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Confidence intervals for kernel density

estimation
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Abstract. This article describes asciker and bsciker, two programs that enrich
the possibility for density analysis using Stata. asciker and bsciker compute
asymptotic and bootstrap confidence intervals for kernel density estimation, re-
spectively, based on the theory of kernel density confidence intervals estimation
developed in Hall (1992b) and Horowitz (2001). asciker and bsciker allow sev-
eral options and are compatible with Stata 7 and Stata 8, using the appropriate
graphics engine under both versions.
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1 Overview

Nonparametric density estimation using Stata can be performed with the official pro-
gram kdensity; see [R] kdensity. Some extensions have been provided in Salgado-
Ugarte, Shimizu, and Taniuchi (1993); Salgado-Ugarte and Pérez-Hernández (2003);
and Van Kerm (2003), which are mostly oriented to develop variable bandwidth kernel
density estimation. However, little attention has been paid to performing inference on
kernel density estimation. One exception is the recent akdensity program presented
in Van Kerm (2003) that allows one to compute variability bands as an approximation
to confidence intervals. The present article describes asciker and bsciker, two pro-
grams that enrich the possibility for density analysis using Stata. asciker and bsciker

compute asymptotic and bootstrap confidence intervals for kernel density estimation,
respectively, based on the theory of kernel density confidence intervals estimation devel-
oped in Hall (1992b) and Horowitz (2001). asciker and bsciker allow several options
and are compatible with Stata 7 and Stata 8, using the appropriate graphics engine
under both versions.

2 Performing inference on pointwise density estimation

The kernel methodology aims to estimate the density f of a random variable, X, from
a random sample Xi, i = 1, 2, . . . , n without assuming that f belongs to a known family
of functions. The (fixed width) kernel density estimation basically slides a window of
given width along the data range, counting and properly weighting the observations
that fall into the window. Formally, the kernel estimator of f is

f̂n(x) =
1

nhn

n∑

i=1

K

(
x − Xi

hn

)
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where K is a kernel function with given properties; hn, n = 1, 2, . . . , n is a positive se-
quence of bandwidths, which depends on the number of the observations in the sample1.
The density f is assumed to have r ≥ 2 continuous derivatives in the neighborhood of
x (Silverman 1986; Hall 1992a). The bandwidth hn is sometimes referred to as the
smoothing parameter since a larger bandwidth makes the estimate smoother and vice
versa.

To perform inference on a density function, f(x), we need an asymptotically pivotal
statistic, provided suitable estimators for the variance, σn(x), and the bias, bn(x), are
available.

It can be shown that if nh2r+1 is bounded and n → ∞:

Zn(x) ≡
f̂n − f(x) − bn(x)

σn(x)
=

f̂n(x) − E{f̂n(x)}

σn(x)

d
−→ N(0, 1) (1)

Hence, (1) could be used to perform inference on the true density, provided the bias

and variance of f̂n(x) were known.

Whenever we compute a density estimate, f̂n(x), we wish it to approximate the
true density, f(x), as rapidly as possible. The fastest possible rate of convergence

of f̂n(x) to f(x) is obtained by setting the bandwidth proportional to a particular
power of the sample size (hn ∝ n−1/(2r+1)). With such a bandwidth, (a) the difference

between the true and the estimated density is never bigger than n−r/(2r+1) (f̂n−f(x) =
Op[n

−r/(2r+1)]); (b) the bias becomes negligible as the sample size increases (bn(x) ∝
n−r/(2r+1)); and (c) the variance collapses to zero as sample size becomes larger (σn(x) ∝
n−r/(2r+1)) (Horowitz 2001).

Since the true variance, σ2
n(x), is generally unknown in a nonparametric density

problem, we need to find a studentized statistic that is asymptotically pivotal.

The variance of f̂n equals

σ2
n(x) =

1

n2

n∑

i=1

Var

{
1

hn
K

(
x − Xi

hn

)}

=
1

n

1

h2
n

EK

(
x − Xi

hn

)2

−
1

n

{
1

hn
EK

(
x − Xi

hn

)}2

≃
1

n

1

h2
n

∫
K

(
x − z

hn

)2

f(z)dz −
1

n
f(x)2 (2)

≃
f(x)

nhn

∫
K(u)2du (3)

In particular, (2) is only an approximation of the previous line because it comes
from a first-order Taylor approximation; (3) comes from a change of variable and the

1The subscript n is retained for variables that depend on the sample size.
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fact that n−1 is of smaller order than (nhn)−1 when hn → 0 as n → ∞. It should also

be noted that (2) is the finite-sample variance of f̂n, while (3) is the variance of the

asymptotic distribution of f̂n.

To perform inference on kernel density estimation, a sample analog of (2) instead
of a sample analog of (3) is used since the asymptotic expansion required to obtain
asymptotic refinements is simpler if σ2

n is estimated by a sample analog of the finite-
sample variance (Horowitz 2001). A sample analog of the exact finite-sample variance

of f̂n(x) is provided by (Hall 1992b, 678):

s2
n(x) =

1

(nhn)2

n∑

i=1

K

(
x − Xi

hn

)2

−
f̂n(x)2

n
(4)

Hence, a studentized form of Zn(x) for asymptotic confidence interval is defined by

tn(x) =
f̂n(x) − E{f̂n(x)}

sn(x)
(5)

However, it is important to notice that tn is the asymptotic t statistic for testing the
hypothesis or forming the confidence interval for E{f̂n(x)} but cannot be used to test
the hypothesis and build confidence intervals for f(x), unless bn(x) is negligibly small.
A bias that is not asymptotically converging to zero causes the asymptotic distribution
of tn, with f(x) replacing E{f̂n(x)}, not to be centered at 0 (Horowitz 2001).

The asymptotic bias is a characteristic of nonparametric estimators, such as the
kernel density estimation, and it cannot be overcome with the use of the bootstrap.
Let X∗

i , i = 1, 2, . . . , n be the bootstrap sample obtained sampling the data Xi with
replacement. Then, the bootstrap estimator of f is

f̂∗

n =
1

nhn

n∑

i=1

K

(
x − X∗

i

hn

)
(6)

and the bootstrap analog of s2
n(x) is

s2∗
n (x) =

1

nh2
n

n∑

i=1

K

(
x − X∗

i

hn

)2

−
f̂∗

n(x)2

n

The bootstrap analog of tn is

t∗n =
f̂∗

n(x) − f̂n(x)

s∗n(x)
(7)

From (6), we can see that f̂∗

n(x) is an unbiased estimator of f̂n(x), though f̂n(x) is a
biased estimator of f(x). Hence, t∗n is a bootstrap t-statistic for forming a confidence
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interval for E{f̂n(x)}. For instance, for the symmetric two-sided confidence interval
with coverage probability 1 − α, the upper limit is given by

E{f̂n(x)}U = f̂n(x) − sn(x) × u∗

α/2 (8)

and the lower limit is given by

E{f̂n(x)}L = f̂n(x) − sn(x) × u∗

1−(α/2) (9)

where, u∗

α/2 is the bootstrap estimate of the quantile defined by P (t∗n ≤ u∗

α/2) = α/2

and u∗

1−(α/2) is the bootstrap estimate of the quantile defined by P (t∗n ≤ u∗

1−(α/2)) =

1− (α/2) (Hall [1992b, 679] and Davidson and MacKinnon [2003, chapter 5]). However,
t∗n can be used to form a confidence interval for f(x) only if the bias bn(x) is negligible.

2.1 Methods for controlling the asymptotic bias

There are two main methods for dealing with asymptotic bias:

• explicit bias removal

• undersmoothing

Regardless of the method used to remove asymptotic bias, forming a confidence interval
requires using a bandwidth sequence that converges more rapidly than the one that
maximizes the rate of convergence of a point estimator of f(x). “Nonparametric point
estimation and nonparametric interval estimation or testing of hypothesis are different
tasks that require different degrees of smoothing” (Horowitz 2001, 3199). Hall (1992b)
shows that undersmoothing performs better in terms of errors in the coverage probability
and suggests setting hn ∝ γn1/(2r+1), with 0 < γ < 1. Horowitz (2001) suggests setting
hn ∝ n−κ, with κ > 1/(2r + 1). In other words, to compute the confidence interval of
a nonparametric density estimation, we need to use a smaller bandwidth than the one
chosen to compute the density estimation. Reducing the bandwidth (undersmoothing)
will make the bias converge to zero more rapidly and the statistic tn(x) asymptotically
centered at 0.

Hence, with undersmoothing, the bias is identically zero, and the statistic tn in (5)
becomes

tus
n (x) =

f̂us
n (x) − f(x)

sus
n (x)

(10)

where “us” stands for undersmoothed estimate. Such a statistic can then be used to
compute confidence intervals about the true distribution f(x). The same reasoning
applies to the bootstrap confidence intervals: with undersmoothing, the statistic (7) is

an unbiased estimator of f̂us
n (x), which itself is an unbiased estimator of f(x). Hence,

upper and lower limits in (8) and (9) are respectively replaced by

f(x)U = f̂us
n (x) − sus

n (x) × u∗us
α/2
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f(x)L = f̂us
n (x) − sus

n (x) × u∗us
1−(α/2)

where u∗us
α/2 and u∗us

1−(α/2) are computed as previously explained from t∗us
n , the under-

smoothed version of t∗n.

2.2 Asymptotic versus bootstrap confidence intervals

Although the asymptotic confidence interval can be computed using (10), Horowitz
(2001) demonstrates that the bootstrap provides asymptotic refinements for tests of
hypothesis and confidence intervals in nonparametric density estimation. With asymp-
totic critical values, the difference between the true and nominal rejection probabilities
of a symmetrical t test is O{(nhn)−1}, provided that nhr+1

n → 0. If the latter condi-
tion is not verified, the error in rejection probability is greater than O{(nhn)−1}. With
the bootstrap critical values, the difference between the true and the nominal rejection
probabilities of the symmetrical t test is o{(nhn)−1}. Hence, with undersmoothing, the
bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals
based on a kernel nonparametric density estimator.

3 Implementation notes

Both asciker and bsciker are packaged in two modules. They both make use of
vkdensity, an enhanced version of [R] kdensity. In addition to the latter condition,
vkdensity estimates the variance of the kernel as in (4) and it allows undersmoothing,
as well as oversmoothing. The undersmoothing is performed as described in Horowitz
(2001), with hn ∝ n−κ, κ > 1/(2r +1). vkdensity also allows the choice between three
different optimal bandwidth estimators: Scott (1992), Härdle (1991), and Silverman
(1986) (see also bandw in Salgado-Ugarte et al. 1995b); as well as the possibility of a
user-defined bandwidth.

asciker is conceptually similar to akdensity developed in Van Kerm (2003). Its
main improvement is that it allows for computation of the actual confidence interval,
not only variability bands, reducing the relevance of the bias by undersmoothing.

The structure of bsciker is more complex. bsciker develops in three steps:

1. It generates B bootstrap samples (random sample with replacement) from the
original dataset.

2. It computes the kernel density and its variance for each bootstrap dataset using
vkdensity with undersmoothing.

3. It merges results from previous steps, computes the pivotal statistic, and computes
the relevant bootstrap critical values to form upper and lower bounds of the kernel
estimation confidence interval.

A methodological issue arises here concerning the correct degree of undersmooth-
ing, which is connected with the choice of the optimal bandwidth. Many “optimal”
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bandwidth estimators assume that the underlying distribution is normal, although in
many cases, nonparametric density estimation is precisely adopted because the underly-
ing distribution may depart significantly from normality. Using asciker and bsciker,
we assume that the search for the correct bandwidth has been performed beforehand2.
If we believe that the optimal bandwidth is reasonably determined using one of the
optimal bandwidth algorithms implemented in asciker and bsciker, the commands
can be applied straightforwardly, and only the degree of undersmoothing remains to be
chosen.

3.1 Bootstrapping weighted samples

bsciker can also be used with aweight and fweight. Let’s assume that the dataset is
made of N observations and each observation has a weight attached to it. bsciker first
expands the dataset so that all observations have a weight equal 1 and then extracts a
bootstrap sample of dimension N from it. For instance, if all the weights were 1 or 2,
then bsciker will create an unweighted dataset where observations with weight 2 are
included twice. bsciker allows such weights to be noninteger3, however more complex
sampling weights are not implemented. Some caution should be used for very large
datasets and very large frequency weights so that the maximum number of observations
that Stata allows is not exceeded.

4 Syntax

The syntax of asciker partly mimics the syntax of the official [R] kdensity, which uses
fixed kernel estimation methods:

asciker varname
[
weight

] [
if exp

] [
in range

] [
, nograph

generate(newvarx newvard newvarb) at(varx) usmooth(#)
[
epan | gauss

]
[
scott | hardle | silver

]
mbandw(#) n(#) percent(#) gr7 graph options

]

Most options for asciker are the same as those for [R] kdensity. The specific options
are the following:

generate(newvarx newvard newvarb) creates four new variables: newvarx will contain
the points of estimation; newvard will contain the density estimation; and newvarb u

and newvarb l will contain the upper and lower bound confidence interval variable.

2For a discussion about the choice of bandwidth, see Silverman (1986) among others.
3In particular, bsciker renormalizes the weights so that the smallest value is 1. Hence, it replaces

these weights with their rounded-to-integer versions. Although rough, such an approximation is often
reasonable for most datasets. I was first suggested this solution by William Gould with reference to
a similar problem. Of course, I bear all the responsibility for the implementation of this solution in
bsciker. For more details, see the Statalist archive at
www.hsph.harvard.edu/cgi-bin/lwgate/STATALIST/archives/statalist.0201/Subject/article-39.html.
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usmooth(#) chooses the degree of undersmoothing for confidence interval estimation,
i.e., the parameter κ as in section 3. The default value is 1/4. Increasing this number
will result in a smaller bandwidth, i.e., a more variable and less biased estimation,
and vice versa.

scott, hardle, and silver allow you to choose between three different optimal band-
widths, i.e., those proposed by Scott (1992), Härdle (1991), and Silverman (1986).
See also bandw (Salgado-Ugarte, Shimizu, and Taniuchi 1995b; 1995a; 1993).

mbandw(#) specifies the bandwidth manually.

percent(#) specifies the coverage probability of the confidence interval. The default
value is set at 95 (meaning 95% coverage probability), but it can be changed at will.

gr7 creates the graph using Stata 7 instead of Stata 8 graph facilities.

The syntax of bsciker is

bsciker varname
[
weight

] [
if exp

] [
in range

] [
, nograph

generate(newvarx newvard newvarb) at(varx) usmooth(#)
[
epan | gauss

]
[
scott | hardle | silver

]
mbandw(#) n(#) bsrepl(#) seed(#) bsppts(#)

[
up(#) lp(#) | percent(#)

]
gr7 graph options

]

The main differences with respect to the syntax of asciker are

bsrepl(#) specifies the number of bootstrap replications to compute. The default value
is 99, which is good for a first investigation. However, for a final estimation and
small datasets, it often should be much larger than 99. For instance, in section 5,
we suggest using 999 bootstrap replications. Of course, computation speed will
dramatically reduce with such a number of bootstrap replications.

bsppts(#) specifies the percentage of estimation points at which to compute the con-
fidence interval. This option is particularly useful for estimation with many data
points, which would make the confidence interval very lengthy. The default value is
100%.

seed(#) sets the seed of the bootstrap resampling for replication purposes.

up(#) and lp(#) allow you to specify the upper and lower percentiles to be computed
for the confidence interval. The default values are set to 97.5% and 2.5%, so as to
obtain a 95% confidence interval, but these values can be changed at will. If up(),
lp(), and percent() are specified, up() and lp() are ignored.

percent(#) specifies the coverage probability of the confidence interval. The default
value is set at 95 (meaning 95% coverage probability), but it can be changed at will.
If up(), lp(), and percent() are specified, up() and lp() are ignored.
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The syntax of vkdensity is

vkdensity varname
[
weight

] [
if exp

] [
in range

] [
, nograph

generate(newvarx newvard newvarv) at(varx) usmooth(#)
[
epan | gauss

]
[
scott | hardle | silver

]
mbandw(#) n(#) graph options

]

There is only one command that differs from asciker:

generate(newvarx newvard newvarv), where newvarx contains the points of estimation,
newvard the pointwise density estimate, and newvarv the variance of the pointwise
estimate.

5 Examples

As a simple illustration, we simulated some random samples from an ad hoc bimodal
distribution, a mixture of two normal distributions with equal variance and different
mean:

Π =
9

20
N(0, 1/2) +

11

20
N(2, 1/2)

We simulated two samples of different size from Π: n = 50 and n = 1000. We named
the simulated samples x 50 and and x 1000, respectively. We run asciker on x 50 as
follows:

. asciker x_50, generate(x2a y2a b2a) usmooth(.25) nograph n(50) silver
Note: this program requires installation of vkdensity.ado!
significance level: 5%
bandwidth choice (Silverman)= 0.52963
(oversmoothed) bandwidth choice (Silverman)= 0.43554

The oversmoothing parameter, κ, is set to 1/4. The program reminds us that
vkdensity.ado is necessary and shows the significance level of the confidence inter-
val and the estimated optimal bandwidth. The confidence interval is set at 95%.

We then run bsciker on the same sample, setting the number of bootstrap replica-
tions to 999, as follows:

. bsciker x_50, generate(x2b y2b b2b) usmooth(.25) bsrepl(999) n(50) silver
Note: this program requires installation of vkdensity.ado!
Lower percentile:2.5%
Upper percentile:97.5%
bandwidth choice (Silverman)= 0.52963
(oversmoothed) bandwidth choice (Silverman)= 0.43554
Bootstrap samples are being generated
... (output omitted ) ...
vkdensity on bootstrap samples being computed: be patient, please
... (output omitted ) ...
Merging all vkdensity on bootstrapped samples
... (output omitted ) ...
Generating statistic tstar
Computing percentiles for cstar

(output omitted )
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The graphs are then combined and overlapped with the true distribution to obtain
figure 1. Analogous steps were undertaken for the sample x 1000, leading to figure 2.
The main results from these and analogous simulations performed are that kernel density
estimations must be handled with great care when sample size is relatively small, as
confidence intervals can be very wide (figure 1). However, even with a relatively larger
sample size, confidence intervals can be highly informative. As for the comparison
between asymptotic and bootstrap confidence intervals, the former tends to be smoother
and narrower, though the answer both provide is in many cases rather similar. The main
drawback of bsciker is that it takes much longer to compute than asciker, especially
the larger the dataset and the number of bootstrap simulations required.
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Figure 1: 95% asymptotic and bootstrap confidence intervals for kdensity. n = 50

(Continued on next page)
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Figure 2: 95% asymptotic and bootstrap confidence intervals for kdensity. n = 1000

As a further illustration of bsciker and asciker, we use the coral trout length data
presented in [R] kdensity, Salgado-Ugarte et al. (1993), and Van Kerm (2003). The
data consist of 316 length observations of coral trout (in mm) and can be downloaded
from the Stata Press web site. As figure 3 shows, confidence intervals are also useful in
considering the hypothesis of multimodality of the underlying distribution. As discussed
in Van Kerm (2003), fixed-bandwidth kernel density estimation of these data tends
to oversmooth the estimation of the underlying distribution. The solution suggested
thereby is to use adaptive kernel density estimation; such a method allows us to clearly
detect the two main modes of the distribution. Estimating the confidence intervals of
the fixed bandwidth kernel density, we can provide additional evidence to the hypothesis
of two main modes at around 350 and 420. We can also put forward the hypothesis that
the distribution presents two additional minor modes at around 250 and 500. Clearly,
such a hypothesis needs to be tested since the pointwise confidence intervals are nothing
but a measure of how uncertain the estimation is at each estimation point. For tests of
the number of modes, see, for instance, Silverman (1986, 146)

. use http://www.stata-press.com/data/r7/trocolen.dta, clear

. asciker length, generate(x2a y2a b2a) usmooth(.25) nograph n(50)

(output omitted )

. graph twoway line b2a_u y2a b2a_l x2a, scheme(sj)

. graph save length_a, replace
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. bsciker length, generate(x2b y2b b2b) usmooth(.25) bsrepl(999) nograph n(50)

(output omitted )

. graph twoway line b2b_u y2b b2b_l x2b, scheme(sj)

. graph save length_b, replace

. graph combine length_a.gph length_b.gph
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Figure 3: 95% asymptotic and bootstrap confidence intervals for coral-trout-length data
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