
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2003)
3, Number 4, pp. 420–439

Speaking Stata: Problems with tables, Part II

Nicholas J. Cox
University of Durham, UK

n.j.cox@durham.ac.uk

Abstract. Three user-written commands are reviewed as illustrations of different
approaches to tabulation problems, each one step beyond what is possible to do
directly through official Stata. tabcount is a wrapper for tabdisp written to
produce tables that show how often specified values occur or specified conditions
are satisfied so that, in particular, tables may include explicit zeros whenever
desired. makematrix is designed for situations in which a table of results may be
compiled by populating a matrix. matrix list or list may then be used to display
the table. groups shows frequencies of combinations of values using list. Users
should find these commands to be helpful additions to the toolkit. Programmers
may be interested in examples of the wrapper approach, calculating the values to
be tabulated before passing them to a workhorse display command. This is the
second of two papers on this topic.

Keywords: pr0011, tables, matrices, tabcount, makematrix, groups, tabdisp, list

1 Introduction

Tables are pervasive and, indeed, fundamental. Tables of data, tables of frequencies
or summaries of data, and tables of model results are basic to both elementary and
advanced statistical analysis. In the previous column (Cox 2003), we looked at how
far official Stata commands provide direct solutions to tabulation problems and at how
some preparation of variables to be tabulated allows fairly painless indirect solutions to
such problems. To recap, the main general-purpose tabulation commands are tabulate
([R] tabulate and [R] tabsum), table ([R] table), and tabstat ([R] tabstat), while
material may be prepared for tabulation as a set of variables, after which the table itself
can be presented with tabdisp ([P] tabdisp) or list ([R] list).

In this paper, we turn to examples of user-written commands that can help resolve
problems with tables. The three examples explained show ways in which problems that
would otherwise be awkward to solve may be tackled with single commands. Users
may find them helpful additions to the toolkit, while programmers may wish to study
the code to see examples of wrapper commands in which we calculate the values to be
tabulated before passing them to a workhorse display command. Software for the three
commands, tabcount, makematrix, and groups, may be installed in a net-aware Stata
by using ssc ([R] ssc).

Naturally, there are many approaches to problems of tabulation and to problems
with a tabulation element. For another self-contained approach to managing what are
in effect tables of results treated as datasets, see the programs discussed by Newson
(2003).

c© 2003 StataCorp LP pr0011



N. J. Cox 421

2 Tabulating frequencies of specified values or conditions

Let us start with a simple truism, expressed whimsically: Stata is reluctant to display
values not present in the dataset. Indeed, metaphysics is not at all Stata’s strong suit.
Suppose that a variable could take on integer values 1 through 5, but in fact 5 was not
observed in the dataset at hand. Then, a tabulation using tabulate or table of that
variable will show the frequencies of values 1, 2, 3, and 4. Simply, Stata has no way
of knowing that the value might have been 5 (or indeed 6 or −1 or any other value
consistent with the storage type assigned). Nevertheless, users often ask for tables that
show explicitly that a value has zero frequency, either by a blank entry or by a literal
zero. Showing zeros explicitly may be thought of as part of showing the structure of
the data.

This request may arise in a variety of situations, univariate, bivariate, and multi-
variate. Often, the desire is for a set of tables to be presented in a standardized way.
Here is a simple example. In the auto dataset, look at a tabulation of rep78 by groups
of foreign:

. bysort foreign: tab rep78

-> foreign = Domestic

Repair
Record 1978 Freq. Percent Cum.

1 2 4.17 4.17
2 8 16.67 20.83
3 27 56.25 77.08
4 9 18.75 95.83
5 2 4.17 100.00

Total 48 100.00

-> foreign = Foreign

Repair
Record 1978 Freq. Percent Cum.

3 3 14.29 14.29
4 9 42.86 57.14
5 9 42.86 100.00

Total 21 100.00

As values of rep78 of 1 and 2 do not occur for foreign cars, no such rows are given.
If you wanted rows with zero frequencies explicit, how could it be done? tabulate (and
indeed also table) will put zeros in cells so long as there are nonzeros in the same row,
column, etc. (There is a cosmetic difference in that tabulate shows a literal 0, while
table shows a blank.) As the example shows, however, rows and columns that would
be all zeros are omitted completely.

tabcount is designed for this need. You can spell out the values 1/5 as what you
want shown and choose between blanks (the default) and literal zeros:



422 Speaking Stata

. bysort foreign: tabcount rep78, v(1/5)

-> foreign = Domestic

Repair
Record
1978 Freq.

1 2
2 8
3 27
4 9
5 2

-> foreign = Foreign

Repair
Record
1978 Freq.

1
2
3 3
4 9
5 9

As you might guess, the option name v is meant to suggest values. As another
example, let us imagine a dataset in which the number of children per mother is a
variable, so that even in a very large dataset the tail of the distribution may be rather
straggly. With tabulate or table, our output might end something like this:

10 6 8.11 89.19
11 4 5.41 94.59
13 2 2.70 97.30
14 1 1.35 98.65
16 1 1.35 100.00

If we want the complete set of rows, tabcount with the option v(1/16) will suffice:

10 6
11 4
12
13 2
14 1
15
16 1

You can also specify sets of conditions (c()): a condition is an inequality or a value
(and if a value, it is interpreted as an equality):



N. J. Cox 423

. bysort foreign: tabcount rep78, c(<=2 3 4 5) zero

-> foreign = Domestic

Repair
Record
1978 Freq.

<=2 10
3 27
4 9
5 2

-> foreign = Foreign

Repair
Record
1978 Freq.

<=2 0
3 3
4 9
5 9

That is, c(<=2 3 4 5) defines categories ≤ 2, (equal to) 3, (equal to) 4, (equal to)
5. Incidentally, there is no rule that conditions must be mutually exclusive—or indeed
that they must be collectively exhaustive. This makes it easy, for example, to tabulate
cumulative frequencies, whether defined by <,≤, >, or ≥.

However, there is no syntax for specifying intervals with two limits, say, of the form
a ≤ x < b. You must create the coarsened variable(s) yourself beforehand.

With two or more variables, you must specify either a v option or a c option for
each variable. Those options are tagged with 1, 2, etc., according to which variable is
being referred to:

. tabcount foreign rep78, v1(0 1) c2(<=2 3 4 5)

Repair Record 1978
Car type <=2 3 4 5

Domestic 10 27 9 2
Foreign 3 9 9

That is, v1 or c1 refers to the first variable named, v2 or c2 refers to the second
variable named, and so forth. Seven variables is the limit, a limit that is imposed by
tabdisp, which does the tabulation itself.

tabcount on the other hand is limited: it will not show you percents, cumulative
percents, cumulative frequencies, or anything else apart from the frequencies. (As an-
alytic weights are allowed, it is a little more general than just a counting program.)



424 Speaking Stata

These limitations are less than may appear at first sight because you may replace the
dataset in memory with a reduced dataset:

. tabcount foreign rep78, v1(0 1) v2(1/5) replace

Repair Record 1978
Car type 1 2 3 4 5

Domestic 2 8 27 9 2
Foreign 3 9 9

. list

_freq foreign rep78

1. 2 Domestic 1
2. 0 Foreign 1
3. 8 Domestic 2
4. 0 Foreign 2
5. 27 Domestic 3

6. 3 Foreign 3
7. 9 Domestic 4
8. 9 Foreign 4
9. 2 Domestic 5
10. 9 Foreign 5

As you may know, the existing official command contract ([R] contract) could do
that for you in this case, but tabcount is more general than that. Unlike contract, it
supports analytic weights; counting of any specified values, which might not exist in the
data; and also counting of how often conditions as specified by inequalities or equalities
are satisfied.

Given the replace option, the new reduced dataset can then be the basis for all
sorts of customized tables. Let us suppose that we want cumulative frequencies and
cumulative percents in our table:

. bysort foreign (rep78): gen cufreq = sum(_freq)

. by foreign: gen cupc = 100 * cufreq / cufreq[_N]

. tabdisp foreign rep78, c(cufreq cupc)

Repair Record 1978
Car type 1 2 3 4 5

Domestic 2 10 37 46 48
4.166667 20.83333 77.08334 95.83334 100

Foreign 0 0 3 12 21
0 0 14.28571 57.14286 100

You can control several details of presentation:



N. J. Cox 425

. tabdisp foreign rep78, c(cufreq cupc) format(%2.1f)

Repair Record 1978
Car type 1 2 3 4 5

Domestic 2.0 10.0 37.0 46.0 48.0
4.2 20.8 77.1 95.8 100.0

Foreign 0.0 0.0 3.0 12.0 21.0
0.0 0.0 14.3 57.1 100.0

As before, you could do something like this already with table, but once again,
tabcount is in various ways more general.

There is more explanation of some other features, including saving one- and two-way
tables of frequencies to matrices, and more examples, in the help file.

As already mentioned, the tabcount program is based on the official command
tabdisp, to which there are two sides. First, tabcount calculates the frequencies before
handing them to tabdisp for display. Second, tabcount, replace provides a starting
point for subsequent customized tabulations, again typically with tabdisp. As with
many other programs, tabcount raises a question of program design, one that is faced
primarily by the programmer but has implications for any users: At what point is it
better to stop complicating the syntax of the program by adding features better left
to other manipulations? The decision in this case was to omit options for calculating
percents, cumulative percents, cumulative frequencies, etc., on the grounds that these
are not difficult to calculate separately. We will see another example in which the reverse
decision was taken. This sounds like inconsistency—indeed it is inconsistency—but the
deeper principle being followed is to try to write a program to do one thing well and
to make it as easy as possible to hand over to other programs when other processing is
desired.

3 Making matrices

Tables may be thought of as composed of one or more matrices, which is very clear when
we have merely a set of rows or a set of columns. For example, the correlations between
two or more variables are usually presented as a table of a correlation matrix using
correlate ([R] correlate). However, many projects require instead the compilation of
a matrix of results from several different calculations. makematrix is here presented as
a tool for such problems.

As matrices are standard data structures within Stata, you can do many things with
them, such as joining them to other matrices, adding them, subtracting them, and so
forth. Nevertheless, in working with matrices in Stata, one occasionally has to struggle
with the consequences of an “official attitude”, namely, that matrices are primarily what
you use on the fly to fit models. Despite this, matrices are the nearest thing yet to table
objects in Stata, so it is worth getting as far as you can with them.



426 Speaking Stata

Having said that, there are small limitations to the implementation of matrices in
Stata. As one specific but sometimes irritating example, take the question of display
format. Stata assumes, in effect, that the elements of a matrix are all quantities of the
same kind, so that being able to specify a common format applying to all elements is as
much flexibility as one needs. A correlation matrix is a case in point. correlate gives
4 decimal places in displaying correlations; if you wish to show fewer, as is common,
there are various ways to put the correlation matrix into a named matrix, after which
the format may be controlled using matrix list, format(). But a table of, say,
frequencies, means and standard deviations, and skewness might call for no decimal
places for the frequencies; some suitable precision for means and standard deviations;
and, say, two or three decimal places for skewness. This cannot be achieved through
matrix list. One remedy is to pass the matrix of results to list. list will be familiar
as a staple interactive command, but in Stata 8 it is enhanced as a programmer’s
command so that it now offers improved ways of presenting data and results.

We will see how that works in a moment, but let us focus on the key point:
makematrix runs a command repeatedly for a specified variable list (optionally, two
variable lists) to produce a matrix of results. As usual, a matrix could be a vector.
(As you may well know, Stata does not have a separate vector structure; row vectors
and column vectors are just special cases of matrices, exactly as your linear algebra
teachers insisted.) The matrix will be listed using matrix list, unless the list option
is specified, in which case it will be listed using the list command. In other words,
makematrix is a wrapper for matrix list and list, just as tabcount is a wrapper for
tabdisp.

makematrix has various modes of operation, but first let us review some distinctions
made purely for present purposes. Let us call a Stata (statistical) command univariate if
it requires only one variable; it may repeat itself if supplied with two or more variables.
summarize is a univariate command; it does work for two or more variables, by repeating
its operation for those variables. Similarly, let us call such a command bivariate if it
requires only two variables and may repeat itself otherwise. correlate is a bivariate
command; it does work for three or more variables by repeating its operation for pairs
of those variables. spearman ([R] spearman) is also a bivariate command, although it
does not in fact accept more than two variables. Finally, let us call such a command
multivariate if it produces just one set of results even if supplied with three or more
variables. regress ([R] regress) is a multivariate command.

Consider again the typical output of correlate given a varlist of two or more vari-
ables, namely, a matrix of correlations for every pair of variables in varlist . How could
we produce an equivalent directly for spearman? We need to find out that spearman

leaves a correlation behind in r(rho), ideally by reading the manual entry or alter-
natively by reverse engineering. Reverse engineering means—for an r-class command,
such as spearman—using return list to see what is left behind, or—for an e-class
command, such as regress—using ereturn list similarly.



N. J. Cox 427

. makematrix, from(r(rho)): spearman head trunk length displacement weight

headroom trunk length displacement
headroom 1

trunk .67678924 1
length .53235996 .71907323 1

displacement .47845891 .57664675 .85248218 1
weight .52808385 .65644851 .94895697 .90538822

weight
weight 1

The result is displayed using matrix list, and we will normally want to tidy up the
presentation, say, by

. makematrix, from(r(rho)) format(%4.3f): spearman head trunk length
> displacement weight

headroom trunk length displacement
headroom 1.000

trunk 0.677 1.000
length 0.532 0.719 1.000

displacement 0.478 0.577 0.852 1.000
weight 0.528 0.656 0.949 0.905

weight
weight 1.000

However, let us leave these details of presentation on one side for a moment. In
this example, given a bivariate command, a varlist, and a single result from which
to compile the matrix, makematrix takes each pair of variables from varlist , runs a
bivariate command for that pair, and puts a single result in the cell defined by each pair
of variables. So, both rows and columns are specified by varlist .

Alternatively, we might want different sets of variables on the rows and the columns,
perhaps specifying a submatrix of the full matrix. The option cols() can be used to
specify variables to appear as columns. The variables in varlist will then appear as
rows. Say that we did a principal component analysis of five variables and followed
with calculation of scores:

. pca head trunk length displacement weight
(obs=74)

(principal components; 5 components retained)
Component Eigenvalue Difference Proportion Cumulative

1 3.76201 3.02600 0.7524 0.7524
2 0.73601 0.42791 0.1472 0.8996
3 0.30809 0.15546 0.0616 0.9612
4 0.15263 0.11136 0.0305 0.9917
5 0.04127 . 0.0083 1.0000

Eigenvectors
Variable 1 2 3 4 5

headroom 0.35873 0.76396 0.52238 -0.12093 0.01297
trunk 0.43335 0.36648 -0.76764 0.29135 0.06120

length 0.48631 -0.23721 -0.10501 -0.57452 -0.60509
displacement 0.46105 -0.33903 0.34841 0.70653 -0.22786

weight 0.48420 -0.33293 0.07372 -0.26689 0.76029



428 Speaking Stata

. score score1-score5
(based on unrotated principal components)

Scoring Coefficients
Variable 1 2 3 4 5

headroom 0.35873 0.76396 0.52238 -0.12093 0.01297
trunk 0.43335 0.36648 -0.76764 0.29135 0.06120

length 0.48631 -0.23721 -0.10501 -0.57452 -0.60509
displacement 0.46105 -0.33903 0.34841 0.70653 -0.22786

weight 0.48420 -0.33293 0.07372 -0.26689 0.76029

. makematrix, from(r(rho)) cols(score?): correlate head trunk length
> displacement weight

score1 score2 score3 score4 score5
headroom .69579216 .65541006 .28995191 -.04724258 .00263525

trunk .84053038 .3144061 -.42608327 .11382425 .01243294
length .94323831 -.20350815 -.05828833 -.22445161 -.12292224

displacement .89424409 -.29085394 .19339097 .27602318 -.04628849
weight .93915804 -.28562389 .0409204 -.10426623 .15445146

Here, the full correlation matrix of variables and scores, as would be produced by
correlate, is a 10 × 10 matrix, and the submatrix produced by makematrix is only a
5 × 5 matrix. The default number of decimal places is clearly ridiculous, and we would
normally want to work on the column headers. The matrix result can be left in memory
as a named matrix and then further manipulated:

. makematrix R, from(r(rho)) cols(score?): correlate head trunk length
> displacement weight

R[5,5]
score1 score2 score3 score4 score5

headroom .69579216 .65541006 .28995191 -.04724258 .00263525
trunk .84053038 .3144061 -.42608327 .11382425 .01243294

length .94323831 -.20350815 -.05828833 -.22445161 -.12292224
displacement .89424409 -.29085394 .19339097 .27602318 -.04628849

weight .93915804 -.28562389 .0409204 -.10426623 .15445146

. matrix colnames R = "score 1" "score 2" "score 3" "score 4" "score 5"

. matrix li R, format(%4.3f)

R[5,5]
score 1 score 2 score 3 score 4 score 5

headroom 0.696 0.655 0.290 -0.047 0.003
trunk 0.841 0.314 -0.426 0.114 0.012

length 0.943 -0.204 -0.058 -0.224 -0.123
displacement 0.894 -0.291 0.193 0.276 -0.046

weight 0.939 -0.286 0.041 -0.104 0.154

(Continued on next page)



N. J. Cox 429

Another application of the cols() option is perhaps more commonly desired:

. makematrix, from(r(rho) r(p)) label cols(price): spearman mpg-foreign

rho p
Mileage (mpg) -.55546596 7.272e-07

Repair Record 1978 .10275187 .40082135
Headroom (in) .1174198 .33661622

Trunk space (cu ft) .42395912 .00028325
Weight (lbs) .50135653 .00001143
Length (in) .50145304 .00001138

Turn Circle (ft) .32117803 .00712682
Displacement (cu in) .41612747 .00037625

Gear Ratio -.3053873 .01072089
Car type .08065421 .51002468

. makematrix, from(r(rho) r(p)) list label format(%4.3f %6.5f) sep(0)
> cols(price): spearman mpg-foreign

rho p

Mileage (mpg) -0.555 0.00000
Repair Record 1978 0.103 0.40082
Headroom (in.) 0.117 0.33662
Trunk space (cu. ft.) 0.424 0.00028
Weight (lbs.) 0.501 0.00001
Length (in.) 0.501 0.00001
Turn Circle (ft.) 0.321 0.00713
Displacement (cu. in.) 0.416 0.00038
Gear Ratio -0.305 0.01072
Car type 0.081 0.51002

As this example shows, we can also ask for the results to be shown using the list

command, which opens a wider range of presentation possibilities. The label option
asks for variable labels to be shown, and the numeric variables can be assigned display
formats on the fly. Those chosen were selected to emphasize this flexibility rather than
to assert that p-values make sense to 5 decimal places.

As this example also shows, we can show two or more scalar results from each
command run. This is possible in various ways. A univariate command can be repeated,
each time yielding two or more scalars:

. makematrix, from(r(mean) r(sd) r(skewness)): su head trunk length displacement
> weight, detail

mean sd skewness
headroom 2.9932432 .84599477 .14086508

trunk 13.756757 4.2774042 .02920342
length 187.93243 22.26634 -.04097455

displacement 197.2973 91.837219 .59165653
weight 3019.4595 777.19357 .14811637



430 Speaking Stata

. makematrix, from(r(mean) r(sd) r(skewness)) list format(%2.1f %2.1f %4.3f)
> sep(0): su head trunk length displacement weight, detail

mean sd skewness

headroom 3.0 0.8 0.141
trunk 13.8 4.3 0.029
length 187.9 22.3 -0.041
displacement 197.3 91.8 0.592
weight 3019.5 777.2 0.148

makematrix reasons in this way: The user wants three scalars, which I will show in
three columns. So, I must run the command specified in turn on each variable supplied,
which I will show on the rows. For each variable in varlist, makematrix runs a univariate
command and puts two or more scalars in the cells of each row.

A bivariate command can be repeated, each time yielding two or more scalars:

. makematrix, from(r(rho) r(p)) lhs(rep78-foreign): spearman mpg

rho p
rep78 .30982668 .00957855

headroom -.48660171 .00001103
trunk -.64977398 3.759e-10

weight -.85755073 1.778e-22
length -.8314402 4.710e-20

turn -.75767499 5.548e-15
displacement -.77126724 9.009e-16

gear_ratio .60982891 8.061e-09
foreign .36289624 .00148459

makematrix reasons in this way: The user wants two scalars, which I will show in
two columns. So, I must run the command specified in turn on the variable supplied.
The option lhs() is also specified, so that must be used to supply the other variable.
Whenever lhs() is specified, it specifies the rows of the matrix; that is, in this case,
the rows show the results from spearman rep78 mpg to spearman foreign mpg. Notice
how the variables specified in lhs() appear on the left-hand side of the varlist that
spearman runs. (lhs() also names the left-hand side of the matrix, but that is a happy
accident.) This is also allowed:

. makematrix, from(r(rho) r(p)) rhs(rep78-foreign): spearman mpg

rho p
rep78 .30982668 .00957855

headroom -.48660171 .00001103
trunk -.64977398 3.759e-10

weight -.85755073 1.778e-22
length -.8314402 4.710e-20

turn -.75767499 5.548e-15
displacement -.77126724 9.009e-16

gear_ratio .60982891 8.061e-09
foreign .36289624 .00148459

In this case, the rows show the results from spearman mpg rep78 to spearman mpg

foreign and are exactly the same as in the previous example. Again, whenever rhs()



N. J. Cox 431

is specified, it specifies the rows of the matrix. Notice how the variables specified in
rhs() appear on the right-hand side of the varlist that spearman runs. (By a small
stretch, you can also think of it as naming the right-hand side of the matrix, given that
we could repeat the row names on that side.) In other cases, which option is used may
well matter. Here is an example.

. makematrix, from(e(r2) e(rmse) _b[_cons] _b[mpg]) lhs(rep78-foreign) list
> dp(3 2 2 3) abb(9) sep(0) divider: regress mpg

r2 rmse _b[_cons] _b[mpg]

rep78 0.162 0.91 1.96 0.068
headroom 0.171 0.78 4.28 -0.061
trunk 0.338 3.50 22.91 -0.430
weight 0.652 461.96 5328.76 -108.432
length 0.633 13.58 253.16 -3.063
turn 0.517 3.08 51.30 -0.547
displacement 0.498 65.52 435.85 -11.201
gear_ratio 0.380 0.36 1.98 0.049
foreign 0.155 0.43 -0.37 0.031

. makematrix, from(e(r2) e(rmse) _b[_cons] _b) rhs(rep78-foreign) list
> dp(3 2 2 3) abb(9) sep(0) divider: regress mpg

r2 rmse _b[_cons] _b

rep78 0.162 5.41 13.17 2.384
headroom 0.171 5.30 29.77 -2.830
trunk 0.338 4.74 32.12 -0.787
weight 0.652 3.44 39.44 -0.006
length 0.633 3.53 60.16 -0.207
turn 0.517 4.05 58.80 -0.946
displacement 0.498 4.13 30.07 -0.044
gear_ratio 0.380 4.59 -2.26 7.813
foreign 0.155 5.36 19.83 4.946

The first series of regressions predicts rep78 to foreign in turn from mpg. The
second series predicts mpg from rep78 to foreign in turn. The R2 results will be the
same, but not the root mean square errors or the intercepts or slopes, as these are two
different sets of models. Note that b by itself has the interpretation of b[row variable].
dp() is a lazy alternative to format() used to specify the number of decimal places.

In fact, lhs() and rhs() can be used to produce a series of multivariate results.
Suppose that we have calculated weightsq, i.e., weight^2.

(Continued on next page)



432 Speaking Stata

. gen weightsq = weight^2

. makematrix, from(e(r2) e(rmse)) lhs(mpg-trunk length-foreign) list dp(3 2)
> sep(0) divider: regress weight weightsq

r2 rmse

mpg 0.672 3.36
rep78 0.222 0.89
headroom 0.236 0.75
trunk 0.457 3.20
length 0.900 7.12
turn 0.736 2.29
displacement 0.826 38.90
gear_ratio 0.577 0.30
foreign 0.379 0.37

This series of models predicts mpg to foreign in turn from weight and weightsq.
When either lhs() or rhs() is specified, they define the varying rows, while the varlist

supplied is fixed for each run of the command.

There is one more nuance to be explained. Say that you want a table of sums for a
set of variables. You might try

. makematrix, from(r(sum)): su head trunk length displacement weight, meanonly

headroom trunk length displacement
headroom 221.5 221.5 221.5 221.5

trunk 1018 1018 1018 1018
length 13907 13907 13907 13907

displacement 14600 14600 14600 14600
weight 223440 223440 223440 223440

weight
headroom 221.5

trunk 1018
length 13907

displacement 14600
weight 223440

However, makematrix cannot distinguish between this and a similar problem with a
bivariate command; it will thus attempt to run summarize on all distinct pairs of vari-
ables. This will succeed, except that what is left behind in r(sum) will be the sum of
the second of each pair of variables. What you will prefer is a vector, and that is the
option to specify:

. makematrix, from(r(sum)) vector: su head trunk length displacement weight,
> meanonly

sum
headroom 221.5

trunk 1018
length 13907

displacement 14600
weight 223440

There is more, for which please see the help as usual.



N. J. Cox 433

4 Group frequencies

One point emphasized several times so far in the previous column and in this one is the
scope for using list for tabulations. We have just seen how specifying a list option in
makematrix opens up the presentation possibilities of the list command. In the same
way, the final example in this paper is a command based on list as a display command.
Both also can capitalize on the many new features introduced in list in Stata 8.

Everyone knows that, even with two-way tables, there can be too many columns
for comfort. The problem of space is usually compounded with three-way and higher
tables. Even if there is enough space, the sparsity (lots of zeroes) of some tables makes
other kinds of tabulation attractive in at least some circumstances.

groups is perhaps best explained—in terms of what it does, rather than precisely
how it is implemented—as a hybrid or cross-breed of tabulate and list. The results
of groups foreign look very much like the results of tabulate foreign, and indeed
groups is designed to be that way:

. groups foreign

foreign Freq. Percent Cum.

Domestic 52 70.27 70.27
Foreign 22 29.73 100.00

A two-way table, on the other hand, is, as it were, stretched downwards so that it is
a listing, a “long” structure rather than a “wide” one in the jargon especially associated
with reshape ([R] reshape). The same principle is also applied to three-way and higher
tables.

. groups foreign rep78

foreign rep78 Freq. Percent

Domestic 1 2 2.90
Domestic 2 8 11.59
Domestic 3 27 39.13
Domestic 4 9 13.04
Domestic 5 2 2.90

Foreign 3 3 4.35
Foreign 4 9 13.04
Foreign 5 9 13.04

(Continued on next page)



434 Speaking Stata

A fillin option is available for Sartrean existentialists who like to contemplate
nothingness:

. groups foreign rep78, fillin

foreign rep78 Freq. Percent

Domestic 1 2 2.90
Domestic 2 8 11.59
Domestic 3 27 39.13
Domestic 4 9 13.04
Domestic 5 2 2.90

Foreign 1 0 0.00
Foreign 2 0 0.00
Foreign 3 3 4.35
Foreign 4 9 13.04
Foreign 5 9 13.04

groups can be issued by varlist:. That is the key to how percents are calculated. At
the same time, let us look at the option order(h), which puts the highest frequencies
first, and the option N, which is an option of list:

. bysort foreign: groups rep78, ord(h) N

-> foreign = Domestic

rep78 Freq. Percent Cum.

3 27 56.25 56.25
4 9 18.75 75.00
2 8 16.67 91.67
1 2 4.17 95.83
5 2 4.17 100.00

N 5 5 5

-> foreign = Foreign

rep78 Freq. Percent Cum.

4 9 42.86 42.86
5 9 42.86 85.71
3 3 14.29 100.00

N 3 3 3

The frequencies shown by default are raw frequencies and percents, with one or
more variables in varlist , and cumulative percents with just one variable in varlist. The
underlying surmise is that cumulatives are rather more arbitrary with two or more
variables, being necessarily dependent on the order of variables. That is not the law,
however, and a show() option allows you to have none or one or two or three of those—
and, indeed, cumulative frequencies are also available on request:



N. J. Cox 435

. groups mpg, show(f F)

mpg Freq. Cum.

12 2 2
14 6 8
15 2 10
16 4 14
17 4 18

18 9 27
19 8 35
20 3 38
21 5 43
22 5 48

23 3 51
24 4 55
25 5 60
26 3 63
28 3 66

29 1 67
30 2 69
31 1 70
34 1 71
35 2 73

41 1 74

Here, f stands for frequency, and F stands for cumulative frequency. In addition,
reverse cumulatives, number or percent greater, rather than number or percent less than
or equal to, are also available. As a special case, there is also a show(none), which is
more useful than it sounds, as the next example shows.

A further option, select(), lets you select which groups are to be listed, for example
by a condition on the frequencies. select(f == 1) selects those groups that occur
precisely once, in which case there is no need to see a frequency column of 1s, and the
percents and cumulative percents are possibly of no use or interest:

. groups mpg, sel(f == 1) show(none)

mpg

29
31
34
41

Note, by the way, that the first principles solution

. bysort varlist: list if _N == 1

shows precisely this information, plus rather a lot of unwanted junk.



436 Speaking Stata

The select() option can be used in another way. select(5) says, list just the
first five of the groups that would otherwise have been listed. By default, with just
one variable specified, that is just the five lowest groups of values of the variable. Each
group, naturally, could occur more than once:

. groups mpg, sel(5)

mpg Freq. Percent Cum.

12 2 2.70 2.70
14 6 8.11 10.81
15 2 2.70 13.51
16 4 5.41 18.92
17 4 5.41 24.32

You can now guess that select(-5) starts at the other end and counts downwards,
so it says, list just the last five of the groups that would otherwise have been listed.

. groups mpg, sel(-5)

mpg Freq. Percent Cum.

30 2 2.70 93.24
31 1 1.35 94.59
34 1 1.35 95.95
35 2 2.70 98.65
41 1 1.35 100.00

In other words, these commands give you pictures of the tails of a distribution.

You can specify order(high) or order(low), namely, specify a listing in order of the
frequencies, not the values of the variables in each group. In the first case, select(5)
gives you the 5 groups that are most frequent.

. groups mpg, sel(5) ord(h)

mpg Freq. Percent Cum.

18 9 12.16 12.16
19 8 10.81 22.97
14 6 8.11 31.08
21 5 6.76 37.84
22 5 6.76 44.59

If you specify fillin (compare with [R] fillin) with two or more variables, groups
of those variables with zero frequencies are shown explicitly. These are the cells that
would be shown by 0s with tabulate or by blanks with table. select()ing zeros gives
you a listing of the cells not present in your dataset. That is not often wanted, but
when it is, it can be tricky to automate, unless you know about fillin, the command
after which the option is named. So, we are almost back where we started, with a stab
at displaying values not present in the dataset.



N. J. Cox 437

. groups foreign rep78, fill sel(f == 0) show(none)

foreign rep78

Foreign 1
Foreign 2

groups is just sitting on the shoulders of the giant list, so there are several ways
to tweak appearances. Here is one:

. groups foreign rep78, sepby(foreign)

foreign rep78 Freq. Percent

Domestic 1 2 2.90
Domestic 2 8 11.59
Domestic 3 27 39.13
Domestic 4 9 13.04
Domestic 5 2 2.90

Foreign 3 3 4.35
Foreign 4 9 13.04
Foreign 5 9 13.04

We did get the same appearance earlier, but that was just fortuitous, as the default
of separating lines every 5 happened to give a sensible answer.

5 Tabling: an agenda

Although we have reviewed many different approaches to tabulation and perhaps demon-
strated to you that more is possible and that more is easy than you previously thought,
there are tabulation problems at present that are difficult or impossible given Stata’s
present capabilities. What follows is, necessarily, a partial and personal list.

Combining tables One common need is to put together what are, in effect, sub-tables
into combined tables. It could be argued that Stata should not interfere between you
and your word or text processor; anyway, at first sight, it offers next to no tools for
doing this, except that, in a sense, there is a bunch of commands for joining tables
so long as they are (expressible as) Stata matrices. This line of attack is probably
underappreciated; at the same time, it falls short of what I guess people often need
here.

In the long run, we may need a miniature language for combining tables. In effect, tables
could be seen as objects, and there would be a set of operations for combining them, with
tunable control of output form, e.g., elementwise addition, subtraction, multiplication,
division; joining along rows; joining along columns; layering. Each combining would
produce alignment and be more than what anybody could do as a cut/copy/paste
exercise. I guess that this would be a substantial project for StataCorp.



438 Speaking Stata

Multiple variables Stata does not offer much support for tabulating frequency or pro-
portion or percent results from several variables simultaneously. Suppose, for example,
I have variables on trips to the theater, cinema, opera house, funfair, etc., and I want a
single table for all variables so I can compare frequency distributions.

Some approaches in this area were previously discussed by Cox and Kohler (2003).
Much can be done once you see that a different data structure is often the key (us-
ing stack and especially reshape, etc.), but most users understandably prefer getting
results on the fly to mapping to a different data structure. (Even seeing that you need
a different structure can depend on a lot of experience. Doing the restructuring can be
tricky, too.)

Sorting Sorting on the margins is often of limited analytical use. To see patterns rather
than to provide easy lookup (what is the population of Texas? Look under “Texas” . . . ),
you often need to sort tables on their contents (i.e., cell entries). From Stata 8, tabulate
has a sort option, but in general, sorting of tables is not provided very widely.

Cell composites What I call cell composites are cells containing values from two or
more variables, whether variables in your dataset or temporary variables constructed
by the command running. Suppose that you wanted cells with concatenated strings

cell frequency (row percent)

This is quite distinct cosmetically from what might be called cell stacks, cell frequency

presented above row percent.

In general, Stata directly supports cell stacks but not output like the first form. Cell
stacks can be more space-consuming and difficult to read in some circumstances, al-
though it is also easy to run out of space with the first form.

Much is possible once you see that setting up tabulation as a display of string variables
is the key. However, this requires some prior manipulations and, indeed, moderate
fluency with some Stata basics. Canned solutions, whether official commands or user-
written programs, appear lacking. What would be most desirable is support for output
specifications, so that if I want a table to show cell frequency (row percent), something
like

"#1 (#2)"

would specify “the first number followed by a space followed by a parenthesis followed
by the second number followed by a parenthesis”.

Cell text Think of the number of ways in which you might specify substantive missings
as one example. Depending on the boss’s whims, the house rules, the journal’s prescribed
style, or your own tastes, you could want NA or -- or (no data), and so forth. This is
an example of how, frequently, even in a numeric table, you often want extra text. Or
think of cell entries that are footnoted. Again, much is possible once you see that setting
tabulation up as a display of string variables is the key. However, this again requires
some prior manipulations and, indeed, moderate fluency with some Stata basics.



N. J. Cox 439

Table design In fact, we can easily extend this. This last problem is really a rag-bag
of all sorts of small and large design issues, such as support for different fonts and bold,
italic, etc.; different kinds of dividers and separators; control of titles, subtitles, notes,
etc.; control of margin layout; and multiple formats, as highlighted in the discussion of
makematrix.

There is a territorial issue here, as with our very first problem, on how far Stata should
get into terrain that normally you would negotiate with (or in some cases without) the
assistance of your word or text processing software. A lot can be done with SMCL, but
either for one-off tasks or for repetitive tasks, that often requires Stata programming or
at least considerable Stata expertise.

6 Summary

The practical importance of tables can need little emphasis. In this column and its
predecessor, I have selected some highlights from the wide range of possibilities opened
up by both official and user-written commands. That still leaves a large agenda. Do
seize your opportunity of bringing tabulation needs to the attention of StataCorp.

7 What is next?

Graphics, graphics, graphics, and graphics. The year 2004 will be graphics year for this
column, as we look at kinds of graphs, how to choose them, how to get them, how to
tweak them, and how to use the new Stata graphics.

8 Acknowledgments

Kit Baum, Michael Blasnik, Shannon Driver, Ken Higbee, and Fred Wolfe took part in
helpful interactions while these programs, or their predecessors, were developed.

9 References

Cox, N. J. 2003. Speaking Stata: Problems with tables, Part I. Stata Journal 3(3):
309–324.

Cox, N. J. and U. Kohler. 2003. Speaking Stata: On structure and shape: the case of
multiple responses. Stata Journal 3(1): 81–99.

Newson, R. 2003. Confidence intervals and p-values for delivery to the end user. Stata

Journal 3(3): 245–269.

About the Author

Nicholas Cox is a statistically minded geographer at the University of Durham. He contributes
talks, postings, FAQs, and programs to the Stata user community. He has also co-authored
fourteen commands in official Stata. He was an author of several inserts in the Stata Technical

Bulletin and is Executive Editor of The Stata Journal.


