

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2003)
3, Number 4, pp. 412–419

From the help desk: Local polynomial

regression and Stata plugins

Roberto G. Gutierrez
Jean Marie Linhart
Jeffrey S. Pitblado

StataCorp

Abstract. Local polynomial regression is a generalization of local mean smooth-
ing as described by Nadaraya (1964) and Watson (1964). Instead of fitting a local
mean, one instead fits a local pth-order polynomial. Calculations for local polyno-
mial regression are naturally more complex than those for local means, but local
polynomial smooths have better statistical properties. The computational com-
plexity may, however, be alleviated by using a Stata plugin. In this article, we
describe the locpoly command for performing local polynomial regression. The
calculations involved are implemented in both ado-code and with a plugin, allowing
the user to assess the speed improvement obtained from using the plugin. Source
code for the plugin is also provided as part of the package for this program.

Keywords: st0053, local polynomial, local linear, smoothing, kernel, plugin

1 Introduction

The last twenty years or so have seen a significant outgrowth in the literature on the
subject of scatterplot smoothing, otherwise known as univariate nonparametric regres-
sion. Of most appeal is the idea of not making any assumptions about the functional
form for the expected value of a response given a regressor but instead allowing the
data to “speak for itself”. Various methods and estimators fall into the category of
nonparametric regression, including local mean smoothing, as described independently
by Nadaraya (1964) and Watson (1964); the Gasser–Müller (1979) estimator; locally
weighted scatterplot smoothing (LOWESS), as described by Cleveland (1979); wavelets
(e.g., Donoho 1995); and splines (Eubank 1988), to name a few. Much of the vast litera-
ture focuses on automating the amount of smoothing to be performed and dealing with
the bias/variance trade-off inherent to this type of estimation. For example, in the case
of Nadaraya–Watson, the amount of smoothing is controlled by choosing a bandwidth.

Smoothing via local polynomials is by no means a new idea but instead one that has
been rediscovered in recent years in articles such as Fan (1992). A natural extension
of the local mean smoothing of Nadaraya–Watson, local polynomial regression, involves
fitting the response to a polynomial form of the regressor via locally weighted least
squares. Compared with the Nadaraya–Watson estimator (local polynomial of degree
zero), local polynomials of higher order have better bias properties and, in general, do
not require bias adjustment at the boundary of the regression space. For a definitive
reference on local polynomial smoothing, see Fan and Gijbels (1996).

c© 2003 StataCorp LP st0053

R. G. Gutierrez, J. M. Linhart, and J. S. Pitblado 413

The apparent cost of these improved properties is that local polynomial smooths are
computationally more complex. For example, the Nadaraya–Watson estimator requires
at each point in the smoothing grid the calculation of a locally weighted mean, whereas
local polynomial smoothing would require a weighted regression at each grid point.
This cost, however, can be alleviated by using approximation methods such as linear
binning (Hall and Wand 1996) or by using updating methods that retain information
from previous points in the smoothing grid (e.g., Fan and Marron 1994). For purposes
of simplicity of code, no such devices are considered in this paper. Instead, we will
work with the idea of running a full regression at each grid point and gain speed by
performing these regressions using a Stata plugin.

Plugins are a relatively new feature of Stata, made available in July 2003. A Stata
plugin is a piece of compiled code (written in C or C++) that a user attaches to
the Stata executable and then executes either interactively or from within a program.
Because they consist of precompiled code, plugins generally run faster than equivalent
code written in the ado language, where each command must be interpreted each time
it is executed.

In the context of local polynomial regression, we implement a Stata plugin to perform
all the required linear regressions, thus speeding up execution considerably. In this
paper, we do not discuss the actual creation of the plugin, although we do make our
source code available for your examination; for more information on creating Stata
plugins, see StataCorp (2003). Calculations are implemented in both ado-code and
with a plugin, allowing for comparison in execution times between the two. A dialog-
box generating program for locpoly is also provided, along with instructions on how
you can permanently add an entry for locpoly to the Stata User menu.

Section 2 describes the method of local polynomial regression. Section 3 provides
documentation for the locpoly command. Section 4 briefly discusses some issues of
using Stata plugins and compares execution times for locpoly when the calculations
are performed entirely in ado-code with those for which the plugin is used.

2 Local polynomial regression

Consider a set of scatterplot data {(X1, Y1), . . . , (Xn, Yn)} from the model

Yi = m(Xi) + ǫi (1)

for some unknown mean function m() and symmetric errors ǫi. Without making any
assumption about the functional form of m(), we wish to estimate m(x0) = E(Y |X =
x0).

For some x in the neighborhood of x0, a Taylor expansion of m(x) gives

m(x) ≈ m(x0) + m(1)(x0)(x − x0) +
m(2)(x0)

2!
(x − x0)

2 + · · · +
m(p)(x0)

p!
(x − x0)

p

That is, we can approximate m(x) locally by a pth order polynomial in x − x0. Sub-
stituting this approximation into (1), we see that for Xis local to x0, m(x0) can be

414 From the help desk

estimated as the constant term (intercept) of a regression of Yi on the polynomial terms
(Xi − x0), (Xi − x0)

2, . . . , (Xi − x0)
p.

To preserve the locality, we introduce a kernel function K(), which is a probability
density function that is symmetric about zero and a bandwidth h to control the degree
of locality. Defining βj = m(j)(x0)/j! for j = 0, . . . , p, we can then estimate β0 = m(x0)
by minimizing in βj the weighted least squares expression

n∑

i=1

⎧
⎨

⎩Yi −

p∑

j=0

βj(Xi − x0)
j

⎫
⎬

⎭

2

Kh(Xi − x0)

for Kh(a) = h−1K(a/h).

The above is equivalent to a weighted linear regression with weights equal to Kh(Xi−
x0). Thus, a local polynomial smooth can be obtained by specifying a smoothing grid
consisting of a series of x0s and then, for each x0 in the grid, performing the above
weighted regression (with polynomial terms (Xi−x0)

j as regressors) and picking off the

estimated intercept term β̂0 = m̂(x0).

It is up to the user to specify the degree p, kernel function K(), and bandwidth
h. When p = 0, the above reduces to local mean smoothing, otherwise known as the
Nadaraya–Watson estimator. Note that the above scheme also allows for estimation of
the first p derivatives of m() with m̂(j)(x0) = j!β̂j , j = 1, . . . , p, although no facility for
retrieving these estimates is provided in our implementation.

3 Stata implementation

3.1 Syntax

locpoly yvar xvar
[
if exp

] [
in range

] [
, degree(#) width(#) n(#)

at(varx) generate(
[
newvarx

]
newvary)

[
epanechnikov | biweight | cosine |

gaussian | parzen | rectangle | triangle
]
adoonly nograph noscatter

plot(plot) line options twoway options
]

3.2 Options

degree(#) specifies the degree of the polynomial to be used in the smoothing. Zero is
the default, meaning local mean smoothing.

width(#) specifies the halfwidth of the kernel, the width of the smoothing window
around each point. If width() is not specified, the default width is used; see
[R] kdensity. Note that this default is appropriate for kernel-density estimation
and not for local polynomial smoothing. It is best to use the default as a starting
point and adjust the bandwidth according to your needs.

R. G. Gutierrez, J. M. Linhart, and J. S. Pitblado 415

n(#) specifies the number of points at which the smooth is to be evaluated. The default
is min(N, 50), where N is the number of observations in your data.

at(varx) specifies a variable that contains the values at which the smooth should be
evaluated. at() allows you to more easily obtain smooths for different variables or
different subsamples of a variable and then overlay the estimates for comparison. By
default, the smoothing is done on an equally spaced grid, but you can use at() to
perform the smoothing at the observed xs, for example.

generate(
[
newvarx

]
newvary) creates new variables storing the results of the estima-

tion. newvary will contain the estimated smooth. newvarx will contain the smooth-
ing grid. If at() is not specified, then both newvarx and newvary must be specified.
Otherwise, only newvary is to be specified.

epanechnikov, biweight, cosine, guassian, parzen, rectangle, and triangle spec-
ify the kernel, with epanechnikov being default. For definitions of these kernels, see
[R] kdensity.

adoonly suppresses the use of the Stata plugin and instead performs the necessary
regressions entirely using ado-code. That is, the file containing this program includes
a subroutine written in the ado language. This subroutine has also been implemented
as a plugin. Both produce the same results, but the plugin is faster and hence run
by default. By specifying adoonly, you run only in ado-code. Thus, adoonly is
useful should the plugin not be available on your platform (in our case it will always
be), or if you wish to perform speed comparisons.

nograph suppresses drawing the graph of the estimated smooth. This option is often
used in conjunction with generate().

noscatter suppresses superimposing a scatterplot of the observed data over the smooth.
This option is useful when the number of resulting points would be so large as to
clutter the graph.

plot(plot) provides a way to add other plots to the generated graph. See
[G] plot option.

line options affect the rendition of the plotted line(s); see [G] graph twoway line.

twoway options are any of the options documented in [G] twoway options, excluding
by(). These include options for titling the graph (see [G] title options) and options
for saving the graph to disk (see [G] saving options).

3.3 Example

Local polynomial regression is described in section 2. For an example, consider the
motorcycle data as examined (among other places) in Fan and Gijbels (1996). The
data consist of 133 observations and measure the acceleration (accel measured in g) of
the head of a test object during impact over time (time measured in milliseconds). For
these data, we use locpoly to fit a local cubic polynomial with Gaussian kernel and
bandwidth equal to 2.

416 From the help desk

. use motorcycle, clear
(Motorcycle data from Fan & Gijbels (1996))

. describe

Contains data from motorcycle.dta
obs: 133 Motorcycle data from Fan &

Gijbels (1996)
vars: 2 5 Nov 2003 16:18
size: 1,596 (99.9% of memory free)

storage display value
variable name type format label variable label

time float %9.0g time (msec)
accel float %9.0g acceleration (g)

Sorted by:

. locpoly accel time, degree(3) gaussian width(2)

� 150� 100� 50050
1
0
0

a
c
c
e
le

ra
ti
o
n
 (

g
)

0 20 40 60
time (msec)

acceleration (g) locpoly smooth: acceleration (g)

Degree: 3

Local polynomial smooth

Figure 1: Local cubic smooth of the motorcycle data.

3.4 Saved Results

locpoly saves in r():

Scalars
r(degree) smoothing polynomial degree r(ngrid) number of successful regressions
r(width) bandwidth

Macros
r(kernel) name of kernel

R. G. Gutierrez, J. M. Linhart, and J. S. Pitblado 417

3.5 Dialog

The locpoly package includes a dialog-box program for this command, contained in
the file locpoly.dlg, which is downloaded with the program. To launch this dialog
interactively, type db locpoly from within Stata.

Alternately, GUI users can add locpoly permanently to their User menu by includ-
ing the following in profile.do:

if _caller() > 7 {
if "‘c(console)’"=="" {

window menu append item "stUserGraphics" /*
*/ "Local Polynomial Smoothing (&locpoly)" "db locpoly"

}
}

The first line ensures that you are running Stata 8 or later, and the second ensures
that you are running a GUI version of Stata and not console Stata. The window command
then adds an entry for local polynomial smoothing within the Graphics submenu of
the User menu, and selecting this entry launches the locpoly dialog.

For more information on customizing your User menu, see [P] window menu.

4 locpoly uses a Stata plugin

Plugins are useful for speeding up numerical calculations and similar manipulations, but
Stata ado-code is much better at tasks such as parsing syntax, dealing with options,
saving results, and as is the case of locpoly, creating graphs. As such, most programs
that utilize plugins will be written almost entirely in ado-code, with only the most
computationally intense portions relegated to plugins.

In the case of locpoly, the difficult computations are the regressions required for
each point in the smoothing grid. Since the number of points in the grid can be as
large as the number of observations in the data, looping over these points can be slow.
Also, from within Stata, the best way to fit a weighted linear regression model for
which the weights are nonintegers is to use regress with iweights. Since regress

is a built-in command, it is very fast. However, since we are only interested in the
estimated intercept, running a full-blown regression can be bit wasteful. Therefore,
there is considerable speed to be gained by writing a plugin that does the looping
implicitly and that cleverly performs the matrix manipulations necessary to estimate
only the intercept term in a weighted regression.

Within locpoly.ado exists the subroutine Lpwork, which loops over the grid and
performs a weighted regression at each point. Lpwork is written entirely in ado-code,
but an equivalent plugin routine has also been provided in precompiled form in the
file locpoly.plugin, which is downloaded as part of this package. Since plugins are
platform specific, the version of locpoly.plugin that you download depends on your
computer platform (Windows, Macintosh, IBM–AIX, etc.), but this is handled automat-
ically within the Stata package file (.pkg) for this package; see [R] net for the details

418 From the help desk

on making platform-specific files available for download. Note that since we work at
StataCorp, it was easy enough for us to compile the plugin code on all platforms, so
locpoly.plugin is available to anyone who can run Stata.

For those interested in compiling the plugin themselves following the instructions
given in StataCorp (2003), or for those interested in examining the source code, the
file locpoly.c is also available as part of this package for download via net get; see
[R] net.

When we initially wrote locpoly, we wrote it entirely in ado-code; i.e., we imple-
mented the calculations via the Lpwork subroutine. When we implemented the equiva-
lent plugin routine, we could have just thrown Lpwork away in favor of locpoly.plugin,
but we realized that keeping both around would allow us to compare the execution times
for both implementations and to reestablish at a future time that both implementations
produced the same results. In order to easily switch between the two, we added the
adoonly option to locpoly. By default, locpoly calls the plugin to perform the cal-
culations. When you specify adoonly, however, locpoly instead uses Lpwork, which,
again, is written entirely as ado-code.

Using the motorcycle data, we can use the adoonly option to compare execution
times, with and without the plugin. We perform the same smooth that we did before,
this time setting the size of smoothing grid equal to the number of observations in our
data. We also add the nograph option, so as to not confound our comparison with the
time required to draw the graph.

. use motorcycle, clear
(Motorcycle data from Fan & Gijbels (1996))

. set rmsg on
r; t=0.00 17:00:31

. locpoly accel time, degree(3) gaussian width(2) n(133) nograph
r; t=0.01 17:00:31

. locpoly accel time, degree(3) gaussian width(2) n(133) nograph adoonly
r; t=0.12 17:00:31

Using the plugin in this case resulted in code that ran about 12 times faster. We ran
the above on a 2.4GHz PC running Linux. Timings will vary depending on the platform,
size of the dataset, number of smoothing points, degree of the polynomial, etc., but in
general, the speed gain obtained from using locpoly with the plugin is substantial.

5 References

Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association 74: 829–836.

Donoho, D. L. 1995. Nonlinear solution of linear inverse problems by wavelet–vaguelette
decomposition. Applied and Computational Harmonic Analysis 2: 101–126.

Eubank, R. L. 1988. Spline Smoothing and Nonparametric Regression. New York:
Marcel Dekker.

R. G. Gutierrez, J. M. Linhart, and J. S. Pitblado 419

Fan, J. 1992. Design–adaptive nonparametric regression. Journal of the American
Statistical Association 87: 998–1004.

Fan, J. and I. Gijbels. 1996. Local Polynomial Modelling and Its Applications. London:
Chapman & Hall.

Fan, J. and J. S. Marron. 1994. Fast implementations of nonparametric curve estimation.
Journal of Computational and Graphical Statistics 3: 35–56.

Gasser, T. and H.-G. Müller. 1979. Kernel estimation of regression functions. In Smooth-
ing Techniques for Curve Estimation, Lecture Notes in Mathematics, vol. 757, 23–68.
New York: Springer.

Hall, P. and M. P. Wand. 1996. On the accuracy of binned kernel density estimates.
Journal of Multivariate Analysis 56: 165–184.

Nadaraya, E. A. 1964. On estimating regression. Theory of Probability and Its Appli-
cation 9: 141–142.

StataCorp. 2003. Creating and using Stata plugins.
http://www.stata.com/support/plugins

Watson, G. S. 1964. Smooth regression analysis. Sankhyā Series A 26: 359–372.

About the Authors

Roberto G. Gutierrez is Director of Statistics at StataCorp.

Jean Marie Linhart is Senior Mathematician at StataCorp.

Jeffrey S. Pitblado is Senior Statistician at StataCorp.

