth degree polynomial, and since we
want the transpose of this matrix for our weighting matrix, we issue the commands

. matrix V = V[1..5,1..13]

. matrix W = V’

to get the matrix we want. The second step generates the artificial variables of the
reduced-form representation. We need to generate the variables Z, such that Z =
XV′

q+1, or now, in terms of our program, we need to generate Z = XW, which is what
the following program does.

program zvars
version 8.2
syntax varname, Matrix(name)
local n = colsof(‘matrix’)
local k = rowsof(‘matrix’)
forvalues i = 1/‘n’ {

local z‘i’ ‘matrix’[1,‘i’]*‘varlist’
}
forvalues j = 2/‘k’ {

forvalues i = 1/‘n’ {
local m = ‘j’ - 1
local z‘i’ ‘z‘i’’ + ‘matrix’[‘j’,‘i’]*L‘m’.‘varlist’

}
}
forvalues i = 1/‘n’ {

generate double z‘i’ = ‘z‘i’’
}

end

186 From the help desk

When executing the program, we must pass the names of the input variable and the
weighting matrix as arguments; that is, we issue the command

. zvars x, matrix(W)

The program is written so that we can use it again, without modification, when imple-
menting the Almon method.

The third step is to fit the reduced-form model via OLS. To do this, we issue the
command

. regress y z*

Source SS df MS Number of obs = 288
F(5, 282) = 4117.51

Model 18711.7058 5 3742.34116 Prob > F = 0.0000
Residual 256.305306 282 .908884064 R-squared = 0.9865

Adj R-squared = 0.9862
Total 18968.0111 287 66.0906311 Root MSE = .95335

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

z1 .7709161 .0382041 20.18 0.000 .6957146 .8461176
z2 -.137023 .0628266 -2.18 0.030 -.2606917 -.0133543
z3 .0029926 .0231034 0.13 0.897 -.0424845 .0484697
z4 .0010588 .0029704 0.36 0.722 -.0047881 .0069058
z5 -.0000654 .0001233 -0.53 0.596 -.0003082 .0001774

_cons -.000655 .0566763 -0.01 0.991 -.1122174 .1109073

The final step is to perform the reverse transformation to recover the estimates
of the structural parameters and their variances. Once the transformation has been
performed, we can also repost the results so that we get a nice tabular display. This is
what the following program does.

program recover, eclass
version 8.2
syntax name, Matrix(name)
tempname alpha v w B V
matrix ‘alpha’ = e(b)
matrix ‘v’ = e(V)
local r = rowsof(‘matrix’)
matrix ‘w’ = J(‘r’,1,0)
matrix ‘matrix’ = ‘matrix’,‘w’
local c = colsof(‘matrix’)
matrix ‘w’ = J(1,‘c’,0)
matrix ‘w’[1,‘c’] = 1
matrix ‘matrix’ = ‘matrix’\(‘w’)
matrix ‘B’ = (‘matrix’*(‘alpha’)’)’
matrix ‘V’ = ‘matrix’*‘v’*(‘matrix’)’
matrix rownames ‘B’ = y
local r = ‘r’-1
local names ‘namelist’
forvalues i = 1/‘r’ {

local names ‘names’ L‘i’.‘namelist’
}
local names ‘names’ _cons
matrix colnames ‘B’ = ‘names’

A. McDowell 187

matrix rownames ‘V’ = ‘names’
matrix colnames ‘V’ = ‘names’
ereturn post ‘B’ ‘V’
ereturn local cmd recover
ereturn display

end

Immediately following the tempname command, the next two lines of code collect the
reduced-form parameter estimates and the reduced-form variance–covariance matrix.
The next seven lines adjust the weighting matrix to account for an intercept being
included in the model; this is preparation for the reverse transformation needed to
recover the structural parameter estimates, which is what the next two lines accomplish.
Once the transformation is complete, the program renames the rows and columns of
the matrices holding the structural parameter estimates and the associated variance–
covariance matrix. Finally, the program posts those two matrices and displays the
output.

We execute the command by typing

. recover x, matrix(W)

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x
-- .7709161 .0382041 20.18 0.000 .6960374 .8457948
L1 .6378791 .0140968 45.25 0.000 .6102498 .6655084
L2 .5162648 .0216048 23.90 0.000 .4739202 .5586094
L3 .4100719 .0179107 22.90 0.000 .3749676 .4451763
L4 .32173 .0123709 26.01 0.000 .2974835 .3459765
L5 .2520991 .0139051 18.13 0.000 .2248456 .2793525
L6 .2004697 .0159642 12.56 0.000 .1691805 .2317589
L7 .1645632 .0138539 11.88 0.000 .1374101 .1917163
L8 .1405315 .0123681 11.36 0.000 .1162905 .1647724
L9 .1229569 .0179885 6.84 0.000 .0877 .1582138
L10 .1048526 .021662 4.84 0.000 .0623959 .1473093
L11 .0776623 .0141234 5.50 0.000 .049981 .1053436
L12 .0312602 .0385907 0.81 0.418 -.0443763 .1068967

_cons -.000655 .0566763 -0.01 0.991 -.1117386 .1104285

To summarize, given the various programs that have been introduced, we fit a
PDL(12,4) model to our simulated data using the direct method by issuing the following
sequence of commands:

. vandermonde V, n(0/12)

. matrix V = V[1..5,1..13]

. matrix W = V’

. zvars x, matrix(W)

. regress y z*

. recover x, matrix(W)

To implement the Almon method, we need to construct a different weighting matrix;
otherwise, the procedure is identical to the direct method. We begin with the same
Vandermonde matrix as before:

188 From the help desk

. vandermonde V, n(0/12)

. matrix V = V[1..5,1..13]

Now, we need to construct a second Vandermonde matrix, i.e., the matrix J from
the discussion above. J will be a (q+1)×(q+1) matrix. We can choose any five distinct
points in the interval [0, p] for the τj , so I will use five equidistant points, i.e., 0, 3, 6,
9, and 12. The command to generate the matrix is then

. vandermonde J, n(0 3 6 9 12)

and the weighting matrix is therefore

. matrix W = V’*inv(J’)

Everything proceeds exactly as before from this point on:

. drop z*

. zvars x, matrix(W)

. regress y z*

Source SS df MS Number of obs = 288
F(5, 282) = 4117.51

Model 18711.7058 5 3742.34116 Prob > F = 0.0000
Residual 256.305306 282 .908884064 R-squared = 0.9865

Adj R-squared = 0.9862
Total 18968.0111 287 66.0906311 Root MSE = .95335

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

z1 .7709161 .0382041 20.18 0.000 .6957146 .8461176
z2 .4100719 .0179107 22.90 0.000 .3748162 .4453276
z3 .2004697 .0159642 12.56 0.000 .1690456 .2318938
z4 .1229569 .0179885 6.84 0.000 .0875481 .1583657
z5 .0312602 .0385907 0.81 0.419 -.0447023 .1072227

_cons -.000655 .0566763 -0.01 0.991 -.1122174 .1109073

. recover x, matrix(W)

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x
-- .7709161 .0382041 20.18 0.000 .6960374 .8457948
L1 .6378791 .0140968 45.25 0.000 .6102498 .6655084
L2 .5162648 .0216048 23.90 0.000 .4739202 .5586094
L3 .4100719 .0179107 22.90 0.000 .3749676 .4451763
L4 .32173 .0123709 26.01 0.000 .2974835 .3459765
L5 .2520991 .0139051 18.13 0.000 .2248456 .2793525
L6 .2004697 .0159642 12.56 0.000 .1691805 .2317589
L7 .1645632 .0138539 11.88 0.000 .1374101 .1917163
L8 .1405315 .0123681 11.36 0.000 .1162905 .1647724
L9 .1229569 .0179885 6.84 0.000 .0877 .1582138
L10 .1048526 .021662 4.84 0.000 .0623959 .1473093
L11 .0776623 .0141234 5.50 0.000 .049981 .1053436
L12 .0312602 .0385907 0.81 0.418 -.0443763 .1068967

_cons -.000655 .0566763 -0.01 0.991 -.1117386 .1104285

A. McDowell 189

Throughout the literature on PDLs, we find numerous assertions that the Almon
method is the preferred method. However, we can clearly see that the constrained
OLS method requires less effort and produces identical estimates. The argument is
often made that the Almon method has better numerical properties. However, informal
simulation studies indicate that the Almon method offers no advantage at all compared
with the constrained OLS estimator, and the only instance in which it would offer an
advantage over the direct method is the unlikely case where the artificial variables that
are generated using the direct method result in a data matrix that is singular.

3 References

Almon, S. 1965. The distributed lag between capital appropriations and expenditures.
Econometrica 33: 178–196.

Cooper, P. J. 1972. Two approaches to polynomial distributed lags estimation: an
expository note and comment. American Statistician 26: 32–35.

Fomby, T. B., R. C. Hill, and S. R. Johnson. 1984. Advanced Econometric Methods.
New York: Springer.

Shiller, R. J. 1973. A distributed lag estimator derived from smoothness priors. Econo-

metrics 41: 775–788.

About the Author

Allen McDowell is Director of Technical Services at StataCorp.

