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Abstract. This paper explains why computing the marginal effect of a change
in two variables is more complicated in nonlinear models than in linear models.
The command inteff computes the correct marginal effect of a change in two
interacted variables for a logit or probit model, as well as the correct standard
errors. The inteff command graphs the interaction effect and saves the results
to allow further investigation.
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1 Introduction

Applied researchers often estimate interaction terms to infer how the effect of one in-
dependent variable on the dependent variable depends on the magnitude of another
independent variable. For example, is the effect of car weight on gas mileage the same
for both domestic and foreign cars? To answer this question, we can run a regression
to predict gas mileage as a function of weight, a dummy variable for foreign, and the
interaction between the two. If the coefficient on the interaction term is statistically
significant, there is a difference between domestic and foreign cars in how additional
weight affects mileage.

Interaction terms are also used extensively in nonlinear models, such as logit and
probit models. Unfortunately, the intuition from linear regression models does not ex-
tend to nonlinear models. The marginal effect of a change in both interacted variables is
not equal to the marginal effect of changing just the interaction term. More surprisingly,
the sign may be different for different observations. The statistical significance cannot
be determined from the z-statistic reported in the regression output. The odds-ratio
interpretation of logit coefficients cannot be used for interaction terms.

Despite the common use of interaction terms, most applied researchers misinterpret
the coefficient of the interaction term in nonlinear models. A review of 13 economics
journals listed on JSTOR (www.jstor.org) found 72 articles published between 1980 and
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2000 that used interaction terms in nonlinear models (Ai and Norton 2003). None of
the studies interpreted the coefficient on the interaction term correctly. A recent article
by DeLeire (2000) is a welcome exception.

The Stata command inteff computes the correct marginal effect of a change in two
interacted variables for a logit or probit model. It also computes the correct standard
errors. The inteff command will work if the interacted variables are both continuous
variables, if both are dummy variables, or if there is one of each. In addition, it will
graph the interaction effect and save the results to allow further investigation.

2 Estimation of interaction effects

2.1 Linear models

In linear models, the interpretation of the coefficient of the interaction between two
variables is straightforward. Let the continuous dependent variable y depend on two
independent variables x1 and x2, their interaction, and a vector of additional indepen-
dent variables X, including the constant term. The expected value of the dependent
variable, conditional on the independent variables, is

E [y|x1, x2,X] = β1x1 + β2x2 + β12x1x2 + Xβ

where the βs are unknown parameters. If X is independent of x1 and x2, then the
interaction effect of the independent variables x1 and x2 is β12 for both continuous and
discrete interacted variables. The statistical significance of the interaction effect can be
tested with a single t test on the coefficient β12.

2.2 Nonlinear models

The intuition from linear models, however, does not extend to nonlinear models. To
illustrate, consider a probit model similar to the previous example, except that the
dependent variable y is a dummy variable. The conditional mean of the dependent
variable is

E [y|x1, x2,X] = Φ (β1x1 + β2x2 + β12x1x2 + Xβ)

= Φ (u)

where Φ is the standard normal cumulative distribution and u denotes the index β1x1 +
β2x2 + β12x1x2 + Xβ. Suppose that x1 and x2 are continuous. The marginal effect of
just the interaction term x1x2 is

∂Φ(u)

∂ (x1x2)
= β12Φ

′ (u)

Most applied researchers interpret this as the interaction effect. However, the full in-
teraction effect is the cross-partial derivative of the expected value of y

∂2Φ(u)

∂x1∂x2
= β12Φ

′ (u) + (β1 + β12x2) (β2 + β12x1) Φ′′ (u)
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This equation shows clearly that the interaction effect is not equal to β12Φ
′ (u).

There are four important implications of this equation for nonlinear models. First,
the interaction effect could be nonzero, even if β12 = 0. For example, for a probit model
with β12 = 0, the interaction effect is

∂2Φ(u)

∂x1∂x2

∣∣∣∣
β12=0

= β1β2Φ
′′ (u)

Second, the statistical significance of the interaction effect cannot be tested with a
simple t test on the coefficient of the interaction term β12. Instead, the statistical
significance of the entire cross derivative must be calculated. Third, the interaction
effect is conditional on the independent variables, unlike the interaction effect in linear
models. (It is well known that the marginal effect of a single, uninteracted variable in
a nonlinear model is conditional on the independent variables.) Fourth, because there
are two additive terms, each of which can be positive or negative, the interaction effect
may have different signs for different values of covariates. Therefore, the sign of β12

does not necessarily indicate the sign of the interaction effect.

In summary, for nonlinear models to compute the magnitude of the interaction effect,
one must compute the cross derivative of the expected value of the dependent variable.
The test for the statistical significance of the interaction effect must be based on the
estimated cross-partial derivative, not on the coefficient of the interaction term. The
main objective of this paper is to introduce a Stata command that will calculate the
correct interaction effect and standard errors for logit and probit models.

Stata’s mfx and dprobit commands are useful for estimating the marginal effect
of a single variable, given specific values of the independent variables. However, these
commands should never be used when a variable is interacted with another or has higher
order terms. In those cases, mfx and dprobit will estimate the wrong marginal effect.
The mfx and dprobit commands do not know if a variable is interacted with another
or has higher order terms, so they cannot take the full derivative with respect to that
variable. Also, the results of the mfx and dprobit commands are misleading because
the marginal effects for any nonlinear model differ for each observation, yet mfx and
dprobit only report one marginal effect per variable. The examples in this paper will
drive home the point that there is a distribution of magnitudes of marginal effects, often
with opposite signs.

The Stata command predictnl can be used to derive all the results found with
inteff. However, because predictnl is so general, allowing for nonlinear predictions
after any Stata estimation command, the user must be able to write correct formulas
of the marginal effects in vector notation. We believe that because inteff is easier to
use than predictnl, it will lead to fewer user errors and encourage more researchers to
calculate correct interaction effects.
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2.3 General formulas

In a nonlinear model, the dependent variable is a nonlinear function F (u) of the index
of independent variables. For example, in the logit and probit models, the dependent
variable of interest, F , is the probability that y = 1. For logit and probit models, define
the interaction effect to be the change in the predicted probability that y = 1 for a
change in both x1 and x2.

When the interacted variables are both continuous, the interaction effect is the
double derivative with respect to x1 and x2:

∂2F (u)

∂x1∂x2
=

∂ {(β1 + β12x2) f (u)}

∂x2

= β12f (u) + (β1 + β12x2) (β2 + β12x1) f ′ (u)

where f (u) = F ′ (u) and f ′ (u) = F ′′ (u).

When the interacted variables are both dummy variables, the interaction effect is
the discrete double difference:

∆2F (u)

∆x1∆x2
=

∆ {F (β1 + β2x2 + β12x2 + Xβ) − F (β2x2 + Xβ)}

∆x2

= F (β1 + β2 + β12 + Xβ)

−F (β1 + Xβ) − F (β2 + Xβ) + F (Xβ)

When one continuous variable and one dummy variable are interacted, the interac-
tion effect is the discrete difference (with respect to x2) of the single derivative (with
respect to x1):

∆∂F (u)
∂x1

∆x2
=

∆ {(β1 + β12x2) f (u)}

∆x2

= (β1 + β12) f {(β1 + β12)x1 + β2 + Xβ} − β1f (β1x1 + Xβ)

Ai and Norton (2003) derive the standard errors for the interaction effect in logit
and probit models, applying the Delta method. For the case of two dummy variables,
the asymptotic variance of the estimated interaction effect is estimated consistently by

∂

∂β′

{
∆2F (u)

∆x1∆x2

}
Ω̂β

∂

∂β

{
∆2F (u)

∆x1∆x2

}

where Ω̂β is a consistent covariance estimator of β̂. For continuous variables, we replace
the discrete difference operator ∆ with the partial derivative operator.

This paper focuses on the most common type of interactions, those between two
variables. The correct interpretation for a model with three interacted variables requires
taking three derivatives (or three discrete differences), following on the logic of the
previous section.
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The interpretation is also complicated if, in addition to being interacted, a variable
has higher order terms—for example, if age squared is included in addition to age and
age interacted with marital status.

For all these more complicated models, the principle is the same: take derivatives
or discrete differences.

2.4 Logit formulas

For the logit model, F (u) is the familiar logit cumulative distribution function:

F (u) =
1

1 + e−(β1x1+β2x2+β12x1x2+Xβ)

When the interacted variables are both continuous, the interaction effect is the cross
derivative with respect to x1 and x2:

∂2F (u)

∂x1∂x2
= β12 {F (u) (1 − F (u))}

+ (β1 + β12x2) (β2 + β12x1)
[
F (u)

{
1 − F (u)

}{
1 − 2F (u)

}]

When the interacted variables are both dummy variables, the interaction effect is
the discrete double difference:

∆2F (u)

∆x1∆x2
=

1

1 + e−(β1+β2+β12+Xβ)

−
1

1 + e−(β1+Xβ)
−

1

1 + e−(β2+Xβ)
+

1

1 + e−Xβ

When one continuous variable and one dummy variable are interacted, the interac-
tion effect is the discrete difference (with respect to x2) of the single derivative (with
respect to x1):

∆∂F (u)
∂x1

∆x2
= (β1 + β12)

(
F

{
(β1 + β12)x1 + β2 + Xβ

}

×
(
1 − F

{
(β1 + β12)x1 + β2 + Xβ

)}
)

−β1

[
F (β1x1 + Xβ)

{
1 − F (β1x1 + Xβ)

}]

2.5 Probit formulas

For the probit model, F (·) is the familiar normal, cumulative distribution function

F (u) = Φ (β1x1 + β2x2 + β12x1x2 + Xβ)

When the interacted variables are both continuous, the interaction effect is the
double derivative with respect to x1 and x2:

∂2F (u)

∂x1∂x2
=

{
β12 − (β1 + β12x2) (β2 + β12x1) u

}
φ (u)
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When the interacted variables are both dummy variables, the interaction effect is
the discrete double difference:

∆2F (u)

∆x1∆x2
= Φ(β1 + β2 + β12 + Xβ)

−Φ(β1 + Xβ) − Φ(β2 + Xβ) + Φ (Xβ)

When one continuous variable and one dummy variable are interacted, the interac-
tion effect is the discrete difference (with respect to x2) of the single derivative (with
respect to x1):

∆∂F (u)
∂x1

∆x2
= (β1 + β12) φ

{
(β1 + β12)x1 + β2 + Xβ

}

−β1φ (β1x1 + Xβ)

2.6 Odds ratio

Many researchers, especially epidemiologists, prefer to fit logit models than probit mod-
els because of the odds-ratio interpretation of the logit coefficients. Before explaining
why this interpretation does not work for a model with interaction terms, we review the
derivation of odds ratios. The odds are the ratio of a probability p to one minus the
probability:

p =
1

1 + e−Xβ

odds =
p

1 − p
=

1

e−Xβ
= eXβ ∈ [0,∞)

The odds ratio is the ratio of odds for two different observations that differ only
in the value of one explanatory variable. This is easiest to understand for a dummy
variable. Consider the probability of smoking, which depends on whether the person
is female, as well as on many explanatory variables (X). The odds ratio for gender
(holding all other variables constant) is the odds for female (female = 1) divided by the
odds for male (female = 0):

odds for female =
Pr (smoke|female)

1 − Pr (smoke|female)
= eβf female+Xβ

odds for male =
Pr (smoke|male)

1 − Pr (smoke|male)
= eXβ

odds ratio =
odds for female

odds for male
= eβf

Even though the odds ratio is difficult to understand conceptually (it is the ratio of
ratios, and honestly, who understands that?), it is widely used for two reasons. First,
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it is easy to calculate, requiring only the exponentiation of the estimated coefficient,
and can be reported directly by Stata. Second, when p is small, the odds ratio is a
good approximation to the risk ratio, which is easy to understand conceptually. The
risk ratio is the ratio of two probabilities. For example, the risk ratio for the smoking
example is the probability of smoking for women divided by the probability of smoking
for men:

risk ratio =
Pr (smoke|female)

Pr (smoke|male)

If the risk ratio equals 1.5, for example, women are fifty percent more likely to smoke
than men, holding all other variables constant. Unfortunately, researchers often inter-
pret odds ratios as if they were risk ratios, even when p is not close to zero and the
approximation is not close. For an example of how odds ratios can be misreported by
researchers and the media, see commentary by Schwartz, Woloshin, and Welch (1999).

Now consider the odds ratio when there is an interaction between two dummy vari-
ables, x1 and x2. The common interpretation is that the odds ratio for the interaction
term equals exp (β12). This is not true. The expression exp (β12) is the ratio of odds
ratios:

odds ratio for x1|x2=1 =

Pr(y=1|x1=1;x2=1)
1−Pr(y=1|x1=1;x2=1)

Pr(y=1|x1=0;x2=1)
1−Pr(y=1|x1=0;x2=1)

=
eβ1+β2+β12+Xβ

eβ2+Xβ

odds ratio for x1|x2=0 =

Pr(y=1|x1=1;x2=0)
1−Pr(y=1|x1=1;x2=0)

Pr(y=1|x1=0;x2=0)
1−Pr(y=1|x1=0;x2=0)

=
eβ1+Xβ

eXβ

ratio of odds ratios for x1 and x2 = eβ12

Not only is exp (β12) not a risk ratio, it is not even an odds ratio.

3 Syntax

The new command inteff calculates the interaction effect, standard error, and z-
statistic for each observation for either logit or probit when two variables have been
interacted. The interacted variables cannot have higher order terms, such as squared
terms. The command is designed to be run immediately after fitting a logit or probit
model.

inteff varlist
[
if exp

] [
in range

] [
, savedata(filename

[
, replace

]
)

savegraph1(filename
[
, replace

]
) savegraph2(filename

[
, replace

]
)

]
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where varlist must be the same as the fitted logit or probit model and must include at
least four variables. The order of these first four variables must be dependent variable,
independent variable 1, independent variable 2, and the interaction between independent
variables 1 and 2. Other independent variables can be added after the interaction term,
i.e., starting from the fifth position.

If the interaction term (at the fourth position) is a product of a continuous variable
and a dummy variable, the first independent variable x1 has to be the continuous
variable, and the second independent variable x2 has to be the dummy variable. The
order of the second and third variables does not matter if both are continuous or both
are dummy variables.

4 Options

savedata(filename
[
, replace

]
) specifies the path and filename of computed data to

be saved. This gives the researcher the option of further investigation. Saved data
include five variables, in the following order:

1. predicted probability

2. interaction effect (calculated by conventional linear method)

3. interaction effect (calculated by the method suggested in this paper)

4. standard error of the interaction effect

5. z-statistic of the interaction effect

The variables all have meaningful names. For example, after we run a logit model,
the five variables would be logit phat, logit linear, logit ie, logit se, and
logit z. The prefix for probit models is probit.

savegraph1(filename
[
, replace

]
) and savegraph2(filename

[
, replace

]
) save the

graphs with the name and path designated by the user. The inteff command
generates two scatter graphs. Both plot predicted probabilities on the x-axis. The
first graph plots two interaction effects (one is calculated by the method suggested
in this paper, and the other one is calculated by the conventional linear method)
against predicted probabilities. The second graph plots z-statistics of the interaction
effect against predicted probabilities.

5 Examples

5.1 Data

We illustrate the use of the inteff command with two examples. Both examples analyze
data from the 2000 Medical Expenditure Panel Survey (MEPS), which can be used to
compute nationally representative estimates of health care use and expenditures. These
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examples are intended to be illustrative. These data are available to the public from
the Agency for Healthcare Research and Quality web site (www.meps.ahrq.gov).

The sample includes all adults age 21–64 who have complete information on all
variables. Out of the original sample of 25,096 people, 12,365 meet these criteria, with
most exclusions due to the age restriction.

The dependent variable is whether the person had an office-based physician visit
during the calendar year 2000. In this adult sample, two-thirds did have an office-based
physician visit, and one-third did not.

The mean age is 42, 47 percent are male, 64 percent are married, 81 percent are
white, 14 percent are black, and 4 percent are neither white nor black. The average
number of years of education is just over 12, and we also control for household income
categories defined relative to the poverty level. The vast majority have some form of
private health insurance, with 8 percent covered by public insurance and 18 percent
uninsured. We control for severe health-status problems, defined as problems with
activities of daily living, instrumental activities of daily living, vision, or hearing. To
control for broad geographic differences in access to health care, we include variables for
the four census regions of the country and whether the person lives in a metropolitan
statistical area (78 percent).

5.2 Logit with two continuous variables interacted

The first example includes the interaction between age and number of years of education,
both continuous variables. In this example, we fitted a logit model, although the results
for probit would be virtually identical. The standard errors are adjusted for clustering
on person id (pid). The full model also controls for race, marital status, income, health
status, and geographic region (summarized by the global variable $x), but the results
for these variables are not reported for brevity.

. logit $y age educ ageeduc male ins_pub ins_uni $x, nolog cluster(pid)

Logit estimates Number of obs = 12365
Wald chi2(23) = 9745.78
Prob > chi2 = 0.0000

Log pseudo-likelihood = -6889.3644 Pseudo R2 = 0.1189

(standard errors adjusted for clustering on pid)

Robust
opvisits Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0419025 .0070434 5.95 0.000 .0280977 .0557073
educ .127117 .0236365 5.38 0.000 .0807903 .1734437

ageeduc -.0013739 .0005168 -2.66 0.008 -.0023869 -.0003609
male -.9765431 .0348741 -28.00 0.000 -1.044895 -.908191

ins_pub .5829237 .1043102 5.59 0.000 .3784794 .787368
ins_uni -.8781526 .0541354 -16.22 0.000 -.984256 -.7720491

(output omitted )

_cons -1.559739 .3379041 -4.62 0.000 -2.222019 -.8974595
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After running this logit model, we invoke the inteff command with the same vari-
able list, and save the data.

. inteff $y age educ ageeduc male ins_pub ins_uni $x,
> savedata(d:\data\logit_inteff,replace) savegraph1(d:\data\figure1, replace)
> savegraph2(d:\data\figure2, replace)
Logit with two continuous variables interacted
file d:\data\logit_inteff.dta saved
(file d:\data\figure1.gph saved)
(file d:\data\figure2.gph saved)

Variable Obs Mean Std. Dev. Min Max

_logit_ie 12365 -.0003334 .0001145 -.0005798 .0001607
_logit_se 12365 .0001003 .0000311 4.81e-06 .000323
_logit_z 12365 -3.401374 1.245229 -6.228868 7.130231
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(Continued on next page)
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Figure 2.

Not only are both age and number of years of education statistically significant at
conventional levels, their interaction is also (z-statistic is −2.66). The main effects imply
that persons who are older and have more years of education are more likely to have
an office-based visit during the year. However, after running the inteff command, we
learn that the mean interaction effect is negative (−.0003334) and varies widely. For
some observations, the interaction effect is positive, and for others, it is negative (see
figures 1 and 2).

The interaction effect depends on other covariates. In this example, for people whose
predicted probability of having a physician visit is around 0.2 (toward the left end of
figure 1), the interaction effect between age and education is positive for half of them
and negative for the other half. If we look at the right side of figure 1, where people
have a predicted probability of having a physician visit around 0.8, their interaction
effects are all negative. In terms of the significance of the interaction effects, for the left
group of people whose predicted probability is about 0.2, only a few have statistically
significant interaction effects. On the other hand, for the right group of people whose
predicted probability is around 0.8, the interaction effects are mostly significant.

5.3 Probit with two dummy variables interacted

The second example includes the interaction between gender and insurance status. The
effect of gender on having an office-based physician visit may depend on having insur-
ance. Many young men choose not to purchase health insurance, figuring that they are
unlikely to need medical care, while many women of child-bearing age are uninsured
but ineligible for Medicaid or other public insurance. In this example, we fit a probit
model. As before, the standard errors are adjusted for clustering on person id (pid),
and the full model also controls for additional variables, but these are not reported for
brevity.
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. probit $y male ins_uni male_uni age educ ins_pub $x, nolog cluster(pid)

Probit estimates Number of obs = 12365
Wald chi2(23) = 9391.46
Prob > chi2 = 0.0000

Log pseudo-likelihood = -6897.391 Pseudo R2 = 0.1179

(standard errors adjusted for clustering on pid)

Robust
opvisits Coef. Std. Err. z P>|z| [95% Conf. Interval]

male -.5922717 .0240826 -24.59 0.000 -.6394726 -.5450707
ins_uni -.5653776 .0482592 -11.72 0.000 -.6599639 -.4707912

male_uni .0539772 .0605362 0.89 0.373 -.0646716 .1726261
age .0146619 .0012311 11.91 0.000 .0122489 .0170749

educ .0407643 .0047575 8.57 0.000 .0314397 .0500888
ins_pub .3275272 .0608681 5.38 0.000 .2082279 .4468265

(output omitted )

_cons -.4692864 .0889194 -5.28 0.000 -.6435652 -.2950076

After running this probit model, we invoke the inteff command with the same
variable list, and save the data.

. inteff $y male ins_uni male_uni age educ ins_pub $x,
> savedata(d:\data\probit_inteff, replace)
> savegraph1(d:\data\figure3, replace) savegraph2(d:\data\figure4, replace)
Probit with two dummy variables interacted
file d:\data\probit_inteff.dta saved
(file d:\data\figure3.gph saved)
(file d:\data\figure4.gph saved)

Variable Obs Mean Std. Dev. Min Max

_probit_ie 12365 -.0092839 .0294776 -.0578116 .0829161
_probit_se 12365 .0218298 .0023465 .0046057 .0314373
_probit_z 12365 -.5169928 1.522319 -5.561593 5.530833

(Continued on next page)
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Figure 4.

In this example, both the main terms are highly statistically significant. However,
unlike before, the interaction between male and uninsured is not statistically significant.
In a linear model, we could conclude from such results that the interaction effect is
essentially zero. However, in the nonlinear probit, we see that the magnitude and
statistical significance ranges widely. Despite the lack of statistical significance of the
coefficient on the interaction term, the full interaction effect is large and statistically
significant for many observations (see figures 3 and 4). This shows that only looking at
the table of results can be misleading.
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6 Conclusion

Interaction effects are complicated to compute and interpret in nonlinear models. Be-
cause of their widespread use, however, having a command to compute them is impor-
tant for applied researchers. The new command inteff allows users to compute the
magnitude, sign, and statistical significance of interaction effects in logit and probit
models.

The results of the two examples are typical of the patterns we have found after
computing interaction effects for a wide range of problems. The interaction effect has a
wave shape when plotted against predicted values. Some interaction effects are positive,
and some are negative, no matter what the sign of the coefficient on the interaction term.
For predicted values equal to .5, the interaction effect is β12Φ

′ (u) for the probit case.
There is wide variation in the statistical significance of the interaction effect.

There are two limitations to the inteff command. One is that the code will only
work for logit and probit models, even though the issue applies to all nonlinear models,
such as tobit and count models. In addition, the command will only work for the
interaction between two variables that do not also have higher order terms. For example,
the command would yield the wrong answer if, in the first example, age squared was also
included as an independent variable. For other nonlinear models, interactions between
more than two variables or interactions of variables with higher-order terms use the
Stata command predictnl with great care.
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