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Abstract. A key issue in the estimation of production functions is the correlation
between unobservable productivity shocks and input levels. Profit-maximizing
firms respond to positive productivity shocks by expanding output, which requires
additional inputs. Negative shocks lead firms to pare back output, decreasing their
input usage. Olley and Pakes (1996) develop an estimator that uses investment
as a proxy for these unobservable shocks. More recently, Levinsohn and Petrin
(2003a) introduce an estimator that uses intermediate inputs as proxies, arguing
that intermediates may respond more smoothly to productivity shocks. This paper
reviews Levinsohn and Petrin’s approach and introduces a Stata command that
implements it.
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1 Introduction

A key issue in the estimation of production functions is the correlation between un-
observable productivity shocks and input levels.1 Profit-maximizing firms respond to
positive productivity shocks by expanding output, which requires additional inputs.
Negative shocks lead firms to pare back output, decreasing their input usage. When
true, ordinary least squares (OLS) estimates of production functions are biased and, by
implication, lead to biased estimates of productivity, often the relevant quantity for the
estimation question.

Olley and Pakes (1996) (OP) develop an estimator that uses investment as a proxy
for these unobservable shocks. More recently, Levinsohn and Petrin (2003a) (LP) point
to the evidence from firm-level datasets that suggest investment is very lumpy (that is,
that there are substantial adjustment costs). If this is true, the investment proxy may
not smoothly respond to the productivity shock, violating the consistency condition.

1For an overview of the history of this discussion, see Griliches and Mareisse (1998).
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114 Production function estimation

LP show the conditions under which intermediate inputs can also solve this simul-
taneity problem. Remarkably, in most applications, these inputs are not used beyond
subtracting them from the gross-output number to get value added, so the approach
comes at no additional cost in data or computation. LP discuss the theoretical benefits
of extending the proxy choice set in this direction and provide substantial empirical
evidence that these benefits are important.

One benefit is strictly data driven. It turns out that the investment proxy is only
valid for plants reporting nonzero investment. (This is due to an invertibility condition
described below.) Pronounced adjustment costs, which do not invalidate the use of
investment as a proxy, are the likely reason that over one half of the Chilean sample
used later reports zero investment. This kind of severe truncation is not unique to
the Chilean data. Much of the plant-level research being conducted today is on data
from countries such as India, Turkey, Columbia, Mexico, and Indonesia, and in these
datasets—as is likely with others—the “zero investment” problem looms large.

Using intermediate input proxies instead of investment avoids truncating all the zero
investment firms. In the data above (at least), firms almost always report positive use
of intermediate inputs like electricity or materials.

To the extent that adjustment costs are an important issue, intermediate inputs
may confer another benefit. If it is less costly to adjust the intermediate input, it may
respond more fully to the entire productivity term than investment. For example, if
adjustment costs lead to kink points in the investment demand function, plants may
not respond fully to productivity shocks, and some correlation between the regressors
and the error term can remain.

Another nice feature of the intermediate input is that it provides a simple link be-
tween the estimation strategy and the economic theory, primarily because intermediate
inputs are not typically state variables. Levinsohn and Petrin (2003a) develop this link,
showing the (mild) conditions that must hold if intermediate inputs are to be a valid
proxy for the productivity shock. They suggest three specification tests for evaluating
any proxy’s performance. In addition, they derive the expected directions of bias on the
OLS estimates relative to LP’s intermediate input approach when simultaneity exists.
Finally, LP show for the four largest Chilean manufacturing industries that significant
differences between OLS and Levinsohn–Petrin exist that are exactly consistent with
simultaneity.2

This paper reviews Levinsohn and Petrin’s approach and provides a Stata command
that implements it.

2 Productivity estimation

In this section, we give an overview with an emphasis on the mechanics of the estimator.
A more detailed exposition can be found in Levinsohn and Petrin (2003a).

2This finding has been reported for a number of other manufacturing surveys, including surveys
from Columbia and India.
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For the purposes of this note, the production technology is assumed to be Cobb–
Douglas

yt = β0 + βllt + βkkt + βmmt + ωt + ηt (1)

where yt is the logarithm of the firm’s output, most often measured as gross revenue
or value added; lt and mt are the logarithm of the freely variable inputs labor and
the intermediate input; and kt is the logarithm of the state variable capital.3 For
ease of exposition, we include only two freely variable inputs, though the command
accompanying this article allows for an arbitrary number of them.

The error has two components: the transmitted productivity component given as
ωt and ηt, an error term that is uncorrelated with input choices. The key difference
between ωt and ηt is that the former is a state variable and, hence, impacts the firm’s
decision rules. It is not observed by the econometrician, and it can impact the choices of
inputs, leading to the well-known simultaneity problem in production function estima-
tion. Estimators ignoring this correlation between inputs and this unobservable factor
(like OLS) will yield inconsistent results.

Demand for the intermediate input mt is assumed to depend on the firm’s state
variables kt and ωt:

mt = mt(kt, ωt)

Making mild assumptions about the firm’s production technology, Levinsohn and Petrin
(2003a, appendix A) show that the demand function is monotonically increasing in ωt.
This allows inversion of the intermediate demand function, so ωt can be written as a
function of kt and mt:

ωt = ωt(kt,mt)

The unobservable productivity term is now expressed solely as a function of two observed
inputs.

A final identification restriction follows Olley and Pakes (1996). LP assume that
productivity is governed by a first-order Markov process

ωt = E[ωt|ωt−1] + ξt

where ξt is an innovation to productivity that is uncorrelated with kt, but not necessarily
with lt; this is part of the source of the simultaneity problem.

First, we discuss estimation when the dependent variable is value added. Then, we
turn to using output (or gross revenue) as the dependent variable.

2.1 Estimation in the value-added case

Letting vt represent value added—gross-output net of intermediate inputs—we can
write the production function as

3The approach extends immediately to other forms of the production technology. For example,
with an appropriate definition of variables, trans-log (and higher order) production functions can be
estimated with this Stata routine.
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vt = β0 + βllt + βkkt + ωt + ηt

= βllt + φt(kt,mt) + ηt

where
φt(kt,mt) = β0 + βkkt + ωt(kt,mt)

Substituting a third-order polynomial approximation in kt and mt in place of φt(kt,mt),
makes it possible to consistently estimate parameters of the value-added equation using
OLS as

vt = δ0 + βllt +

3∑

i=0

3−i∑

j=0

δijk
i
tm

j
t + ηt

where β0 is not separately identified from the intercept of φt(kt,mt).
4 This completes

the first stage of the estimation routine from Levinsohn and Petrin (2003a), from which
an estimate of βl and an estimate of φt (up to the intercept) are available.

The second stage of the routine identifies the coefficient βk. It begins by computing
the estimated value for φt using

φ̂t = v̂t − β̂llt

= δ̂0 +

3∑

i=0

3−i∑

j=0

δ̂ijk
i
tm

j
t − β̂llt

For any candidate value β∗

k , we can compute (up to a scalar constant) a prediction for
ωt for all periods t using

ω̂t = φ̂t − β∗

kkt

Using these values, a consistent (nonparametric) approximation to E[ωt|ωt−1] is given
by the predicted values from the regression

ω̂t = γ0 + γ1ωt−1 + γ2ω
2
t−1 + γ3ω

3
t−1 + ǫt

which LP call ̂E[ωt|ωt−1].

Given β̂l, β∗

k , and ̂E[ωt|ωt−1], LP write the sample residual of the production function
as

̂ηt + ξt = vt − β̂llt − β∗

kkt − ̂E[ωt|ωt−1]

Our estimate β̂k of βk is defined as the solution to

min
β∗

k

∑

t

(vt − β̂llt − β∗

kkt − ̂E[ωt|ωt−1])
2

The Stata command accompanying this note uses a golden section search algorithm to
minimize that function. A bootstrap approach (discussed shortly) is used to construct

standard errors for β̂l and β̂k. We now turn to point estimation when the dependent
variable is output (or gross revenue).

4Another restriction is necessary to separately identify β0 from the intercept of φt(kt, mt).
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2.2 Estimation in the gross revenue case

Letting yt denote revenue, the production function is given as

yt = β0 + βllt + βkkt + βmmt + ωt + ηt

= βllt + φt(kt,mt) + ηt

where now
φt(kt,mt) = β0 + βkkt + βmmt + ωt(kt,mt)

Estimation of β̂l proceeds exactly as before, using OLS with a third-order polynomial
approximation in kt and mt in place of φt(kt,mt).

The first part of the second stage is also similar to the value-added case. For any
candidate values β∗

k and β∗

m (for βk and βm), we estimate ω̂t using

ω̂t = φ̂t − β∗

kkt − β∗

mmt

Using the ωt’s for all t, we estimate ̂E[ωt|ωt−1] as before. Then, the residual for (β∗

k ,β∗

m)
is computed as

̂ηt + ξt = yt − β̂llt − β∗

kkt − β∗

mmt − ̂E[ωt|ωt−1]

This residual must interact with at least two instruments to identify both βk and
βm. Similar to the value-added case, if period t’s capital stock is determined by the
previous period’s investment decisions, it does not respond to shocks to this period’s
productivity innovation term ξt, providing the moment condition

E[ηt + ξt|kt] = 0

which is implicitly imposed in the objective function from (1). An additional moment
condition is needed to identify βm separately from βk. LP use the fact that the previous
period’s level of material usage mt is uncorrelated with this period’s error, giving us the
moment condition

E[ηt + ξt|mt−1] = 0

Thus, with Zt ≡ (kt,mt−1), one candidate estimator solves

min
(β∗

k
,β∗

m
)

∑

h

{∑

t

( ̂ηt + ξt)Zht

}2

with h indexing the elements of Zt.

Additional overidentification conditions are given by

E[ηt + ξt|lt−1] = 0, E[ηt + ξt|mt−2] = 0, and E[ηt + ξt|kt−1] = 0

These can be used to improve efficiency and test the specification. Here one redefines

Zt ≡ (kt,mt−1, lt−1,mt−2, kt−1). β̂k and β̂m are then defined as the solution to

min
(β∗

k
,β∗

m
)

∑

h

{∑

t

( ̂ηt + ξt)Zht

}2
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Our Stata implementation provides two methods for solving the GMM minimization
problem. The default behavior is to use Stata’s nl command, which is based on Newton’s
method. Alternatively, a two-dimensional grid search can be requested. Candidate
values for β∗

k and β∗

m from 0.01 to 0.99, in increments of 0.01, are used. Although much
slower than nl, the grid search is handy for confirming that nl has found the global
minimum of the objective function. Moreover, if there is insufficient variation in the
capital and proxy variables, nl may have difficulty solving the minimization problem;
in these cases, we can instead use the grid search.

2.3 Standard errors

The estimators developed above involve two main stages of estimation. In each of these
stages, a number of preliminary estimators are used. The covariance matrix of the final
parameters must account for the sampling variation introduced by all of the estimators
used in the two stages. Although deriving an analytic covariance matrix may be feasible,
this calculation is not trivial. Instead, LP substitute computational power for analytic
difficulties, employing the bootstrap to estimate standard errors.

Because LP use panel data, they sample with replacement from firms, using the
entire time series of observations for that firm in the bootstrapped sample when the
firm’s id number is randomly drawn. The variation in the point estimates across the
bootstrapped samples provides an estimate for the standard errors of the original point
estimates. In Stata, we accomplish the bootstrap sampling using the cluster(varname)

option with the bsample command.

Bootstrapping, when overidentifying restrictions are imposed, is slightly different.
The sample moments computed using the original dataset will, in general, not equal
zero, even though the population moments do (by assumption).5 As Horowitz (2001)
and others have noted, this means that, for each of the bootstrapped samples, one must
“recenter” the moment conditions by subtracting the values of the sample moments
calculated using the original dataset (at the minimum). Our Stata implementation ac-
complishes this by first performing the estimation on the original dataset. We then store
the values of the sample moments using a series of global macros. Their value is then
subtracted from the bootstrapped sample’s moments when minimizing the objective
function for that bootstrapped sample. This restores the consistency of the bootstrap
approach in the construction of standard errors.

3 Stata implementation

3.1 Syntax

levpet depvar
[
if exp

] [
in range

]
, free(varlist) proxy(varlist)

capital(varname)
[
[ valueadded | revenue ] justid grid i(varname)

t(varname) reps(#) level(#)
]

5See Horowitz (2001) for an overview of the bootstrap and a discussion of the necessity of recentering.



A. Petrin, B. P. Poi, and J. Levinsohn 119

Syntax for predict

predict
[
type

]
newvarname

[
if exp

] [
in range

]
, omega

3.2 Options

free(varlist) specifies the freely variable inputs, excluding the one used as the proxy
variable.

proxy(varlist) specifies the proxy variables, which are typically electricity, materials, or
fuels. If the dependent variable is value added, one or two variables can be specified.
If the dependent variable is revenue, only one can be specified.

capital(varname) specifies the capital variable.

valueadded indicates that the dependent variable represents value added and that the
least-squares estimator be used. This is the default.

revenue indicates that the dependent variable represents gross revenue and that the
GMM estimator will be used.

justid requests that the GMM estimator use only present-period capital and the first
lag of the proxy variable as instruments. The default is to include lagged labor,
lagged capital, and the second lag of the proxy variable as instruments as well. This
option can only be used with revenue.

grid requests that the GMM estimator use a grid search to minimize the criterion func-
tion with respect to the coefficients on capital and the intermediate input. The
default is to use Stata’s nl command. This option can only be used with revenue.

i(varname) specifies the variable that contains the unit to which the observation be-
longs. You can specify the i() option the first time you estimate, or you can use the
iis command to set i() beforehand. Note that it is not necessary to specify i() if
the data has been previously tsset or if iis has been previously specified. In these
cases, the group variable is taken from the previous setting. See [XT] xt.

t(varname) specifies the variable that contains the time at which the observation was
made. You can specify the t() option the first time you estimate, or you can use
the tis command to set t() beforehand. Note that it is not necessary to specify
t() if the data has been previously tsset or if tis has been previously specified.
In these cases, the time variable is taken from the previous setting. See [XT] xt.

reps(#) specifies the number of bootstrap replications to be performed. The default
is 50.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 23.6 Specifying the width

of confidence intervals.
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Options for predict

omega requests the predicted levels of productivity, where for the value-added case

ω̂t = exp(vt − β̂llt − β̂kkt)

and for the gross revenue case

ω̂t = exp(yt − β̂llt − β̂kkt − β̂mmt)

Predict assumes that the production function inputs are in log levels and adjusts
ωt accordingly. If there is more than one freely variable input, these formulas are
modified accordingly.

3.3 Remarks

The levpet command implements the Levinsohn–Petrin estimator, as discussed in the
previous section. The command works with versions 7 and higher of Stata. The dialog
box requires Stata 8 and can be invoked by typing

. db levpet

4 Example

Here, we illustrate the usage of levpet using a dataset consisting of Chilean apparel
firms from 1987 through 1996. We have data on value added, as well as firms’ usage
levels of blue and white collar labor, electricity, and capital. We treat blue and white
collar labor as freely variable inputs, and we use electricity as the proxy variable. In
the examples below, the prefix ln on a variable name indicates the natural log.

We consider the case in which the dependent variable represents value added. In
Stata, we type

. tsset ppn year

. levpet lnva, free(lnb lnw) proxy(lne) capital(lnk) valueadded reps(250)

The output looks similar to most of Stata’s xt commands:

(Continued on next page)
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Levinsohn-Petrin productivity estimator

Dependent variable represents value added. Number of obs = 2713
Group variable (i): ppn Number of groups = 556
Time variable (t): year

Obs per group: min = 1
avg = 4.9
max = 10

lnva Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnb .4659176 .0443553 10.50 0.000 .3789828 .5528524
lnw .420271 .0345444 12.17 0.000 .3525653 .4879768
lnk .2250087 .0646426 3.48 0.000 .0983115 .3517059

Wald test of constant returns to scale: Chi2 = 2.96 (p = 0.0856).

The header of the output summarizes the panel-data structure of the dataset, and
below that are the estimated parameters. At the bottom of the output is a Wald test of
constant returns to scale; it is simply a test that the sum of the coefficients equals one.

In table 1, we compare parameter estimates from OLS, fixed-effects regression, and
the LP estimator. For the parameters on the freely variable inputs, the OLS estimates
exceed the LP estimates, confirming both the theoretical and empirical results discussed
in Levinsohn and Petrin (2003a,b). Whether the OLS coefficient on capital will be biased
upward or downward depends on the degree of correlation among the inputs and the
productivity shocks. In this particular application, the OLS estimate is less than the LP

estimate. The fixed-effects estimates differ quite substantially from both the OLS and
LP estimates. One explanation is that the magnitude of each firm’s productivity shock
varies over time and is not a constant fixed effect.

Table 1: Comparison of OLS, fixed effects, and LP estimators; dependent variable is a
log of value added.

Model

Parameter OLS FE LP

lnb 0.5612 0.4989 0.4659
(0.0191) (0.0275) (0.0443)

lnw 0.4895 0.2423 0.4202
(0.0181) (0.0262) (0.0345)

lnk 0.1743 0.1015 0.2250
(0.0122) (0.0208) (0.0646)

Sum 1.2251 0.8427 1.1111
(0.0139) (0.0399) (0.0646)
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At the bottom of table 1, we also report the sum of the coefficients for each estimator;
constant returns to scale correspond to a sum of one. Both OLS and LP imply increasing
returns for this industry, though in the case of LP, we cannot reject the null that the
sum is one at the 5% significance level.

5 Conclusion

When estimating production functions, we must account for the correlation between
input levels and productivity. Profit-maximizing firms respond to increases in produc-
tivity by increasing their usage of factor inputs. Methods that ignore this endogeneity,
such as OLS and the fixed-effects estimator, will provide inconsistent estimates of the
parameters of the production function.

Building on the work of Olley and Pakes (1996), Levinsohn and Petrin (2003a) de-
velop an estimator that utilizes intermediate inputs to proxy for the unobservable pro-
ductivity term. Most plant-level datasets include data on the usage of intermediate
inputs such as energy and materials, so Levinsohn and Petrin’s estimator does not suf-
fer from the truncation bias induced by Olley and Pakes’ estimator, which requires firms
to have nonzero levels of investment.

In this paper, we have introduced the Stata command levpet to implement this
estimator. We hope that its simple syntax will motivate people to consider it as a
better alternative to estimators that ignore endogeneity issues.

6 Saved results

levpet saves in e():

Scalars
e(N) number of observations
e(waldcrs) Wald test of constant returns

Macros
e(cmd) levpet
e(predict) program used to implement predict
e(model) value added or revenue; model used

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix

Functions
e(sample) marks estimation sample
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