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Abstract. The standard formulas for sample size and power calculation, as
implemented in the command sampsi, make use of a normal approximation to
the t-distribution. When the sample sizes are small, this approximation is poor,
resulting in overestimating power (or underestimating sample size). One particular
situation in which this is likely to be important is the field of cluster randomized
trials. Although the total number of individuals in a cluster randomized trial may
be large, the number of clusters will often be small. We present a simulation
study from the design of a cluster randomized crossover trial that motivated this
work and a command to perform more accurate sample size and power calculations
based on the noncentral t-distribution.
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1 Introduction

One-sample and two-sample t tests are frequently used in analyzing the results of clinical
trials, comparing the mean responses in two groups or comparing a single group to a hy-
pothesized value. The standard sample-size formulas found in statistical textbooks and
implemented in the command sampsi assume that the t-distribution can be adequately
approximated by a normal distribution. For small sample sizes, this assumption is poor,
resulting in overestimation of the power or underestimation of the sample size. It has
been suggested that the normal approximation is acceptable, provided the sample size
in each arm is at least 30 (Lachin 1981). For smaller sample sizes, simple adjustments
include adding one to the sample size if you are using a 5% significance level or adding
two if you are using a 1% significance level (Snedecor and Cochran 1989, 104). To per-
form more accurate calculations of sample size and power requires using the noncentral
t-distribution, which describes the distribution of the test statistic under the alternative
hypothesis of unequal means.

Section 2 derives the formulas for sample size and power from the noncentral
t-distribution, following the method of Chow, Shao, and Wang (2002), and section 3
illustrates the usefulness of this approach over a normal approximation in the context
of designing a cluster randomized trial. Section 4 presents the syntax and usage of a
command called sampncti to perform the calculations, section 5 gives two examples,
and section 6 lists the results stored by sampncti.

c© 2004 StataCorp LP st0062
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2 Sample size and power calculations

2.1 One-sample test of mean

Suppose that we have a single sample, xi, i = 1, . . . , n, which we assume comes from
a normal distribution with mean µ and standard deviation σ. We wish to test the
hypothesis

H0 : µ = µ0 versus Ha : µ �= µ0

for some hypothesized value µ0.

The standard parametric test for this situation is the one-sample t test. This test is
based on the test statistic

T =
x − µ0

s/
√

n

where x represents the sample mean and s the sample standard deviation.

Under the null hypothesis, T has a Student’s t-distribution on n − 1 degrees of
freedom. Under the alternative hypothesis, T has a noncentral t-distribution on n − 1
degrees of freedom with noncentrality parameter

θ =
µ − µ0

σ/
√

n

The power to detect a difference of δ = µ− µ0 with two-sided significance level α is
given by

1 − β = Tn−1
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where Tdf ( . |θ) is the cumulative distribution function of the noncentral t-distribution
with df degrees of freedom and noncentrality parameter θ and tp,df is the point of
the central t-distribution with df degrees of freedom corresponding to an upper-tail
probability of p.

Ignoring the smaller of the two terms (with value < α/2), the power is approximately

1 − β = Tn−1

(

tα/2,n−1
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∣

|δ|√n

σ

)

(1)

Hence, the sample size n can be obtained by solving (1) for given β.

For a one-sided test, the approximation in (1) is exact, with α/2 replaced by the
one-sided significance level α.

2.2 Two-sample test of equality of means

Now suppose that we have two independent samples, xi, i = 1, . . . , n1, and yj , j =
1, . . . , n2, and we assume that these come from normal distributions with means µ1 and
µ2 and standard deviations σ1 and σ2, respectively.
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We wish to test the following hypothesis:

H0 : µ1 = µ2 versus Ha : µ1 �= µ2

The standard parametric test for this situation is the two-sample t test. If the
variances are assumed to be equal (σ1 = σ2), as is usually the case when designing a
clinical trial, the test is based on the statistic

T =
x − y

√

(

1
n1

+ 1
n2

)

(n1−1)s2
x
+(n2−1)s2

y

n1+n2−2

where x and y represent the sample means and sx and sy the sample standard deviations
for x and y, respectively.

If we do not assume equal variances in the two samples (σ1 �= σ2), then the test
statistic is given by

T =
x − y

√

s2
x/n1 + s2

y/n2

Under the null hypothesis, T has a Student’s t-distribution on ν degrees of freedom.
If σ1 = σ2, then ν = n1 + n2 − 2. If σ1 �= σ2, then ν can be approximated by
Satterthwaite’s formula (Satterthwaite 1946) as
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or by Welch’s formula (Welch 1947) as
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Under the alternative hypothesis, T has a noncentral t-distribution on ν degrees of
freedom with noncentrality parameter

θ =
µ1 − µ2

√

σ2
1/n1 + σ2

2/n2

The power to detect a difference of δ = µ1 − µ2 with two-sided significance level α
is given by

1 − β = Tν
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Ignoring the smaller of the two terms (with value < α/2), the power is approximately

1 − β = Tν

(

tα/2,ν
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|δ|
√

σ2
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)

(2)

Taking r = n2/n1 fixed, the sample size n1 can be obtained by solving
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2

)

= 1 − β

For a one-sided test, the approximation in (2) is exact with α/2 replaced by the
one-sided significance level α.

3 Application to the design of a cluster randomized trial

One situation in which the inaccuracy of the normal approximation may be important is
in the design of cluster randomized trials. While the total number of individuals in the
trial may be large, it is the number of clusters that determines the degrees of freedom of
the t-distribution, so if the number of clusters is small, then the normal approximation
will be poor.

3.1 Setting

We were asked to design a study to investigate the impact of the introduction of a new
health technology on the length of stay of patients in intensive care units (ICUs). Due
to the nature of the intervention, it was considered necessary to randomize by cluster
(ICU). It may be against best practice to encourage units to use two different types of
equipment simultaneously (Department of Health 1998), and there may be potential for
contamination if the presence of the new equipment changes staff practices when using
the old equipment. A crossover design was considered to try to reduce the number of
ICUs required for such a trial and to minimize any dropout that may have been caused
by units being randomized to not receive the new technology.

3.2 Cluster randomized cluster crossover design

The study consists of two arms and is divided into two time periods. Clusters are ran-
domly assigned to the two arms such that each arm contains c clusters. We will assume
that, during each time period, every cluster recruits m individuals. During the first
time period, individuals recruited to clusters in the second arm receive the experimen-
tal treatment, with individuals recruited to clusters in the first arm acting as controls
(table 1). In the second time period, the clusters cross over, with individuals recruited
to clusters in the first arm receiving the treatment and individuals recruited to clus-
ters in the second arm acting as controls. Note that each individual receives only one



146 Sample size and power using noncentral t

treatment. Thus when m = 1, the design does not reduce to the standard individually
randomized crossover design. We use the term cluster randomized cluster crossover to
distinguish from a cluster randomized individual crossover design in which randomiza-
tion takes place at the cluster level but each individual receives both treatments in the
randomly allocated order.

Table 1: Cluster randomized cluster crossover design with c = 3 clusters in each arm
and m = 5 individuals recruited by each cluster in each time period (◦ control, • exper-
imental)

Period
Arm Cluster k = 1 k = 2

j = 1 ◦ ◦ ◦ ◦ ◦ • • • • •
i = 1 j = 2 ◦ ◦ ◦ ◦ ◦ • • • • •

j = 3 ◦ ◦ ◦ ◦ ◦ • • • • •
j = 1 • • • • • ◦ ◦ ◦ ◦ ◦

i = 2 j = 2 • • • • • ◦ ◦ ◦ ◦ ◦
j = 3 • • • • • ◦ ◦ ◦ ◦ ◦

We denote the continuous outcome measurement by Yijkl for individual l from time
period k within cluster j of arm i (i = 1, 2; j = 1, . . . , c; k = 1, 2; l = 1, . . . , m). We will
assume a mixed-effects model, with fixed effects for treatment and period and a random
effect of cluster:

Yijkl = µ + πk + τXik + Vij + ǫijkl (3)

where

µ = mean for untreated subjects in the first time period

πk = fixed period effect; π1 = 0, π2 = π

τ = fixed treatment effect

Xik = design matrix; X11 = X22 = 0, X12 = X21 = 1

Vij ∼ N
(

0, σ2
A

)

= random cluster effect

ǫijkl ∼ N
(

0, σ2
W

)

= independent random error

We have assumed that there is no carryover effect from one period to the next and no
treatment by period interaction, and that cluster effects are the same in both periods.
We have also assumed equal variances in the two arms of the trial.

For a cluster-level analysis of this design, we collapse the measurements to cluster
means within each time period and apply the techniques for an individually randomized
crossover design. We calculate the difference in outcomes between the first and second
period dij = Y ij2· − Y ij1· for each cluster and compare these between the two arms
using a two-sample t test, observing that the expected value of the difference in means
between the two arms will be 2τ as
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d1j = Y 1j2· − Y 1j1· ∼ N
(

π + τ, 2σ2
W /m

)

d2j = Y 2j2· − Y 2j1· ∼ N
(

π − τ, 2σ2
W /m

)

Using the standard normal approximation, the power to detect a treatment effect of
τ = ∆ is given by

1 − β = Φ

(

|2∆|
√

c/2
√

2σ2
W /m

− Zα/2

)

= Φ

(

|∆|
√

n/2

σW
− Zα/2

)

where n = 2cm is the total number of individuals in each arm of the trial, Φ( . ) is
the cumulative distribution function of the standard normal distribution, and Zp is the
point of a standard normal distribution corresponding to an upper-tail probability of p.
Using the normal approximation, the power is independent of the number of clusters,
provided the total sample size is maintained.

Using the noncentral t-distribution, as in (2), the power is given by
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We now see that the power does indeed depend on the number of clusters through
the degrees of freedom of the t-statistic. When the number of clusters is small, the
normal approximation to the t-distribution will be poor, and this will be an important
factor.

3.3 Simulation study

We illustrate the results above with a simulation study to investigate the empirical
power of the cluster-level analysis for various numbers of clusters and cluster sizes
compared with the estimated power from the normal approximation and using the
noncentral t-distribution. Fixed parameter values used in the simulation are shown in
table 2. The mean values and the within and among cluster standard deviations were
chosen to be consistent with values from the ICNARC Case Mix Programme Database
(Rowan and Black 2000) for an outcome variable of the length of stay in intensive care
measured in days. The power values represent the power to detect (at the 5% significance
level) a one-day reduction in intensive care stay for the given sample size and number
of clusters using the cluster crossover design.
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Table 2: Parameter values for simulation study.

Description Parameter Value
Mean control outcome µ 4.4
Treatment effect τ −1
Period effect π 0.3
Within cluster standard deviation σW 7.9
Among cluster standard deviation σA 1.3

One thousand datasets were simulated from the true model (3) for each combina-
tion of c = 5, 10, 25, and 50 clusters per arm and a total sample size of n = 500, 1000,
1500, and 2000. Expected power using the normal approximation was calculated by the
sampsi command, and expected power using the noncentral t-distribution was calcu-
lated using the command sampncti described in the following sections. The observed
power from each simulation is plotted against the expected power using the normal
approximation in figure 1 and using the noncentral t-distribution in figure 2. The power
was clearly overestimated by the normal approximation approach at low numbers of
clusters. Observe how the expected power using the normal approximation is indepen-
dent of the number of clusters (for a given total sample size), whereas the true power
increases with increasing numbers of clusters.
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Figure 1: Observed power from simulation study plotted against expected power using
the normal approximation
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Figure 2: Observed power from simulation study plotted against expected power using
the noncentral t-distribution

4 Stata implementation

4.1 Syntax

sampncti #1

[

#2

]

, sd1(#)
[

sd2(#) alpha(#) power(#) n1(#) n2(#)

ratio(#) onesample onesided welch
]

4.2 Options

sd1(#) and sd2(#) are the standard deviations of population 1 and population 2,
respectively. When the onesample option is used, sd1(#) is the standard deviation
of the single sample (note that it can be abbreviated as sd(#)). If sd2(#) is not
specified, sampncti assumes that sd2 = sd1.

alpha(#) is the significance level of the test. The default is alpha(0.05) unless set

level has been used to reset the default significance level for confidence intervals. If a
set level #lev command has been issued, the default value is alpha(1−# lev/100).
See [R] level.

power(#)= 1 − β is the power of the test. The default is power(0.90).

n1(#) and n2(#) are the sizes of sample 1 and sample 2, respectively. One or both
must be specified when computing power. If neither n1(#) nor n2(#) is specified,
then sampncti computes sample size. When the onesample option is used, n1(#)
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is the size of the single sample (note that it can be abbreviated as n(#)). If only
one of n1(#) or n2(#) is specified, then the unspecified one is computed using the
formula: ratio = n2/n1.

ratio(#) is the ratio of sample sizes for two-sample tests: ratio = n2/n1. The default
is ratio(1).

onesample indicates a one-sample test. The default is a two-sample test.

onesided indicates a one-sided test. The default is a two-sided test.

welch indicates that the approximate degrees of freedom for the t-distribution should
be obtained from Welch’s formula rather than from Satterthwaite’s approximation
formula, which is the default when sd1 �= sd2. This option is not appropriate if
sd1 = sd2 or if onesample is specified.

4.3 Remarks

sampncti estimates required sample size or power of tests for studies comparing means
using the noncentral t-distribution, as described in section 2. If n1(#) and n2(#) are
specified, sampncti computes power; otherwise, it computes sample size. The syntax
and options for sampncti follow those of sampsi (see [R] sampsi) for the comparison
of means. sampncti is an immediate command; all its arguments are numbers.

sampncti computes sample size or power for two types of tests:

1. Two-sample comparison of mean µ1 of population 1 with mean µ2 of population 2.
The null hypothesis is µ1 = µ2, and normality is assumed. Either the postulated
values of the means are specified as µ1 = #1 and µ2 = #2, or the difference in
means is specified as δ = µ2 − µ1 = #1 (and #2 is not given). The postulated
standard deviations are sd1(#) and sd2(#).

2. One-sample comparison of the mean µ of a population with a hypothesized value
of µ0. The null hypothesis is µ = µ0, and normality is assumed. If two arguments
are given to sampncti, the first argument #1 is µ0, and the second argument #2

is the postulated value of µ; i.e., the null hypothesis is µ = #1, and the alternative
hypothesis is µ = #2. If a single argument #1 is given, then this is the postulated
deviation from the hypothesized value, δ = µ−µ0; i.e., the null hypothesis is δ = 0,
and the alternative hypothesis is δ = #1. The postulated standard deviation is
sd1(#). To get this test, the onesample option must be given.

sampncti requires the package nct (Steichen 2000).

5 Examples

Two examples from the Stata Base Reference Manual for sampsi (see [R] sampsi) are
repeated using sampncti.



D. A. Harrison and A. R. Brady 151

5.1 Two-sample test of equality of means

Example

We calculate the required sample size to detect a difference between a mean of 132.86
with standard deviation 15.34 and a mean of 127.44 with standard deviation 18.23, using
a ratio of 2:1, for α = 0.05 (two-sided) and power of 0.80, as follows:

. sampncti 132.86 127.44, sd1(15.34) sd2(18.23) p(0.8) r(2)

Estimated sample size from noncentral t-distribution for
two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

m1 = 132.86
m2 = 127.44
sd1 = 15.34
sd2 = 18.23

n2/n1 = 2.00

Satterthwaite’s degrees of freedom: 251.8726

Estimated required sample size:

n1 = 109
n2 = 218

The sample sizes have increased by 1 and 2 from those obtained using sampsi.

To calculate the power for the same study in the event that each sample contains
100 subjects, we type

. sampncti 5.42, sd1(15.34) sd2(18.23) n1(100)

Estimated power from noncentral t-distribution for
two-sample comparison of means

Test Ho: delta = 0, where delta is the difference in means
between the two arms

Assumptions:

alpha = 0.0500 (two-sided)
delta = 5.42

sd1 = 15.34
sd2 = 18.23

sample size n1 = 100
n2 = 100

n2/n1 = 1.00

Satterthwaite’s degrees of freedom: 192.3805

Estimated power:

power = 0.6193

Note that we have also used the alternative feature of sampncti of expressing the prob-
lem in terms of the difference between the means δ = 132.86 − 127.44 = 5.42. The
results of sampncti indicate that the power is slightly less than the figure of 0.6236
reported by sampsi.
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5.2 One-sample test of mean

Example

We wish to calculate the sample size for a one-sample comparison to give 95% power
to detect a reduced mean of −10 compared with the hypothesized value of 0. We use a
one-sided test with α = 0.025 and estimate that the standard deviation will be about
20. We type

. sampncti -10, sd(20) onesam a(0.025) onesided p(0.95)

Estimated sample size from noncentral t-distribution for
one-sample comparison of mean to hypothesized value

Test Ho: delta = 0, where delta is the deviation from the
hypothesized value

Assumptions:

alpha = 0.0250 (one-sided)
power = 0.9500
delta = -10

sd = 20

Estimated required sample size:

n = 54

Using the noncentral t-distribution rather than a normal assumption has increased the
required sample size from 52 to 54.

We now compute the power with a sample size of n = 60 and a one-sided significance
level of α = 0.01.

. sampncti 0 -10, sd(20) onesam a(0.01) onesided n(60)

Estimated power from noncentral t-distribution for
one-sample comparison of mean to hypothesized value

Test Ho: m = 0, where m is the mean in the population

Assumptions:

alpha = 0.0100 (one-sided)
alternative m = -10

sd = 20
sample size n = 60

Estimated power:

power = 0.9274

sampncti reports a power of 0.9274 compared with 0.9390 from sampsi.

The results from these two examples are very similar to those obtained from sampsi,
as the sample sizes are sufficiently large for the normal approximation to be reliable. In
situations such as these, it would be reasonable to use the results from sampsi. More
extreme differences in power are observed with smaller sample sizes, as illustrated in
section 3.
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6 Saved Results

sampncti saves in r():

Scalars
r(N 1) sample size n1 r(power) power of the test
r(N 2) sample size n2 r(df t) degrees of freedom
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