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FIML estimation of an endogenous switching

model for count data
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Abstract. This paper presents code for fitting a FIML endogenous switching Pois-
son count model for cross-sectional data in Stata 7: the espoisson command. The
Poisson process depends on an unobserved heterogeneity term, ξ; a set of explana-
tory variables, x; and an endogenous dummy, d. The endogenous dummy depends
on an unobserved random term, ν. Correlation between ξ and ν is allowed. If a
model with exogenous d is fitted instead, correlation between ξ and ν will result in
simultaneous equation bias. The endogenous switching model corrects this prob-
lem. After describing the underlying econometric theory behind the command, an
example is discussed.
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1 Introduction

In recent years, count data models have become one of the most important tools available
to statisticians and econometricians. Among other application fields, count models are
valuable in the study of work-related training (Arulampalam and Booth 1997), recre-
ation demand (Terza 1998), cigarette consumption (Yen 1999; Mullahy 1997), accidents
(Feinstein 1989; Minchener and Tighe 1992; Lee, Stevenson, and Wong 2002), embry-
onic development (Egel and Brake 1993), health care demand (Windmeijer and Santos
1997; Gurmu 1997; Cameron and Windmeijer 1996), clinical research (Kianifard and
Gallo 1995; Cook and Wei 2002), innovation and technology adoption (Faria, Fenn, and
Bruce 2003; Hausman, Hall, and Griliches 1993), labor mobility (Winkelmann 1996,
2001), airline safety (Evans 1989), and fertility behavior (Kalwij 2000; Melkersson and
Rooth 2002; Wang and Famoye 1997; Santos and Covas 2000).

A common situation found in applied work is that of sample selection and endoge-
nous dummy explanatory variables. These features pose important empirical challenges,
as failure to control for them generally leads to biased and inconsistent estimators if
unobserved individual heterogeneity is present (Heckman 1979; Mullahy 1997). Un-
der such circumstances, three strategies for consistent estimation have been proposed.
One strategy considers a two-step method of moments (TSM) estimator that is in the
spirit of Heckman’s sample selection model (Heckman 1979; Terza 1998; Greene 1994,
1997). Sample selection models of the kind discussed by Heckman (1979) can be fitted
using Stata’s heckman command; see [R] heckman. A second alternative consists of
a nonlinear weighted least-squares estimator (Terza 1998). Finally, Terza (1998) out-
lines a full information maximum likelihood (FIML) procedure. FIML and nonlinear
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weighted least squares (NWLS) are statistically efficient but computationally expensive
compared with TSM. NWLS is computer efficient relative to FIML and statistically ef-
ficient relative to TSM. Hence, FIML delivers the statistically most-efficient estimator
if the researcher is comfortable imposing some distributional assumptions. The fact
that FIML places heavy demand on computer power has discouraged its use in applied
work (Terza 1998). However, recent applications suggest that the computational costs
of FIML are fairly affordable with modern computers (Greene 1997).

The objective of this paper is to present an econometric module for fitting a FIML

endogenous switching Poisson count model implemented in Stata 7. The remainder of
the present work unfolds as follows. In section two, the underlying econometric theory
behind the espoisson command is discussed. Section three introduces the syntax for
espoisson. Section four presents an empirical application, and finally, section five
includes some concluding comments.

2 The model

This section follows the discussion in Terza (1998). Consider the ith individual from a
random sample I = {1 . . . n}. Conditional on a vector of explanatory variables xi, an
endogenous dummy di, and a random term ξi, the dependent variable yi—which is a
count—is supposed to follow a standard Poisson distribution,

f(yi|ξi) =
exp {−exp (x′

iβ + γdi + ξi)} {exp (x′

iβ + γdi + ξi)}yi

yi!
(1)

The random term ξi is commonly interpreted as a variable that summarizes omitted and
unobserved variables. In some contexts, ξi can be also interpreted as a measurement
error. Given a vector of explanatory variables zi (which may contain some or all elements
of xi), di is characterized by an index process

di =

{

1 if z′iα + νi > 0
0 otherwise

Let wi represent all exogenous variables, and suppose that ξi and νi are jointly normal
with mean zero and covariance matrix

Σ =

(

σ2 σρ

σρ 1

)

Conditional on ξi, di and yi are independent. Hence, the joint conditional probability
density function of yi and di, given wi, can be written as

f (yi, di|wi) =

∫

∞

−∞

{

dif (yi|di = 1, wi, ξi) Pr (di = 1|wi, ξi)

+ (1 − di) f (yi|di = 0, wi, ξi) Pr (di = 0|wi, ξi)
}

f (ξi) dξi
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where f(ξi) denotes the probability density function for the random term ξi. Consider
now a change of variable

ηi =
ξi

σ
√

2

Exploiting the fact that f(ξi|wi) is normal with mean zero and variance σ2, the joint
conditional probability density function of yi and di, given wi, may be re-expressed as

f (yi, di|wi) =
1√
π

∫

∞

−∞

[

f
(

yi|di, wi, σηi

√
2
){

diΦ
∗

i

(

σηi

√
2
)

+ (1 − di) Φ∗

i

(

−σηi

√
2
)} ]

exp
(

−η2

i

)

dηi (2)

where

Φ∗

i

(

σηi

√
2
)

= Φ

(

z′iα + ρηi

√
2

√

1 − ρ2

)

The integral in (2) does not admit a closed-form solution. However, Gauss–Hermite
quadrature can be used to approximate it. Having defined (2) the log likelihood is
simply

LogL =

n
∑

i=1

ln {f (yi, di|wi)}

The model is identified through functional form. Hence, vectors xi and zi may contain
the same elements (i.e., no exclusion restrictions are required to secure identification).
Unlike the Tobit model, [R] tobit, coefficients on common elements of xi and zi may
have different signs in β and α (for more details on the Tobit model, see Greene 2003,
chapter 22). Notice that the mean and variance of the count variable are

µi = E [yi|di, wi]

= exp {x′

iβ − 0.5σ}
[

di

{

Φ(z′iα + σρ)

Φ (z′iα)

}

+ (1 − di)

{

1 − Φ(z′iα + σρ)

1 − Φ(z′iα)

}]

and
Var (yi|di, wi) = µi + kµ2

i

k = exp
(

2σ2
)

− exp
(

σ2
)

. Thus, the model exhibits overdispersion as σ is by definition
positive. The log-likelihood function is maximized using the Newton–Raphson algo-
rithm. If H represents the Hessian matrix at convergence, −H−1 provides an estimator
for the covariance matrix. Usual hypothesis tests are valid on the basis of LR and Wald
statistics.

If ρ = 0, ξi and νi are independent. In such a case, di can be treated as an exogenous
variable in (1) without risk of inducing simultaneous equation bias. Besides, if ρ = 0,
the switch between regimes (i.e., the change from di = 0 to di = 1 ) becomes an
exogenous process. Hence, a test for the adequacy of the endogenous switching model
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can be performed on the basis of a likelihood-ratio test for the significance of ρ. Notice,
however, that under the null hypothesis ρ lies on the boundary of the set of its admissible
values. Thus, the likelihood-ratio statistic is distributed as a 50:50 mixture of a mass
point at zero and a chi-squared variable with one degree of freedom (Self and Liang
1987; Gutierrez, Carter, and Drukker 2001).

3 Syntax

espoisson depvar
[

varlist
] [

if exp
] [

in range
]

, edummy(varname)
[

switch(varlist) quadrature(#) rho0(#) sigma0(#) exs maximize options
]

The syntax follows the standard form for estimation commands in Stata. depvar

represents the dependent count variable, and varlist specifies covariates for the Pois-
son process (the varlist should include the endogenous dummy variable as one of its
elements). Then, the endogenous dummy variable should be declared by means of the
required option edummy(). The switch() option specifies covariates for the switching
variable, and quadrature() indicates the number of quadrature points used in the nu-
merical approximation of the integral in (5). Option exs causes Stata to fit the model
under the restriction ρ = 0. This last specification corresponds to an exogenous switch-
ing model, EXS. Finally, options rho0() and sigma0() set initial values for ρ and σ,
respectively. The command espoisson is written in terms of an ml d0 method; however,
an ml lf method is feasible. The syntax of predict, [R] predict, after espoisson is

predict newvarname
[

if exp
] [

in range
]

, n

Option n for predict gives Stata instructions to calculate the predicted mean number
of events; see [R] poisson. This is the only option available.

4 Illustration: Completed fertility and primary education

in Mexico

To illustrate the methodology, some regressions for completed fertility in Mexico are
performed. Data from the National Survey of Demographic Dynamics 1997 (ENADID

from its acronym in Spanish) is used. The ENADID is a micro-dataset containing detailed
economic and demographic information for 88,022 Mexican women aged between 15 and
54 years. Since completed fertility is the main concern, a total of 19,559 cases of women
aged 40 or over at the time of the survey (December 1997) were selected. The dependent
variable, children, represents the total number of live births experienced by women
during their fertile period of life, including children that died a few hours after birth.
The mean of the dependent variable is 4.5, and its standard deviation is 2.77. Hence,
unconditional variance (7.67) is larger than unconditional mean, suggesting that the
data is overdispersed. The following explanatory variables are considered in the Poisson
process:
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• edu12. Dummy variable taking the value of one if the index woman completed
primary education and zero otherwise.

• catholic. Dummy variable indicating if the individual is Catholic (catholic= 1).

• indspker. Dummy variable indicating whether the index woman can speak an
indigenous language. This is a proxy variable for ethnic group.

• after49. Dummy variable taking the value of one if the index woman was born
after 1949 and zero otherwise. This variable is intended to capture potential
generation effects.

As religious teaching is banned in the Mexican public education system, it is unlikely
that either Catholics or non-Catholics would systematically avoid primary school be-
cause of their religious beliefs. Hence, an exclusion restriction for the switch process
is suggested, namely, that religion does not affect a woman’s likelihood of graduation
from primary school. This exclusion restriction is suggested in the context of Mexico
and, as discussed in section 2, it is not technically required to secure identification.

children has a mode of three, representing approximately 17% of the sample.
Around six percent of women report zero counts, and fewer than three percent had
more than ten live births. Finally, women with one and two children contribute 6%
and 13% of all cases, respectively. Comparing these last two figures with the proportion
of one and two counts that a standard Poisson distribution would predict (5.8% and
11.8% respectively), it is possible to say that there is no excess of such counts. Hence,
relative to data from developed countries, Mexican women appear neither to have spe-
cial predilection for the two-child family nor to avoid having only one child (see the
discussion in Santos and Covas 2000). In the case of zero counts, things are different.
According to a standard Poisson distribution, childless women should represent 1.3%
of the sample, far below the actual figure of 6% contained in the ENADID. Thus, zero-
inflated count models seem to be justified. Fitting zero-inflated models, however, is
beyond the scope of the present paper, as this section deals only with an illustration of
the FIML endogenous switching procedure. Descriptive statistics are obtained using the
summarize command.

. use espoisson.dta
(Mexico Completed Fertility Data)

. summarize

Variable Obs Mean Std. Dev. Min Max

age 19559 45.93481 4.210048 40 54
children 19559 4.428652 2.753055 0 18
catholic 19559 .8943709 .3073702 0 1
indspker 19559 .0940232 .2918685 0 1
after49 19559 .6184365 .4857827 0 1

edu12 19559 .5064676 .4999709 0 1

Economic theory suggests that parents’ education increases the opportunity cost of
children (Willis 1973). Consequently, edu12 is expected to have a negative effect on
completed fertility. Similarly, intuition suggests that after49 should have a negative
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coefficient in the Poisson process and a positive coefficient in the switch equation as per-
period fertility rates in Mexico have dropped consistently in the last 30 years and average
education has increased from 3.4 to 7.6 years (INEGI 2001). indspker is expected to have
a positive coefficient in the Poisson process and a negative coefficient in the switch, given
that indigenous people in general have limited access to education and health services
in Mexico. Finally, catholic might have a coefficient of either sign.

For comparison purposes, a model with exogenous switching (EXS) is reported along
with results for the endogenous switching model (ENS). The EXS model is obtained as
an ENS model in which the restriction ρ = 0 has been imposed. Thus, EXS is nested
within ENS. In all estimated regressions, allowing for more than sixteen quadrature
points did not result in either significant improvement of the log likelihood or significant
modifications of the parameters. Therefore, models with sixteen quadrature points are
reported. The exogenous switching model (EXS) is fitted using the exs option:

. espoisson children catholic indspker after49 edu12, ed(edu12) s(indspker after49)
> q(16) exs difficult

Getting Initial Values:

Fitting Full model:

Iteration 0: log likelihood = -62984.076
Iteration 1: log likelihood = -62835.643 (not concave)
Iteration 2: log likelihood = -57996.399
Iteration 3: log likelihood = -57750.848
Iteration 4: log likelihood = -57633.216
Iteration 5: log likelihood = -57633.143
Iteration 6: log likelihood = -57633.143

Exogenous-Switch Poisson Regression
(16 quadrature points)

Number of obs = 19559
Wald chi2(4) = 4067.23

Log likelihood = -57633.143 Prob > chi2 = 0.0000

children Coef. Std. Err. z P>|z| [95% Conf. Interval]

children
catholic -.037471 .0129797 -2.89 0.004 -.0629108 -.0120312
indspker .0259196 .0134347 1.93 0.054 -.0004119 .052251
after49 -.1498285 .0082753 -18.11 0.000 -.1660478 -.1336093

edu12 -.4819543 .0084677 -56.92 0.000 -.4985507 -.4653579
_cons 1.778055 .0137364 129.44 0.000 1.751132 1.804978

switch
indspker -1.127517 .0368167 -30.63 0.000 -1.199676 -1.055358
after49 .2931059 .0188494 15.55 0.000 .2561617 .3300501

_cons -.0731283 .0149867 -4.88 0.000 -.1025016 -.0437549

sigma .2965293 .0054761 54.15 0.000 .2859882 .307459

According to these results, σ is positive and significantly different from zero. There-
fore, there is evidence that overdispersion and unobserved heterogeneity are present.
All estimated coefficients are significant and have the expected sign—though indspker



46 FIML Estimation of endogenous switching count models

in the Poisson process is significant only at 10% of confidence. Removing the exs option
causes Stata to fit the endogenous switching model (ES):

. espoisson children catholic indspker after49 edu12, ed(edu12) s(indspker after49)
> q(16) difficult

Getting Initial Values:

Fitting Full model:

Iteration 0: log likelihood = -62983.096 (not concave)
Iteration 1: log likelihood = -58371.105 (not concave)
Iteration 2: log likelihood = -57742.524 (not concave)
Iteration 3: log likelihood = -57633.96
Iteration 4: log likelihood = -57628.523 (not concave)
Iteration 5: log likelihood = -57600.409
Iteration 6: log likelihood = -57586.334
Iteration 7: log likelihood = -57579.262
Iteration 8: log likelihood = -57578.997
Iteration 9: log likelihood = -57578.991
Iteration 10: log likelihood = -57578.991

Endogenous-Switch Poisson Regression
(16 quadrature points)

Number of obs = 19559
Wald chi2(4) = 2285.19

Log likelihood = -57578.991 Prob > chi2 = 0.0000

children Coef. Std. Err. z P>|z| [95% Conf. Interval]

children
catholic -.0355655 .0129769 -2.74 0.006 -.0609998 -.0101311
indspker -.262709 .0187704 -14.00 0.000 -.2994983 -.2259197
after49 -.0722155 .0099639 -7.25 0.000 -.0917444 -.0526867

edu12 -1.202969 .026841 -44.82 0.000 -1.255576 -1.150361
_cons 2.118149 .0191674 110.51 0.000 2.080581 2.155716

switch
indspker -1.09937 .038423 -28.61 0.000 -1.174678 -1.024063
after49 .2901196 .021878 13.26 0.000 .2472394 .3329998

_cons -.0762112 .016943 -4.50 0.000 -.1094189 -.0430036

sigma .463215 .0118455 39.10 0.000 .4405704 .4870234
rho .9539426 .0102186 93.35 0.000 .9290369 .9702421

Excluding indspker, no sign changes are detected once endogeneity of edu12 is
considered; however, important differences in the magnitude of the coefficients are found.
The impact of edu12 on the count process is now sensibly higher. Besides, apart from
their role on the switch, generation effects contribute less to the reduction of women’s
completed fertility. Finally, the coefficient on indspker becomes negative and significant
implying that, once the effect of indspker on education has been taken into account,
indigenous language is associated with reductions on completed fertility. Moving to the
switch part, coefficients on explanatory variables appear to be sensibly lower in the ES

specification in relation to the figures obtained from an EXS model. Thus, neglecting
the endogeneity of the switch variable appears to result in overestimated coefficients in
the switch process.



A. Miranda 47

The parameter ρ is found to be significant and close to unity in the ES specification.
By performing a likelihood-ratio test for ρ = 0, a χ̄2(01) = −2 (−57, 633 + 57, 579) =
108 statistic is obtained. Thus, the adequacy of the endogenous switching specification
is supported by the rejection of the null hypothesis ρ = 0 in a boundary-value likelihood-
ratio test at any standard confidence level (Pr ≥ χ̄2(01) = 0.0000). The two models
can also be compared using an Akaike information criterion (AIC) statistic. In the case
of the EXS model, an AICexs = 2(57, 633) + 2(9) = 115, 344 statistic is found. Similarly,
for the ES model an AICes = 2(57, 579)+2(10) = 115, 178 statistic is reported. On these
grounds, the ES model is once again preferred as AICes < AICexs.

Although there is no intuitive explanation for a high ρ in the fertility context, the
reader should note that Terza (1998) and Greene (1997) obtain high estimates of ρ—
near to unity—in similar implementations of an endogenous switching count model.
Whether data features in all the three studies induce a high ρ or a high ρ is a tendency
of the econometric technique, is not clear.

5 Final comments

This paper presents code for fitting a FIML endogenous switching Poisson count model
for cross-sectional data in Stata 7: the espoisson command. Results from an illustrative
exercise find that an endogenous switching model fits the data better than a model in
which the switch is governed by an exogenous process. In addition, it is found that
neglecting for the potential endogeneity of a regime-switch variable might result in
important bias in both the count and the switching process. The correlation coefficient
between the two unobserved heterogeneity terms considered by the model—one for the
count, one for the switch—is reported to be near unity. It is not clear if data-specific
features induced a high ρ or if a high ρ is rather a tendency of the econometric technique.

The espoisson command is implemented using an ml d0 method. As a consequence,
robust standard errors are not currently available. However, since the likelihood function
meets the linear-form restriction, an ml lf method is in principle possible. Under such
an alternative, robust standard errors would be available, and some gains in speed might
be obtained. Two extensions are possible: sample selection and zero-inflated models.
Both extended models can be implemented with relatively minor modifications to the
espoisson code.
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