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Abstract. We discuss and illustrate the method of simulation extrapolation
for fitting models with additive measurement error. We present this discussion in
terms of generalized linear models (GLMs) following the notation defined in Hardin
and Carroll (2003). As in Hardin, Schmiediche, and Carroll (2003), our discussion
includes specified measurement error and measurement error estimated by repli-
cate error-prone proxies. In addition, we discuss and illustrate three extrapolant
functions.
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1 Introduction

This paper describes software for analyzing measurement error models. Software pro-
duction by StataCorp was funded by a National Institutes of Health (NIH) Small Busi-
ness Innovation Research Grant (SBIR). The goal of the work described in the grant is
the production of software to analyze statistical models where one or more covariates are
measured with error. The software development includes two major features. The first
development feature is the development of the Stata program to support communication
to dynamically linked user-written computer code. StataCorp was responsible for this
development, and support for user-written code in the C/C++ programming languages
was added to Stata version 8. Stata refers to compiled user-written code as plugins and
maintains documentation on their web site at http://www.stata.com/support/plugins.
See Hardin and Carroll (2003) for notational conventions and an introduction to the
topic of measurement error models.

The project described was supported by Grant Number R44 RR12435 from the National Institutes

of Health, National Center for Research Resources. The contents of this article are solely the respon-

sibility of the authors and do not necessarily represent the official views of the National Center for

Research Resources.
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This paper introduces the simulation extrapolation (SIMEX) method, for address-
ing measurement error in generalized linear models. This technique was proposed by
Cook and Stefanski (1995) and extended in Carroll et al. (1996) and Stefanski and Cook
(1995). This method shares the simplicity of the regression calibration method and is
suitable for problems with additive measurement error. SIMEX is a simulation-based
method aimed at reducing bias caused by the inclusion of error-prone covariates. Es-
timates are obtained by adding additional measurement error; a type of resampling
approach. This resampling uncovers the trend of measurement error. Once the trend
is estimated, final estimates are obtained by extrapolating back to the case of no mea-
surement error.

2 The SIMEX method

The SIMEX algorithm may be succinctly described as follows:

1. Fit the model to obtain the estimated coefficients β̂ and an estimate of the mea-
surement error variance σ̂2

u.

2. Generate random pseudo errors for a scale factor θ times the estimated measure-
ment error variance ε ∼ N(0, θσ̂2

u). These pseudo-errors are added to the original

values of the error prone covariate. Fit the model to obtain β̂
{1,θj}

. This is re-

peated r times to obtain the mean† coefficient vector β̂
{θj}

= (1/r)
∑r

i=1
β̂
{i,θj}

.

3. The previous step is repeated for j = 1, . . . , k∗ scale factors, where typically we use
θ = {.5, 1, 1.5, 2}, though individual researchers may choose a longer list of scale
factors. Using the typical list of scale factors, we have k = 5 estimated coefficient
vectors since k∗ = 4 for the list above, and we have the estimated coefficient vector
from the initial step (k = k∗ + 1).

4. For each regression coefficient βm (m = 1, . . . , p) in the model, we consider the
estimated coefficient as a function of the scale factor θj for j = 1, . . . , k. Formally,

we specify a function f() such that βm = f(θ, β
{θ}
m ). We estimate this relationship

and then extrapolate back to final estimates βm = f(θ0 = −1, β
{θ}
m ) (no measure-

ment error). Researchers are free to choose the form of the function f(), but we
point out that there are relatively few—in this case 5—observations available to
estimate the parameters of f(). The function f() used to model the relationship
between the estimated coefficient and θ is called the extrapolant function; the soft-
ware described in the last section of this paper documents three different built-in
functions from which to choose.

Subsequent to the initial model fitting, the next step of the SIMEX algorithm is
the simulation step. In this step, we use simulation to create additional datasets with

†The median coefficient vector may be substituted; see section 5.
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increasingly larger amounts of measurement error (1+ θ)σ̂2

u; θ is a discrete set of values
typically taken to be {0.5, 1.0, 1.5, 2.0}.

Although the SIMEX method is applicable to a large class of models, it is easiest to
understand in the context of simple linear regression where the predictor is measured
with error. We assume a model Y = β0 + β1Xu + ǫ. With measurement error, we do
not observe Xu but instead Xw, where Xw = Xu + U (U has mean zero and variance
σ2

u). In addition, we assume that U is independent of Xu and Y. The following do-file
generates data for which we can use the associated Stata software to illustrate these
ideas.

clear
set seed 12345
set obs 100
gen xu = 5*invnorm(uniform())
gen w = xu + .5*invnorm(uniform())

gen y = 0 + 1*xu + invnorm(uniform())

local suu = .25
mat uinit = (‘suu’)

simex (y=) (xunknown: w), suuinit(uinit) seed(1)

The resulting estimated coefficients from running this do-file are given by

. simex (y=) (xunknown: w), suuinit(uinit) seed(1)

Simulation extrapolation No. of obs = 100

Residual df = 98 Wald F(0,98) = .
Prob > F = .

Variance Function: V(u) = 1 [Gaussian]
Link Function : g(u) = u [Identity]

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

xunknown 1.013505 . . . . .
_cons -.1889483 . . . . .

For the moment, we will ignore the fact that there are no estimated standard errors.
The software has reported the final estimated coefficient vector, but here we want to
illustrate the steps taken to reach those estimates. The simex command stores a matrix
of the means of the estimated coefficients for each θj .

. mat list e(theta)

e(theta)[6,3]
theta xunknown _cons

r1 -1 1.0135053 -.1889483
c1 0 1.0007818 -.1930212
c2 .5 .99797573 -.19624396
c3 1 .99244262 -.19533214
c4 1.5 .98341659 -.20282188
c5 2 .98346201 -.20240457

The first column is the scale factor θj for how much extra measurement error is
added to the error-prone variable; in our example, this is the w variable. Remaining
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columns show the average of the estimated coefficients from the r runs for each scale
factor θj ; by default, the software uses r = 50, but the user may specify a different
number of runs. These final results are calculated by simulating added measurement
error r times, fitting the model, and then calculating the mean coefficient vector.

The first row shows the extrapolation results (theta=−1). The second row displays
the results of running the analysis where we ignore the measurement error (which we do
only once). We can obtain the results corresponding to the row for theta=0 by simply
running the analysis of interest (a linear regression in the present example) where we
simply substitute the error-prone covariate w for the unknown covariate x.

. regress y w

Source SS df MS Number of obs = 100
F( 1, 98) = 1829.44

Model 2506.14071 1 2506.14071 Prob > F = 0.0000
Residual 134.25 98 1.36989796 R-squared = 0.9492

Adj R-squared = 0.9486
Total 2640.39071 99 26.6706132 Root MSE = 1.1704

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

w 1.000782 .0233981 42.77 0.000 .954349 1.047215
_cons -.1930212 .1173708 -1.64 0.103 -.4259397 .0398973

Regression calibration, as outlined in Hardin, Schmiediche, and Carroll (2003), at-
tempts to estimate the unknown covariate and then run the analysis of interest using
fitted values in place of the unknown covariate. SIMEX, on the other hand, simulates
data in order to model the effect of measurement error on the fitted coefficients; this
model is then used to extrapolate back to the results we would have if the covariate
were known.

There are several ways to model the trend. By default, the software fits a quadratic
model. Using the results from our do-file, we would consider the data

. list, table clean noobs

theta xunknown cons
0 1.000782 -.1930212
.5 .9979757 -.196244
1 .9924426 -.1953321

1.5 .9834166 -.2028219
2 .983462 -.2024046

For each of the fitted coefficients, we can model the trend over the theta variable.
Since the default extrapolant function is a quadratic model, we generate the necessary
data and then estimate the parameters of the extrapolant function using the regress

command. Once the parameters of the extrapolant function are estimated, they are
used to extrapolate (predict) to the case of no measurement error.



J. W. Hardin, H. Schmiediche, and R. J. Carroll 377

. gen theta2 = theta*theta

. regress xunknown theta theta2

Source SS df MS Number of obs = 5
F( 2, 2) = 14.73

Model .000242399 2 .000121199 Prob > F = 0.0636
Residual .000016459 2 8.2294e-06 R-squared = 0.9364

Adj R-squared = 0.8728
Total .000258858 4 .000064714 Root MSE = .00287

xunknown Coef. Std. Err. t P>|t| [95% Conf. Interval]

theta -.0111026 .0063962 -1.74 0.225 -.0386234 .0164182
theta2 .0006315 .0030668 0.21 0.856 -.0125638 .0138267
_cons 1.001771 .0026998 371.05 0.000 .9901549 1.013387

. local extrap = -1

. display _b[theta]*‘extrap’ + _b[theta2]*‘extrap’*‘extrap’ + _b[_cons]
1.0135053

. regress cons theta theta2

Source SS df MS Number of obs = 5
F( 2, 2) = 4.83

Model .000064325 2 .000032163 Prob > F = 0.1714
Residual .000013309 2 6.6546e-06 R-squared = 0.8286

Adj R-squared = 0.6571
Total .000077634 4 .000019409 Root MSE = .00258

cons Coef. Std. Err. t P>|t| [95% Conf. Interval]

theta -.0044281 .0057518 -0.77 0.522 -.0291759 .0203197
theta2 -.0003204 .0027578 -0.12 0.918 -.0121861 .0115453
_cons -.193056 .0024278 -79.52 0.000 -.2035018 -.1826102

. display _b[theta]*‘extrap’ + _b[theta2]*‘extrap’*‘extrap’ + _b[_cons]
-.18894829

These steps highlight the results returned in the e(theta) matrix. The method
for obtaining the coefficients is straightforward for the row where the scale factor is
zero. Likewise, given the collection of (mean) coefficients for each scale factor under
consideration and the form of the extrapolant function, it is easy to generate the results
for the scale factor of negative one (no measurement error).

2.1 Extrapolants

The simex command supports three extrapolants to extrapolate back to the case of no
measurement error:

1. The default quadratic extrapolant:

x∗ = β0 + β1θ + β2θ
2

This results in conservative corrections for attenuations and is (usually) numeri-
cally stable. Note that x∗ is the xunknown variable in the previous examples—the
mean of the simulation runs.
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2. The rational linear extrapolant:

x∗ = β0 +
β1

β2 + θ

This reproduces the usual method of moments estimators for the case of multiple
linear regression with non-iid errors. This extrapolant is often more numerically
unstable than the quadratic extrapolant. The option rational is used to specify
the rational extrapolant function.

3. The simple linear extrapolant:

x∗ = β0 + β1θ

This is generally not preferable to the quadratic extrapolant, though there are
cases where the linear extrapolant can do better than the quadratic extrapolant.
This improvement occurs if the error is small and the extrapolation function is
close to linear. The option linear is used to specify the linear extrapolant.

To calculate the rational extrapolant, SIMEX has a built-in nonlinear least-squares
estimator. Should the rational extrapolant fail, the simex output will include a warning.
The command then automatically switches to the quadratic extrapolant. The simex

command options nleps and nlreps specify the tolerance and iteration limits for the
nonlinear least-squares estimator.

By default, simex uses the mean x∗ of the srep (default= 50) simulations. The
median option causes simex to use the median x∗ instead. Typically, it does not matter
if the mean or median is used, but the median can protect against some single disaster
in the simulation run.

Plotting extrapolants: simexplot

It is valuable for diagnostic and educational purposes to be able to see the extrapolation
that resulted in the simex parameter estimate. The command simexplot will plot a
visual representation of how the parameter estimates are derived by simultaneously
showing the results and extrapolation for each of the SIMEX estimates.

The command simexplot, without any arguments, can be typed after a successful
simex run to plot the extrapolation of all the parameters. Alternatively, the user can
specify one or more covariates of interest. In this way, you can generate individual plots
for the simex estimates. Note, however, that the extrapolation line is only drawn for
the quadratic and linear extrapolants.

3 Simulated data example

The following example may be replicated by interested readers following the data gen-
eration and model-fitting commands outlined. Here, we illustrate the techniques and
results for measurement error analysis with multiple covariates measured with error.
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Our generated dataset comprises 500 observations with multiple covariates. This
setting allows us to illustrate the extrapolation techniques of the SIMEX algorithm.
The data are generated, and the analysis (with graph) may be replicated by interested
readers by issuing the commands illustrated. Readers should first save important data
in memory before following these steps. The x1 and x2 covariates are scaled to illustrate
the independence of scale for the algorithm.

. set seed 1

. set more off

. set obs 500
obs was 0, now 500

. gen x1 = uniform()*10

. gen x2 = uniform()*5

. gen x3 = uniform()

. gen x4 = uniform()

. gen x5 = uniform()

. gen err = invnorm(uniform())

. gen y = 1*x1 + 2*x2 + 3*x3 + 4*x4 + 5 + err

. gen a1 = x3 + 0.25*invnorm(uniform())

. gen a2 = x3 + 0.25*invnorm(uniform())

. gen b1 = x4 + 0.25*invnorm(uniform())

. gen b2 = x4 + 0.25*invnorm(uniform())

. simex (y=x1 x2) (w3: a1 a2) (w4: b1 b2), mess(2) brep(99) seed(1)

Simulation extrapolation No. of obs = 500
Bootstraps reps = 99

Residual df = 495 Wald F(4,495) = 1890.71
Prob > F = 0.0000

Variance Function: V(u) = 1 [Gaussian]
Link Function : g(u) = u [Identity]

Bootstrap
y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 .998104 .0185552 53.79 0.000 .9616474 1.034561
x2 2.053648 .0405524 50.64 0.000 1.973972 2.133324
w3 2.761487 .2335827 11.82 0.000 2.302551 3.220423
w4 3.888912 .2330361 16.69 0.000 3.43105 4.346774

_cons 5.100601 .1890554 26.98 0.000 4.729151 5.472051

The simexplot command produces an illustrative graph of the estimated coefficients.
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Figure 1: SIMEX results for a measurement error model. The model is for generated
data following y = x1 + 2x2 + 3x3 + 4x4 + 5. In fitting the model, we have replicate
error-prone measurements for the unobserved x3 and x4 variables. The graph illustrates
the extrapolated point estimates for all covariates in the fitted model. The label w3 is
for the unobserved x3 variable, and the label w4 is for the unobserved x4. The SIMEX

Estimate label corresponds to −1 on the horizontal axis, while the Naive Estimate la-
bel corresponds to 0 on the horizontal axis. We have two error-prone replicate measures
for each of the unobserved covariates in this fitted model. With multiple covariates,
naive fitted covariates may be biased in either direction as illustrated.

4 NHANES example

Using the National Health and Examination Survey (NHANES) data, we investigate the
presence of breast cancer qbc as a function of other covariates; qage is the age in years
of the patient, pir is the poverty index ratio, qbmi is the body mass index, alcohol
is indicator for whether the individual uses alcohol, famhist is an indicator of whether
there is a family history of breast cancer, and agemen is the age at menarche. Two
additional covariates, qcalorie and qsatfat, are the individual’s recall measurements
recorded for saturated caloric fat intake.
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First, we fit a logistic regression, ignoring the measurement error. In this example,
we simply include the replicate measures in qcalorie and qsatfat as two additional
covariates and ignore the measurement error therein. Next, we fit a SIMEX model
calculating bootstrap standard errors. In this model, we specify that qcalorie and
satfat are replicate measures for an unknown covariate measure of the saturated fat
intake of the individual. With 3,145 observations, 50 replications per value of θ, and 199
bootstrap replications, the model fitting takes some time to complete (approximately 6
minutes on our Linux system as listed in the output).

. local y "qbc"

. local z "qage pir qbmi alcohol famhist agemen"

. local x "qcalorie qsatfat"

. logit ‘y’ ‘z’ ‘x’, nolog

Logit estimates Number of obs = 3145
LR chi2(8) = 29.11
Prob > chi2 = 0.0003

Log likelihood = -278.47466 Pseudo R2 = 0.0497

qbc Coef. Std. Err. z P>|z| [95% Conf. Interval]

qage .0659472 .01951 3.38 0.001 .0277084 .1041861
pir .123113 .0772283 1.59 0.111 -.0282516 .2744776

qbmi -1.237347 2.499628 -0.50 0.621 -6.136529 3.661834
alcohol .4374029 .287022 1.52 0.128 -.12515 .9999557
famhist .6615556 .4433177 1.49 0.136 -.2073311 1.530442
agemen -.1589137 .2700326 -0.59 0.556 -.6881679 .3703405

qcalorie -1.351118 1.998842 -0.68 0.499 -5.268776 2.56654
qsatfat -2.371214 2.0104 -1.18 0.238 -6.311526 1.569098

_cons -5.649387 1.126337 -5.02 0.000 -7.856966 -3.441807

. simex (‘y’ = ‘z’) (w: ‘x’), fam(bin) brep(199) seed(12394)
Estimated time to perform bootstrap: 5.42 minutes.

Simulation extrapolation No. of obs = 3145
Bootstraps reps = 199

Residual df = 3137 Wald F(7,3137) = 6.13
Prob > F = 0.0000

Variance Function: V(u) = u(1-u) [Bernoulli]
Link Function : g(u) = log(u/(1-u)) [Logit]

Bootstrap
qbc Coef. Std. Err. t P>|t| [95% Conf. Interval]

qage .0649982 .0156628 4.15 0.000 .0342878 .0957086
pir .1298667 .0803848 1.62 0.106 -.0277454 .2874788

qbmi -1.542769 2.651615 -0.58 0.561 -6.741844 3.656306
alcohol .4492951 .275521 1.63 0.103 -.0909245 .9895147
famhist .6751815 .4762267 1.42 0.156 -.2585659 1.608929
agemen -.1473869 .2937225 -0.50 0.616 -.7232946 .4285209

w -4.944333 2.472668 -2.00 0.046 -9.792544 -.0961208
_cons -5.233584 1.073305 -4.88 0.000 -7.338036 -3.129132
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Figure 2: SIMEX results for a measurement error model. The plot is for the covariate
measured with error and shows the mean coefficient estimates along with the extrapo-
lated value for no measurement error. We do not have replicate measures in this dataset,
so for illustration purposes, the model assumes that qcalorie (hundreds of calories)
and qsatfat (hundreds of grams of fat) are replicate measures for the true saturated
fat intake.

5 Formal Stata syntax

simex (depvar
[
varlist

]
)

[
(depvar

[
varlist

]
) ...(depvar

[
varlist

]
)
] [

if exp
]

[
in range

] [
message(#) family(string) link(string) ltolerance(#)

iterate(#) theta(matrixnum) srep(#) median linear rational nleps(#)

nlrep(#) level(#) suuinit(matrixname) bstrap brep(#) btrim(#)

seed(#) saving(string) replace
]

General options

message(#) specifies the desired (observed) level of printed messages of the plugin mod-
ule. Users can specify this option to suppress or request warning and informational
messages.
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0) Display nothing, not even fatal error messages.

1) Display fatal error messages only.

2) Display warning messages (default).

3) Display informational messages.

4) Display more informational messages.

Note that the ado-code that handles the interface to the plugin may still print error
messages regardless of the message level setting.

The message command can also be used to see intermediate details of the internal
calculations of the code. These were used by the authors to debug the code. The
notation and mnemonics used are not documented and may not correspond to any-
thing in the printed documentation. Furthermore the numbers may be in a raw and
unadjusted format that is difficult to interpret.

5, 6, 7) Display details with increasing verbosity.

Message levels are cumulative.

family(string) specifies the distribution of the dependent variable. The gaussian

family is the default. The choices and valid family and link combinations are the
same as for Stata’s glm command.

link(string) specifies the link function; the default is the canonical link for the specified
family. The choices and valid family and link combinations are the same as for
Stata’s glm command.

ltolerance(#) specifies the convergence criterion for the change in deviance between
iterations. The default is ltolerance(1e-6).

iterate(#) specifies the maximum number of iterations allowed in fitting the model.
The default is iterate(100). It is rare that one needs to increase this.

theta(matrixnum) specifies the θ we will use for our simex. The default is theta=(0,
.5, 1, 1.5, 2).

srep(#) specifies the number of replications (simulations) for each theta. The default
is srep(50).

median specifies that the median extrapolant function should be used for extrapolating
coefficient estimates. The default is the mean.

linear specifies that the linear quadratic extrapolant function should be used for ex-
trapolating coefficient estimates. The default is quadratic regression.

rational specifies that the rational extrapolant function should be used for extrapo-
lating coefficient estimates. The default is quadratic regression. When you use the
rational extrapolant, the options nlrep() and nleps() are also available.
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nleps(#) specifies the tolerance value to use in the optimization of the rational linear
extrapolant. The default is nleps(0.0001).

nlrep(#) specifies the number of replications to allow in the optimization of the ratio-
nal linear extrapolant. The default is nlrep(50).

Standard error options

level(#) specifies the confidence level, in percent, for confidence intervals of the coef-
ficients.

suuinit(matrixname) specifies the measurement error covariance matrix. This is cal-
culated from the replications in the measurement error variables if it is not specified.

Bootstrap options

bstrap specifies that bootstrap standard errors should be calculated. The bootstrap is
internal to the code for the regression calibration command. The estimated time to
perform the bootstrap will be displayed should the bootstrap require more than 30
seconds.

brep(#) specifies the number of bootstrap samples generated to calculate the bootstrap
standard errors of the fitted coefficients. The default is brep(199).

btrim(#) specifies the amount of trimming applied to the collection of bootstrap sam-
ples prior to calculation of the bootstrap standard errors. The default is btrim(.02),
meaning that 1% of the samples (rounded) will be trimmed at each end.

When the bootstrap is run with mess(3), an informational message similar to this
one will display

Average number of iterations per GLM call: 3.0
Maximum number of iterations for a GLM call: 3
Minimum number of iterations for a GLM call: 3
Trimming total of 4 bootstrap replications (2.0%).
Maximum change in standard errors due to trimming: 2.4%

indicating that 4 samples (2 on each end) were trimmed and that this trimming
resulted in a 2.4% change in magnitude of one of the standard errors. All other
standard errors changed less than 2.4%. This simple diagnostic gives an indication
of how trimming influenced the bootstrap standard errors.

seed(#) specifies a random number seed used in generating random samples for the
bootstrap calculations. This option has no effect if bootstrapping is not specified. Its
main purpose is to allow repeatability of bootstrap results. The default is seed(0),
which will seed the random number generator using the system clock.

saving(string) specifies the file to which the bootstrap results will be saved.

replace replaces the file specified in the saving() option (if that file already exists).
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5.1 simexplot

simexplot
[

varlist
]

The command simexplot will plot the effect of measurement error on the parameter
estimate. It gives a visual representation on how the parameter estimates are derived
by showing the extrapolation back to −1. Note that if the rational extrapolant was
used, no extrapolant line is drawn.

The optional varlist is used to specify the parameters that are to be plotted. If no
varlist is specified, all the simex parameters are plotted.
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