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Abstract. This paper presents a semi-nonparametric estimator for a series of
generalized models that nest the ordered probit model and thereby relax the dis-
tributional assumption in that model. It describes a new Stata command for fitting
such models and presents an illustration of the approach.
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1 Introduction

The analysis of ordered response data is increasingly common in a growing number of
research areas. The standard ordered probit (Aitchison and Silvey 1957) and ordered
logit (McCullagh 1980) models are commonly used but require the researcher to make a
specific distributional assumption.1 This paper presents a semi-nonparametric estimator
for a series of generalized models that nest the ordered probit model and relax the
distributional assumption in that model.

2 A framework for ordered response models

As with many limited dependent variable models, it is useful to consider specification
of a suitable model for ordered response data in terms of an underlying latent variable,

y∗

i = x′

iβ + εi (1)

for i = 1, . . . , N , where xi is a vector of observations on a set of explanatory variables,
β is a vector of unknown parameters, and εi is a random-error term independently
distributed with distribution function F . If y∗

i was observed for all observations, β could
be consistently estimated by ordinary least squares without requiring a distributional
assumption on ε. For the type of data considered in this paper, y∗

i itself is not observed.
Rather, the observed dependent variable, yi, is discrete, taking one of the values {1, 2,
. . . , J}, and is related to y∗

i as follows:

1See Greene (2003) and Wooldridge (2002) for recent textbook treatments of such models.
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yi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if y∗

i < α1

2 if α1 ≤ y∗

i < α2

...
J if αJ−1 ≤ y∗

i

with the αj being additional parameters such that α1 < α2 < · · · < αJ−1. Thus,
the range of y∗ is partitioned into J mutually exclusive and exhaustive intervals, and
the variable y indicates the interval into which a particular observation falls. The
dependent variable y is ordinal, and the αj are treated as parameters to be estimated.
The probability of a particular observed outcome, for 2 ≤ j ≤ J − 1, is given by

Pr[yi = j] = Pr[αj−1 ≤ y∗

i < αj ]

= Pr[αj−1 − x′

iβ ≤ εi < αj − x′

iβ]

= F (αj − x′

iβ) − F (αj−1 − x′

iβ)

where F is the cumulative distribution function of εi and is assumed to contain no
additional unknown parameters so that, for example, εi has a known variance. This
assumption fixes the scale of the measurement of y∗ but not the origin. Identification
can be achieved by assuming a zero intercept (i.e., assuming that xi does not contain a
constant term) or by fixing one of the αj . The former is used here.

The full set of probabilities of the possible outcomes are

Pr[yi = j] =

⎧
⎨

⎩

F (α1 − x′

iβ) if j = 1
F (αj − x′

iβ) − F (αj−1 − x′

iβ) if 2 ≤ j ≤ J − 1
1 − F (αJ−1 − x′

iβ) if j = J

(2)

If we adopt the additional notation that α0 = −∞ and αJ = +∞, we can write these
more compactly as

Pr[yi = j] = F (αj − x′

iβ) − F (αj−1 − x′

iβ)

for all j. This defines a class of cumulative probability models in which a known transfor-
mation of the cumulative probabilities is taken to be a linear function of the x variables
and only the intercept in this function differs across the categories:

F−1 {Pr[yi ≤ j]} = αj − x′

iβ

A natural estimator for this type of model is the maximum likelihood estimator.
Define

yij =

{
1 if yi = j

0 else

Then, the log likelihood for the model is given by

log L =

N∑

i=1

J∑

j=1

yij log
[
F (αj − x′

iβ) − F (αj−1 − x′

iβ)
]

(3)
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This is maximized with respect to (β, α1, . . . , αJ−1), i.e., M + J − 1 parameters, where
M is the number of exogenous variables, remembering that β (and hence M) does not
include an intercept.

By far the most commonly used models to date for analyzing ordered responses
have been the ordered probit and ordered logit models (which take F to be stan-
dard normal and logistic, respectively). The ordered probit model, introduced by
Aitchison and Silvey (1957), assumes that εi ∼ N(0, σ2). Adopting the scale normal-
ization σ = 1 and imposing a zero intercept for identification, the probabilities are given
by

Pr[yi = j] = Φ(αj − x′

iβ) − Φ(αj−1 − x′

iβ)

where Φ is the cumulative distribution function of a standard normal and the log like-
lihood by (3) with F replaced by Φ.

3 Semi-nonparametric estimation

The “semi-nonparametric” series estimator of an unknown density, proposed by Gallant
and Nychka (1987), approximates the density using a Hermite form. This approximation
can be written as the product of a squared polynomial and a normal density. This gives
a polynomial expansion with Gaussian leading term. In fact, an expansion around any
density with a moment-generating function could be used, but the normal is a natural
choice in the current context because the resulting model then nests the ordered probit.
To ensure that the density approximation is proper (i.e., that it integrates to 1, in
addition to the non-negativity ensured by the square), the approximation is specified as

fK(ε) =
1

θ

(
K∑

k=0

γkεk

)2

φ(ε) (4)

where φ(ε) is the standard normal density function and where

θ =

∞∫

−∞

(
K∑

k=0

γkεk

)2

φ(ε) dε

However, this general specification of the density is invariant to multiplication of the
vector γ = (γ0, γ1, . . . , γK) by a scalar, and a normalization is required. The restriction
γ0 = 1 is a convenient choice.

The required distribution function is therefore specified as

FK(u) =

u∫
−∞

(∑K

k=0
γkεk

)2

φ(ε) dε

∞∫
−∞

(∑K

k=0
γkεk

)2

φ(ε) dε

(5)

This defines a family of “semi-nonparametric” (SNP) distributions for increasing values
of K.
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Providing the unknown density satisfies certain smoothness conditions; it can be
approximated arbitrarily closely by this Hermite series by increasing the choice of K,
the degree of the polynomial. The class of densities that can be approximated by this
form is very general. Any form of skewness, kurtosis, etc. is permitted, but “violently
oscillatory” density functions are ruled out. In addition to the smoothness restriction,
there is an upper bound on the tails of the densities. (See Gallant and Nychka (1987,
369) for a fuller discussion of the class of densities.)

Under these and other “mild” regularity conditions, and providing K increases with
the sample size, the model parameters are estimated consistently (Gallant and Nychka
1987) by maximizing the pseudo-likelihood function obtained by replacing the unknown
distribution function in (3) by that in (5).

A location normalization is also necessary for semi-parametric identification. That
used by Gabler, Laisney, and Lechner (1993) in the binary response case to give the
error term a zero mean is rather cumbersome. However, the restriction can be on either
the error distribution or the systematic part of the model. Melenberg and van Soest
(1996) use an alternative normalization, setting the constant term in their model equal
to its probit estimate. This is far more convenient. The equivalent used here in the
ordered response model context is to set the first threshold, α1, equal to its ordered
probit estimate.

Note that in the K = 1 case, the imposition of E(ε) = 0 can be easily shown
to imply γ1 = 0 so that the model in this case reduces to the ordered probit model.
The imposition of the equivalent restriction used here has the same implication. An
important additional feature of the model in the general case is that the score for γ2

is zero at the ordered probit estimates, which is equivalent to the result for the binary
probit case proved in Appendix B of Gabler, Laisney, and Lechner (1993). This implies
that the model for K = 2 is also equivalent to the ordered probit model (as well as
those for K = 0 and K = 1). The model with K = 3 is therefore the first model in the
series that is a generalization of the ordered probit model.

In practice, inference is conducted conditional on K, possibly for a range of alter-
native values of K, with the final specification of the model chosen by tests between
them. Thus, in reality the model is treated as parametric for a given K, with the choice
of K part of the model selection procedure. As Pagan and Ullah (1999) point out,
the orientation is nonparametric, but the modus operandi is parametric. This latter
characteristic is appealing because estimation can be conducted in a familiar maximum
likelihood environment.

The SNP-ML approach can therefore be viewed as a series of polynomial densities
and corresponding pseudo-likelihood functions and standard model selection procedures
used to reduce the dimension of the parameter vector and improve efficiency in finite
samples. This can, for example, be on the basis of Wald or likelihood-ratio tests on the
γ-vector or using information criteria, such as those of Akaike, Schwarz, or Hannan and
Quinn.



M. B. Stewart 31

The polynomial form of (4) means that the cumulative probabilities given by (5),
required for the pseudo-likelihood function, can be derived using the higher order trun-
cated moments of a standard normal distribution. First, the SNP density can be written
as

fK(ε) =
1

θ

2K∑

k=0

γ∗

kεkφ(ε)

where

γ∗

k =

bk∑

i=ak

γiγk−i

with ak = max(0, k − K) and bk = min(k,K). The scaling factor to give a proper
density is then given by

θ =

∞∫

−∞

2K∑

k=0

γ∗

kεkφ(ε) dε =

2K∑

k=0

γ∗

kµk (6)

where µk is the kth moment of a standard normal distribution. Given that γ∗

0
= γ2

0
= 1

and that µk = 0 for k odd, this can be written as

θ = 1 +

K∑

k=1

γ∗

2kµ2k

The cumulative probabilities in (5) required for the pseudo-likelihood function can be
written as

FK(u) =
1

θ

2K∑

k=0

γ∗

k

u∫

−∞

εkφ(ε) dε

This is a linear combination of the truncated moments of a standard normal distribution:

Ik(u) =

u∫

−∞

εkφ(ε) dε

Computation of the likelihood contributions for the maximum likelihood iterations can
then be simplified by using the recursion

Ik(u) = (k − 1)Ik−2(u) − uk−1φ(u) (7)

with I0(u) = Φ(u) and I1(u) = −φ(u). Each truncated moment can be written as
a polynomial combination of the standard normal cumulative distribution and density
functions. The formulation can be further simplified in the current context where each
cumulative probability is a linear combination of truncated moments scaled by the
corresponding combination of complete moments. It can be shown that the recursion
need only involve the normal density function part of the expressions for these truncated
moments. The cumulative probabilities in (5) can be written as
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FK(u) =
1

θ

2K∑

k=0

γ∗

kIk(u)

with θ given by the corresponding combination in (6). Using the recursion in (7), the
truncated moments in this linear combination can also be given by

Ik(u) = µkΦ(u) − Ak(u)φ(u)

where the Ak(u) are given by the recursion

Ak(u) = (k − 1)Ak−2(u) + uk−1

with A0(u) = 0 and A1(u) = 1. Using this, the cumulative probabilities in (5) required
for the pseudo-likelihood function can be written as

FK(u) =
1

θ

2K∑

k=0

γ∗

k [µkΦ(u) − Ak(u)φ(u)]

= Φ(u) −
1

θ

[
2K∑

k=0

γ∗

kAk(u)

]
φ(u) (8)

The term in square brackets is a polynomial in u of order (2K−1). Thus, the cumulative
probabilities in the SNP framework have the standard normal cumulative distribution
function as leading term and differ from this by the product of the standard normal
density and this polynomial in u. The SNP estimator is then given by the maximiza-
tion of the pseudo-likelihood function obtained by replacing the unknown distribution
function in (3) by this final expression in (8).

4 The sneop command

4.1 Syntax

sneop depvar
[
varlist

] [
if exp

] [
in range

] [
weight

] [
, order(#) robust

from(matname)
]

fweights, pweights, and iweights are allowed; see [U] 14.1.6 weight.

sneop shares the features of all estimation commands; see [U] 23 Estimation and post-estimation

commands.

4.2 Options

order(#) specifies the order of the Hermite polynomial to be used. The default is 3.
Orders 1 and 2 give models equivalent to the ordered probit.

robust specifies that the Huber/White/sandwich estimator of variance is to be used
in place of the traditional calculation; see [U] 23.11 Obtaining robust variance

estimates.
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from(matname) specifies a matrix containing starting values. (This option can be used
to investigate whether a global maximum has been found.) The default uses the
ordered probit estimates as starting values.

4.3 Example using Stata Reference Manual data

This section gives an example of the use of the command and the output produced
using the automobile data (http://www.stata-press.com/data/r8/fullauto.dta) used in
[R] oprobit to model the 1977 repair records of 66 foreign and domestic cars. The
variable rep77 takes values poor, fair, average, good, and excellent (coded 1 to 5). The
explanatory variables in the model are foreign (origin of manufacturer), length (a
proxy for size), and mpg. All three have significant positive effects in the fitted ordered
probit model. The output from the sneop program with K = 5 is as follows:

. use http://www.stata-press.com/data/r8/fullauto.dta
(Automobile Models)

. sneop rep77 foreign length mpg, order(5)

Order of SNP polynomial = 5
Number of categories = 5, rep77 assumed coded 1,...,5
1st threshold set to Ordered Probit estimate = 10.158904

initial: log likelihood = -78.020025
(output omitted )

Iteration 11: log likelihood = -77.099231

SNP Estimation of Extended Ordered Probit Model Number of obs = 66
Wald chi2(3) = 333.83

Log likelihood = -77.099231 Prob > chi2 = 0.0000

rep77 Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 1.311067 .3460665 3.79 0.000 .6327897 1.989345
length .0485854 .0030438 15.96 0.000 .0426197 .0545511

mpg .1550694 .0200241 7.74 0.000 .1158228 .1943159

Thresholds 1 10.1589 Fixed
2 11.14811 .3948174 28.24 0.000 10.37428 11.92193
3 12.47549 .8385617 14.88 0.000 10.83194 14.11904
4 14.04136 1.023632 13.72 0.000 12.03508 16.04764

SNP coefs: 1 -.3883669 .9299041 -0.42 0.676 -2.210946 1.434212
2 -.1782807 .1767086 -1.01 0.313 -.5246232 .1680619
3 -.1692988 .2396551 -0.71 0.480 -.6390143 .3004166
4 .0252651 .0580259 0.44 0.663 -.0884635 .1389938
5 .0189329 .0166693 1.14 0.256 -.0137383 .0516041

Likelihood ratio test of OP model against SNP extended model:
Chi2(3) statistic = 1.841588 (p-value = .6059271)

Estimated moments of error distribution:
Variance = 1.39027 Standard Deviation = 1.179097
3rd moment = 2.120129 Skewness = 1.293343
4th moment = 13.94238 Kurtosis = 7.21338
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The log likelihood is improved very little relative to the ordered probit model, and
the likelihood-ratio test does not reject the ordered probit model: a χ2(3)-statistic of
1.84, giving a p-value of 0.61. This example is provided to illustrate the output produced
by the program on the data and model used in [R] oprobit. It is, however, unlikely
that we would be able to observe a significant difference between the fitted density and
a standard normal on the basis of a sample as small as this.

5 Job satisfaction illustration

The use of the semi-nonparametric estimator is illustrated in more detail in this section
on a model of self-declared job satisfaction, as specified by Clark and Oswald (1996),
and using data from the 1991 wave of the British Household Panel Survey. Working
respondents provided job satisfaction scores ranging from 1 (“not satisfied at all”) to
7 (“completely satisfied”). Clark and Oswald (1996) examine the hypothesis that job
satisfaction depends on income relative to a “comparison” or reference level. Their
main findings are that job satisfaction levels are positively related to own earnings and
negatively related to “comparison” earnings. Other often-quoted features of their results
are the higher job satisfaction levels of women and the U-shaped age profile.

Log-likelihood values and likelihood-ratio statistics for different values of K from 3
to 8 are given in table 1. The standard ordered probit (OP) model is rejected in all cases.
The likelihood-ratio tests for K−1 against K reject the null, at conventional significance
levels, for K ≤ 5 but accept it for K above 5, suggesting selection of the K = 5 model.
This use of likelihood-ratio tests runs into the usual problem with sequential testing
procedures, which could be addressed with successive revision of the significance level.

Table 1: Likelihood-ratio tests for different values of K

log LR-test deg. of LR-test
K likelihood of OP freedom p-value of K − 1 p-value
OP −6174.25
3 −6169.87 8.76 1 0.003 8.76 0.003
4 −6167.95 12.60 2 0.002 3.83 0.050
5 −6165.48 17.54 3 0.001 4.95 0.026
6 −6165.31 17.87 4 0.001 0.33 0.568
7 −6164.56 19.38 5 0.002 1.51 0.219
8 −6164.56 19.39 6 0.004 0.01 0.939

Note: 1 degree of freedom for LR test of K−1 in each row.

This is a standard model selection problem. There are a number of alternative model
selection criteria available (Greene 2003). The best known is probably the Akaike infor-
mation criterion (AIC), equal to the log likelihood minus the number of freely estimated
parameters. However, in some cases, the AIC has been found to have a tendency to-
wards selecting models with too many parameters, even asymptotically. A commonly
used alternative is the Schwarz Bayesian criterion (SBC), based on a large sample ap-
proximation to the posterior odds ratio of the models. Under certain conditions, the SBC
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selects the right model with probability 1 asymptotically (Amemiya 1985), but in some
finite sample cases, it has been found to have a tendency to underfit. A third possibil-
ity is the Hannan–Quinn criterion (HQC), introduced in the context of autoregressive
time-series models but more generally applicable. It gives values between the AIC and
SBC and is sometimes viewed as a useful compromise. For the models in table 1, the
AIC and the HQC both choose K = 5, while the SBC, which penalizes extra parameters
more heavily, selects K = 3. For a sample of the size used here (3,895 observations),
the SBC penalizes an extra parameter 4.13 on the log-likelihood scale, while the HQC

and AIC penalize it 2.11 and 1, respectively.

Table 2: Job satisfaction models for different values of K

OP SNP(3) SNP(5)
coef (s.e.) coef (s.e.) coef (s.e.)

log(earnings) 0.134 (.054) 0.096 (.050) 0.087 (.056)
log(comp. earn.) −0.283 (.064) −0.254 (.060) −0.323 (.068)
Male −0.156 (.044) −0.147 (.044) −0.130 (.046)
Age/10 −0.210 (.100) −0.154 (.092) −0.141 (.104)
Age2/100 0.038 (.013) 0.031 (.011) 0.030 (.013)
Thresholds:
1 −4.125 (.377) −4.125 −4.125
2 −3.917 (.376) −3.879 (.043) −3.847 (.047)
3 −3.562 (.375) −3.476 (.093) −3.390 (.075)
4 −2.995 (.375) −2.877 (.161) −2.603 (.125)
5 −2.416 (.374) −2.319 (.211) −1.889 (.164)
6 −1.664 (.374) −1.657 (.254) −1.151 (.177)
Polynomial:
1 −0.050 (.193) 0.415 (.062)
2 −0.097 (.088) 0.366 (.252)
3 −0.051 (.021) −0.073 (.171)
4 −0.087 (.034)
5 −0.002 (.016)
Log likelihood −6174.25 −6169.87 −6165.48
Standard deviation 1 0.979 1.369
Skewness 0 0.034 0.064
Kurtosis 3 4.600 4.665
Test sum = 0 [χ2(1)] 7.40 9.26 15.83
p-value [0.007] [0.002] [0.000]

Notes: (1) Sample size = 3895. (2) Models also contain 34 other variables.

The estimated parameters (coefficients on main variables only) for the ordered probit
model and for the extended model with K = 3 and K = 5 are given in table 2.2 A
number of other statistics are also given.

2The other variables included in the model are as in table 3 of Clark and Oswald (1996). The data
used here are from the current release of wave 1, while they used the original release. The ordered
probit results are very close to theirs but not identical.
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Estimates of β cannot be compared directly across models without adjustment, be-
cause the fitted densities differ. The β coefficients are only identified after the imposition
of scale and origin restrictions (as is the case for the ordered probit model). Thus, even if
considering effects on the latent dependent variable y∗

i , it is not appropriate to compare
estimates of the β coefficients across the models directly.

However, there are a number of ways in which comparisons can be made, depending
on the focus of the study. We might hypothesize that there is an underlying but unob-
servable continuous measure of job satisfaction (or utility or welfare, depending on one’s
perspective) that is an unknown but monotonic function of the variable y∗

i in (1). In
this case, we would be interested in influences on this underlying variable and relations
between them.

Consider two factors that influence job satisfaction (i.e., two elements of the vector
x in (1)). We could plot “indifference curves” between them: combinations of the two
factors that give the same level of job satisfaction. The specification in (1) means that
they will be straight lines. The slopes of these (parallel) indifference curves between the
two factors will be minus the ratio of their β-coefficients. Thus, ratios of coefficients are
of interest and are compared below.

Ratios of β coefficients are also informative about the impacts of x variables on the
probabilities of observed outcomes (or cumulations thereof). The partial derivatives
of the probabilities of y with respect to x, the “marginal effects”, are proportional to
β with the factor of proportionality being an evaluation of the density function (or a
difference in densities). For example, from (2), the partial derivative of Pr[yi = J ] with
respect to x is β.f(αJ−1 − x′

iβ). The “marginal effects” are therefore scaled versions
of the β coefficients and the scaling factor is the same for each element of β. Hence, a
ratio of “marginal effects” is equal to the corresponding ratio of β coefficients. Thus,
ratios of coefficients are of interest from this perspective also.

Two such ratios are illustrated in table 3. The first is minus the ratio of the two
earnings coefficients. In the ordered probit model, the ratio indicates that a 10% increase
in comparison earnings would need to be compensated by a 21% increase in own earnings
to give the same level of job satisfaction. This rises to 26% in the SNP model with K = 3
and 37% in the SNP model with K = 5. The standard errors on these ratios, calculated
by the “delta method” (using the Stata nlcom command), are also given in table 3.
They indicate that these ratios are not very precisely estimated and that the differences
in them between models, while appreciable, are small relative to the standard errors.
The test of the hypothesis that the coefficients on the two earnings variables sum to
zero, which would be the case if only relative earnings mattered, is rejected increasingly
strongly (see table 2). The χ2(1) Wald statistic rises from 7.4 in the ordered probit
model to 9.3 when K = 3 is used and 15.8 when K = 5 is used.
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Table 3: Some derived statistics

OP SNP(3) SNP(5)
coef (s.e.) coef (s.e.) coef (s.e.)

log(earnings) 0.134 (.054) 0.096 (.050) 0.087 (.056)
log(comp. earn.) −0.283 (.064) −0.254 (.060) −0.323 (.068)
Trade off 2.12 (0.70) 2.66 (1.15) 3.70 (2.04)
Age/10 −0.210 (.100) −0.154 (.092) −0.141 (.104)
Age2/100 0.038 (.013) 0.031 (.011) 0.030 (.013)
Age at minimum 27.6 (4.4) 24.8 (6.1) 23.1 (7.5)

Another coefficient ratio of interest is that involving the two coefficients of the
quadratic in age. The minimum of the job satisfaction age profile is minus half the
ratio of coefficients. It is estimated to be at about age 28 on the basis of the ordered
probit model, but rather earlier with both the SNP models: age 25 if K = 3 is used and
age 23 if K = 5 is used. These seem like important differences. However, the standard
errors given in table 3 indicate that these ratios also are not very precisely determined.
As a result, the differences across the models in the estimated age at the minimum of
the age-satisfaction profile are small relative to the standard errors.

0
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n
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�4 �2 0 2 4

Estimated density Normal density

Figure 1: Estimated Density for K = 5

Both SNP models exhibit positive skewness and indicate greater kurtosis than in the
standard normal (table 2). Figure 1 gives a plot of the estimated density for the K = 5
model. Both the positive skew and fatter tails than normal are evident. The central
mode of the estimated density is at 0.30. Its height there is 0.423, compared with 0.399
for the standard normal density at its mode. The estimated density also has secondary
modes in both tails. The larger of the two is at ε = 2.82, with density f5(ε) = 0.061.
There is also a smaller one at ε = −4.07, f5(ε) = 0.014.
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6 Remarks on using sneop

1. The log likelihood of this model is not globally concave. It is therefore good
practice to check for convergence to the global maximum rather than a local one
by running the algorithm from different starting points using the from option. A
natural alternative to the OP starting values is the SNP model for K − 1.

2. The program can be used to obtain SNP estimates of a binary response model.
The binary response needs to be recoded to take the values 1 and 2.

3. It should be emphasized that this is a large sample technique. Small samples are
unlikely to be able to detect divergencies from normality. Consequently, results
on small samples can be expected to differ little from the oprobit estimates.

4. The desirable properties of the estimator, as well as requiring a large sample, also
depend on K increasing with N . Experience with the estimator suggests that
selecting K on the basis of either the criteria described above or likelihood-ratio
tests does in fact do this.

5. Using predict with the xb option after sneop creates a new variable containing

x′

iβ̂.

6. The program is much slower than oprobit, both because of the greater complexity
of the likelihood function to be maximized and because it is written as an ado-file.
The time required depends on the order of the polynomial used (K), the number
of observations (N), and the number of categories (J) (as well as the speed of the
processor), but is little affected by the number of explanatory variables. Exper-
iments with the program indicate a tight relationship for the time per iteration
but only a rather loose one for the number of iterations required. As a guide, the
combination N = 1000, K = 3, J = 7 requires about 10 seconds per iteration on a
1.2 GHz Pentium III processor. This increases or decreases roughly proportional to
N and roughly proportional to the squares of K and J , although in all three cases
there are slight economies of scale. The number of iterations required is far more
variable but seems roughly independent of N , J , and the number of x variables.
As a rough rule of thumb, convergence tends to require approximately 5(K − 1)
iterations.
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