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1 Introduction

In this paper we consider how climate change is expected to impact agricultural productivity in Sub-

Saharan Africa, specifically with respect to cereal productivity. Cereals are an important part of

a fundamental sector in a region of the world expected to be hard hit by climate change. Because

the agricultural sector is inherently dependent upon climate conditions, and is often considered

to be more susceptible to the adverse effects of global climate change than any other sector (e.g.,

WDR, 2010), there have been many previous studies that estimate the effects of anticipated climate

changes on the agricultural sector.1 Many of these previous studies are potentially flawed by

ecological or sample selection bias. We control for these biases using an econometric method

well-suited for analyzing high resolution, spatially-explicit samples that potentially exhibit non-

randomness. Ultimately, we simulate productivity changes resulting from spatially heterogeneous

changes in temperature and precipitation and test the effects on agricultural productivity of varying

improvements to irrigation infrastructure.

To date, studies exploring the effects of climate change on the agricultural sector have typically

fallen into one of three general categories: agronomic crop models (Jones and Kiniry, 1986; Jones

et al., 1991), computable general equilibrium (CGE) studies (Darwin et al., 1995), and statisti-

cal models (Mendelsohn et al., 1994; Mendelsohn and Dinar, 1999; Schlenker and Roberts, 2006;

Schlenker et al., 2006; Lobell et al., 2008). Each of these three general approaches is unique and

has its own strengths and weaknesses, and the appropriateness of a particular methodology in a

particular context may be evaluated by the following criteria (Rowhani and Ramankutty, 2009):

data requirements, spatial extent, spatial resolution, user friendliness, and process understanding.2

One of the most widely used empirical tools for estimating the impacts of climate change on agri-

cultural output is the agronomic crop growth model. Agronomic crop growth models incorporate a

mechanistic growth process in complex computer simulation models. Several commonly cited agro-

nomic crop models include the Crop Environment Resource Synthesis (CERES) model, the Erosion

Productivity Impact Calculator (EPIC) model, and the CROPGRO models. The Decision Support
1For a synopsis of the findings of this vast literature, the interested reader is directed to Cline (2007), Chapter 2.
2The latter refers to models that take into consideration the bio-physical processes by which plants grow.
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System for Agrotechnology Transfer Cropping System Model (DSSAT-CSM) attempts to incorpo-

rate crop growth models with knowledge about the contributions of soil, climate, and agricultural

management practices into a unified tool for making better crop management decisions. At its

core, DSSAT is a collection of independent crop growth models, but it also incorporates databases

describing weather, soil, genetics, pests, experimental conditions, and economic information useful

in applying the growth models to various simulations (Jones et al., 2003). A noted strength of

these models is that, because of their process-based nature, crop growth is simulated in stages, and

the timing of climatological variations can be modeled in a manner more structurally consistent

with true agronomic processes (Hertel and Rosch, 2010). A criticism of these analyses, particularly

amongst economists, is that they do not incorporate adaptation to changing climate conditions.

These models implicitly assume that farmers do not switch their cropping patterns in the face of

changing climate conditions and yield responses, so economic impacts are generally predicated on

the cultivation of the given crop. Consequently, crop growth models tend to overstate the damages

of climate change to agricultural production, particularly in developing countries (Mendelsohn and

Dinar, 1999). Agronomic crop models are generally the most data intensive, since they require

detailed data on local crop management and climate. Because agronomic crop studies incorporate

spatially-explicit climate conditions in controlled settings, resulting yield responses are spatially

explicit. While such detailed, local level responses may be advantageous, the incorporation of

observed crop responses into global models can be very complex.

Computable General Equilibrium (CGE) models allow for a greater deal of adaptation, since

they allow for endogenous price movements to stimulate varying allocations in scarce resources.

Particularly, the sub-class of Agro-Ecological Zone (AEZ) studies combines crop simulation models

with land-use decision analysis, and model changes in agronomic resources to assess changes in agri-

cultural production, premised on lands shifting from one agro-ecological classification to another

under changes in environmental conditions (Cline, 2007). An early CGE model applied to analyz-

ing the impacts of climate change on the agricultural sector is Darwin et al. (1995), who utilized

a multi-region, multi-sector CGE framework to assess changes in land use from effects of climate

change derived from four global circulation models. Because they allow for endogenous input and
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output prices, CGE studies explicitly recognize that land values may change as a result of climate

change, and therefore the uses of land may change as well. These models are often calibrated or

parameterized on the basis of statistical relationships and may be structured to take into consider-

ation finite (and potentially immobile) resources, as well as intersectoral and international linkages.

A drawback of these models is that they are often subject to rather severe aggregations, such that

a great deal of spatial and economic heterogeneity is lost as individual actors are aggregated up

until they are represented by “representative agents”, who may bear little or no resemblance to the

individual actors at the lowest level. Additionally, these models are not process-based, and results

are inherently dependent upon behavioral assumptions and the subsequent parameterization of the

model, as well as on assumptions regarding market clearance, rather than actual biophysical pro-

cesses. Largely because of assumptions of fluid prices and market closure, Darwin et al. (1995) find

that the adverse effect of climate change on yields will drive up food prices, ultimately resulting in

increased land being devoted to food crop production, with little change in overall actual output.

CGE models can be very difficult and time-consuming to construct, due to the exhaustive account-

ing and the complexity of modeling the intersectoral and international linkages, and these models

often require a great deal of macroeconomic data, data on resource endowments, and bilateral trade

flow data.

Statistical models provide somewhat of a middle ground. These models rely on the estimation

of statistical relationships between environmental variables and various outcome variables. Within

the literature examining the economic consequences of climate change on the agricultural sector,

statistical models are typically organized in two strands: production functions and Ricardian mod-

els. The production function approach typically uses either cross-sectional or time-series data to

express yields as a function of inputs, including environmental factors such as temperature and

precipitation, labor and fertilizer inputs. A recent study by Lobell and Burke (2010) finds that

studies based on time-series data better predict the responses of yields to precipitation changes

than to temperature changes, while studies based on cross-sectional or panel data perform better

at predicting the responses to temperature changes than to precipitation changes. Ricardian models

are essentially cross-sectional, reduced-form hedonic models, using statistical methods to estimate
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the response of land values to climatic changes. The pioneering entry in this literature was Mendel-

sohn et al. (1994), who found that, in the United States higher temperatures generally resulted in

lower land values. They therefore suggested that the effects of global warming on the agricultural

sector might be lower than estimated. Because land rents are assumed to reflect the value of the

activity to which that land is allocated, these models are thought to embody adaptation, thereby

controlling for the “naive” farmer scenario that is identified in traditional production function and

agronomic crop growth approaches. Implicitly, these models assume that farmers simply produce

along the outer envelope of a hedonic value surface, where the value functions for different activities

are represented as a function of temperature (or some other environmental variable). While this

may embody some forms of adaptation, it does not, as is often suggested, embody all forms of

adaptation. It only captures the forms of adaptation or substitution of land uses that were actually

reflected in the data, with temporal variations assumed to be proxied by cross-sectional variations.

An important criticism raised by Cline (1996) is that, because the only adaptations incorporated

in the model are those actually observed in the data, these models implicitly assume an “infinitely

elastic supply of irrigation water” at prevailing prices at the time of the study. Additionally, Cline

(1996) remarks that, while these models suggest that land may be allocated towards its most prof-

itable uses, such that land use shifts from wheat and corn into grazing and retirement homes, there

is no mechanism to capture the fact that, if wheat and corn production are eventually replaced

by these other uses, there will be insufficient food production to feed the residents of all of these

retirement homes. Despite these apparent weaknesses, the various statistical models remain very

popular, especially among economists.

Unlike agronomic crop growth models and CGE models, statistical models are generally simple

to implement and have minimal data requirements. This is particularly true for statistical studies

estimating production functions, since the most parsimonious model requires only historical infor-

mation on crop yields and climate conditions. But while statistical models are generally the least

data-intensive of these methods, they are often limited in their spatial resolution, using aggregated

data on average yields or average climate conditions for administrative units. As was the case

with CGE analyses, such aggregations potentially cause ecological bias, since such interpretations
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imply that relationships that hold for grouped data hold for lower-level units (Haining, 2003). In

addition, yield responses for a country (or some other administrative unit) are based on observed

yields within that administrative unit, assuming that the observed yields are randomly drawn from

a population of yields within that administrative unit. If the observed yields are actually drawn

from a different unobserved distribution, there is the potential for sample selection bias, and the

inferences drawn from these observations should not be extrapolated to the entire administrative

unit.

We attempt to correct for ecological and sample selection biases by incorporating high resolution,

spatially-explicit data and modeling spatial autocorrelation, while at the same time controlling for

potential sample selection bias. Our methodological approach is somewhat of a hybrid, blending

the spatial nature of agronomic crop yield studies with the minimal data requirements and the

simple cross-sectional econometric approach of traditional statistical production function models.

Whereas the agronomic studies use process-based responses to simulate climate change impacts, our

study uses historically-observed climate conditions and crop yields, and utilizes statistical methods

to isolate ceteris paribus effects of explanatory factors in explaining yield responses. While we use

data at the level of geographic 1◦×1◦ grid cells to partially avoid ecological biases that would likely

be present if our focus was at the country level, we acknowledge that there are unobservable factors

at the country level that may be relevant in explaining differences in cereal yields across space. For

this reason, we attempt to control for this high-level heterogeneity by including binary variables to

capture these country-specific effects.

Next to South Asia, Sub-Saharan Africa is the most agriculture-dependent region in the world,

with nearly 19 percent of the region’s gross output being produced in the agricultural sector (World

Bank, 2006). This figure understates the importance of agriculture across the region, since the

largest economy in the region, South Africa, has a relatively low dependence on agriculture. Many

of the countries in Sub-Saharan Africa derive upwards of 30 percent of their GDP from agricultural

production. Particularly, cereals (wheat, rice, barley, maize, rye, oats, millet and sorghum) play an

important role in the diets of people in Sub-Saharan Africa. Cereals constitute 47 percent of total

caloric food consumption (Kcal/capita/day) for households in Sub-Saharan Africa and 50 percent
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of protein consumption FAO (2011). Additionally, cereals provide calories more cheaply than

other sources of food (Deaton, 1997). Despite this heavy reliance on agriculture, and despite the

continued importance of cereal grains, cereal yield growth in Sub-Saharan Africa has consistently

lagged behind other regions (FAO, 2011).

There is significant heterogeneity in agricultural productivity growth among the various sub-

regions of Sub-Saharan Africa. For example, yields in Southern Africa have shown the most growth

since the early 1960s, with yields increasing more than 350 percent during the roughly 50 year

period. This growth has, however, been very uneven and variable over time. Yield growth in other

parts of Sub-Saharan Africa has been much slower, but also generally more steady. Yield growth

in Middle Africa was relatively flat until the mid-1990s, and even since then yield growth has been

inconsistent. As of 2009, average yields in Middle Africa were only 878 kg/ha, compared with over

3,700 kg/ha in Southern Africa (FAO, 2011). Some of these vast differences can be attributed to

differences in climate and soil quality, but it is also highly probable that there are other factors

that contribute to these differences. Some factors, such as production technology and factor inputs,

would be expected to demonstrate moderately high degrees of spatial dependence. Other factors

may be country-specific. Arguably, it is not a coincidence that yields and yield growth are lowest

in Middle Africa, which contains several countries that have experienced prolonged armed conflicts,

and which rank near the bottom in the World Bank’s World Governance Indicators’ ranking for

political stability (Kauffmann et al., 2010).

The remainder of this paper is structured as follows. In section 2 we introduce the general

model of interest and impose specific restrictions on this general model to arrive at our ultimate

estimable relationship. In section 3, we introduce the data to be used in this analysis. In sec-

tion 4, we introduce our estimation strategy and present our results, including an interpretation

of the marginal effects of the various conditioning factors on yields. Using parameter estimates

from our cereal yield response function in conjunction with spatially heterogeneous climate change

projections (drawn from Cline, 2007), we conduct hypothetical policy experiments in section 5

to examine how changes in irrigation infrastructure would affect cereal yields. Finally, we offer

concluding remarks in section 6.
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2 Model Specification

Consider the following general cross-sectional spatial error model:

yi = x′iβ + εi

εi = ρ
∑
j

wijεj + ui
(1)

where yi is the dependent variable, x′i is a k-vector of explanatory variables conditioning yi, εi

is an unobserved disturbance term, ui is a normally distributed random error, wij is the (i, j)

element of a spatial weights matrix that defines the structure of the spatial system, and ρ is

a spatial correlation coefficient corresponding to the spatially autoregressive errors. We assume

that the spatial autoregressive parameter and the spatial weights matrix satisfy the conditions

common to most models of this form (see, for example, Kelejian and Prucha, 1998, 2010). These

assumptions are required to ensure a well-behaved spatial processes and estimability. We maintain

the assumption that the underlying spatial process is a spatial autoregressive error process.3 While

it is true that cereal yields are likely to be correlated across space, the spatial process among yields

is not causal or indicative of spatial dependence. The spatial correlation among yields, therefore,

is mostly due to correlation among unobserved factors (e.g., factors of production, production

technology, or knowledge spillovers), which are captured more appropriately through a spatial

error process. Furthermore, there is precedence in modeling crop yield response functions and

Ricardian models as spatial error processes (Schlenker et al., 2006).

Because of the differences in yields and productivity growth across Sub-Saharan Africa, it is also

of interest to consider spatial heterogeneity. In essence, spatial heterogeneity points to instability

or non-stationarity in the spatial system. Anselin (1988) identified two primary sources of spatial

heterogeneity: heteroskedastic errors and spatially varying parameters. While spatial models arti-

ficially introduce heteroskedasticity, it is generally preferable to also explicitly incorporate spatial

heterogeneity in the model. Since the data, once aggregated, are at 1 ◦ × 1 ◦ spatial resolution, it

is logical to identify spatial shift operators based on the country to which each grid cell belongs.
3Anselin et al. (1996) developed a series Lagrange Multiplier tests to identify the underlying spatial process. These

tests, however, are not valid when the data fail to satisfy strict distributional assumptions.
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There are many factors (such as governmental subsidies for fertilizers, extension programs to assist

farmers’ decision-making, a sound legal system which provides enforceable property rights, a sys-

tem of functioning input and output markets, etc.) that would plausibly be the same for all grid

cells within a country, but would vary across countries. We therefore include country-specific fixed

effects in the model.

It is also relevant to allow for parametric heterogeneity through the identification of spatial

regimes. In a critique of earlier Ricardian models, Schlenker et al. (2005) suggest that the effects of

climate change on agriculture must be assessed differently in dryland and irrigated areas. Failure

to account for irrigation, they argue, understates the water supply in irrigated regions. They

suggest that irrigation be included in the set of explanatory variables, but also that the effects of

climatological variables should be different in irrigated areas than in rain-fed areas.

With these additional model specifications imposed, we can re-write equation (1) as:

yi = x′iβ + h′iπ + (Irri · x̃i)′ ξ + εi

εi = ρ
∑
j

wijεj + ui
(2)

where yi is cereal yield per grid cell i (in tons per hectare), x′i is a vector of explanatory variables

for grid cell i containing an intercept term and observations on average temperature (◦C) and

its square, the standard deviation of temperature, average precipitation (mm per month) and its

square, the standard deviation of precipitation, average elevation (m), the roughness of the terrain

(a measure of variation in elevation), the distance to the shore (km), the percentage of the cell that

has irrigation, the average pH level for the soil in the cell, and the average carbon content in the

cell’s soil. The vector h′i is a vector of country dummy variables and vector x̃i ⊂ xi is a vector of

explanatory variables that are interacted with grid cell-level irrigation.4 The vector π is a vector

of parameters to be estimated capturing country-specific effects, and ξ is a vector of parameters

capturing effects of interactions between climatological and soil characteristics and irrigation. This
4This vector excludes the quadratic temperature and precipitation terms, as well as elevation, roughness of terrain,

distance to the shore, and the cell-level irrigation proportion. These interaction terms were not significant in explaining
yields in a simple OLS regression, and it seems intuitive that the effect of irrigation on yields would not vary with
higher order temperature and precipitation effects, nor with the topographical features previously mentioned.
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model serves as the basis for our empirical exercise.

3 Data Description

The areal data used in this analysis come from several primary sources. To examine cereal yields,

we utilize 5′×5′ grid cell data on global cereal yields in the year 2000 from Monfreda et al. (2008). A

nice feature of these yield estimates is that they are formed from national and sub-national sources,

providing a higher spatial resolution than previous yield estimates. Initially, these yields were given

in tons per hectare, but the figures were re-scaled to pounds per hectare. Data on irrigation, soil

carbon density (both at a 5′ × 5′ grid cell level), and soil pH (at 0.5 ◦ × 0.5 ◦ resolution) come from

FAO-Aquastat, the International Geosphere-Biosphere Program (IGBP), and the International Soil

Reference and Information Centre (ISRIC), respectively. The latter two data sets were acquired

through the Oak Ridge National Laboratories Distributed Active Archive Center (ORNL-DAAC).

Additionally, we utilize 1 ◦×1 ◦ grid cell data on various other spatial, environmental, and economic

factors obtained from William Nordhaus’s G-Econ dataset (Nordhaus et al., 2006).5 The yield,

irrigation, and soil chemistry data were aggregated to 1 ◦ × 1 ◦ in order for them to be spatially

joined to the G-Econ data applying standard GIS techniques. In total, these data consist of 1,906

observations spanning most of mainland Sub-Saharan Africa.6

Note that yields are observed only for a subset of all available grid cells (1,553 observations,

or roughly 81 percent). Assuming that all cells with zero yield are the result of farmers explicitly

choosing not to plant cereals, this conscious decision could lead to biased OLS estimates. This

will be the case, for instance, if farmers in Sub-Saharan Africa systematically choose not to plant

cereals in grid cells where they believe yields would be very low. This non-random sampling causes

the so-called sample selection problem. The decision to plant cereals is summarized by a binary
5The G-Econ data report observations on a country-grid cell level, rather than simply at a grid cell level. For

this reason, there are many coordinates that are entered more than one time in the data. We focus on unique grid
cell observations, choosing to use the observation that has the largest RIG (i.e., a “rate in grid” observation for each
country) measure among all observations for a particular set of geographic coordinates.

6In the econometric analysis, Zimbabwe and Somalia were removed from the sample due to missing data on some
key explanatory variables. In addition, we omit Madagascar and smaller island states such as Cape Verde, Comoros,
Mauritius, Réunion, St. Helena, Seychelles, and São Tomé & Pŕıncipe. The Gambia was omitted as well, since
observations for the Gambia consistently had smaller RIG measures than observations for Senegal that shared the
same geographic coordinates.

9



variable taking the value of 1 if cereals were planted in the grid cell in question, and 0 otherwise.

A parametric two-step estimation procedure proposed by Heckman (1976, 1979) is widely used to

address the sample selection problem. In specifying such a model, however, we need at least one

variable that explains this decision to plant cereals while not affecting the resulting yields, which

provides an exclusion restriction by which the model can be identified. Our identification strategy

therefore uses a grid cell Human Influence Index (HII) to satisfy the exclusion restriction. The HII

is an index created by the Socioeconomic Data and Applications Center (SEDAC) of the Center for

International Earth Science Information Network (CIESIN) at Columbia University. These data,

originally reported at 30 arc second × 30 arc second grid cell level, aim to “represent the location

of various factors presumed to exert an influence on ecosystems: human population distribution,

urban areas, roads, navigable rivers, and various agricultural land uses” (CIESIN, 2011). Because

this index captures factors such as transportation infrastructure and population density, it is likely

to affect the decision to plant cereals without affecting the resulting yields.

Summary statistics for these data can be found in Table 1. The spatial distribution of yields,

temperature, precipitation, and the standard deviations of temperature and precipitation as well as

the Human Influence Index across Sub-Saharan Africa can be seen in Figure 1, panels (a) through

(f), respectively.

[Table 1 about here]

[Figure 1 about here]

Generally, for the purposes of examining spatial effects, grid cell data can be thought of as a

regular lattice. From this regular lattice, it becomes a very simple procedure to construct neigh-

borhood structures and weights matrices based on simple contiguity of either the rook or queen

type.7 Modeling spatial systems with sample selection generally results in irregularly distributed

observations, since there are cells for which the dependent variable is unobserved. For this reason,

we are unable to model a strictly contiguous spatial system. Nevertheless, because the data points
7These forms of contiguity take their name from the game of chess, in which rooks can only move in the vertical

and horizontal direction, whereas the queen can move vertically and horizontally, as well as along any of the diagonals.
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are the geographical centroids of the grid cells, one can approximate a neighborhood structure (and

thus a row-standardized weights matrix) based on contiguity if one uses a distance-based neighbor-

hood system in which the distance specified is the minimum distance required to ensure that each

observation has at least one neighbor.

4 Econometric Estimation and Results

We begin by imposing a specific restriction on this general model, namely the absence of spatial

autocorrelation. In the absence of spatial correlation, ρ = 0 so the model reduces to:

yi = x′iβ + h′iπ + (Irri · x̃i)′ ξ + ui (3)

which can be re-written in matrix notation as:

y = Xβ + Hπ +
(

Irr′ · X̃
)
ξ + u

Under the assumptions of spherically distributed error terms, this equation can be estimated con-

sistently using ordinary least squares (OLS). A Breush-Pagan test with random coefficients as the

alternative hypothesis indicates that the null hypothesis of homoskedasticity should be rejected

(the test statistic is 135.65 with a p-value of 9.23 × 10−9). We therefore report White-adjusted

standard errors as well in Table 2.

[Table 2 about here]

From these estimates we can compute the elasticity of yields with respect to temperature and

precipitation:

∂Yield
∂Temperature

· 1
Yield

=
βTemp + 2 · βTemp2 · Temperature

Yield
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and

∂Yield
∂Precipitation

· Precipitation
Yield

= βPrecip + 2 · βPrecip2 · Precipitation · Precipitation
Yield

where these elasticities are computed for each observation, and then averaged in order to generate

an interpretable figure. Based on these calculations, we see that the semi-elasticity of cereal yields

with respect to temperature is –7.74, implying that a 1◦ C increase in temperature lowers cereal

yields in Sub-Saharan Africa by about 7.74 percent on average, and this estimated elasticity is

statistically different from zero. The elasticity of yields with respect to precipitation is 10.62,

although it should be noted that this elasticity estimate is not statistically different from zero. A

larger standard deviation in both temperature and precipitation raises yields at rates that are each

statistically different from zero. Since the precipitation measures represent an average monthly

rainfall amount, these estimates suggest that a greater dispersion of rainfall is advantageous for

cereal yields. This is consistent with literature suggesting that temporal concentration of rainfall

is preferred, with greater rainfall desirable in growing seasons and less desirable in harvest seasons.

We proceed by estimating a model that controls for sample selection, following Heckman’s

parametric two-step approach. In the first stage of this procedure, a linear selection equation of

the form Pi = z′iα+ µi, Pi ∈ {0, 1} is estimated using a probit estimator, and observation-specific

estimates of the inverse Mills ratio (IMR) are constructed as λi = φ(z′iα)/Φ(z′iα), where φ(·) is

the normal probability density function and Φ(·) is the normal cumulative distribution function.

In the second stage, the outcome (or response) equation for those observations for which Pi = 1 is

estimated via OLS, with the IMR included as an additional explanatory variable that accounts for

the sample selection bias. The conditional response equation is therefore:

E[yi|Pi = 1,xi,x̃i,zi] = xiβ + h′iπ + (Irri · x̃i)′ ξ + η

[
φ(z′iα)
Φ(z′iα)

]
(4)

As previously discussed, specifying such a model requires at least one variable that explains the

selection to plant cereals while not affecting the resulting yields, thereby providing an exclusion

restriction by which the model can be identified. Our identification strategy therefore uses the grid
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cell HII variable. While the inclusion of the HII in the selection equation aids in identifying the

parameters of the outcome equation, our estimation approach also involves omitting the country

dummy variables and the interaction terms from the set of variables conditioning the selection to

plant cereals.8 Estimates of the model parameters computed via Heckman’s two-step estimation

procedure are presented in column (a) of Table 3.

[Table 3 about here]

From the top panel of column (a) in Table 3, we see that most of the exogenous variables

assumed to affect yields also affect the a priori decision to plant cereals. The probit model does

a very good job of predicting which grid cells will have cereals planted (correctly predicting 98

percent of these “successes”), and similarly does a fair job predicting which grid cells will not have

cereals planted (correctly predicting 90 percent of these “failures”). For covariates included in both

the selection equation and the outcome equation, the estimates in the lower panel of Table 3 do

not represent marginal effects, since the conditional expectation of cereal yields conditional on the

explanatory variables should also incorporate the inverse Mills ratio. Consider a covariate included

linearly in both the selection and outcome equations, xj ∈ x, z. The marginal effect of this covariate

can be computed as:

∂E[yi|Pi = 1,xi,x̃i,zi]
∂xij

= βj − η(αj)
[
(λi)

2 +
(
z′iα
)
λi

]
(5)

and subsequently, we can compute semi-elasticities and elasticities. We estimate a semi-elasticity of

yields with respect to temperature of –7.58, suggesting that a 1◦C increase in temperature would be

expected to lower yields by 7.58 percent on average. After controlling for the effect of temperature

on the decision to plant cereals in the selection equation, we find that increasing temperatures have

a more muted effect on yields than when the selection issue is ignored. The statistically significant

coefficient associated with the IMR shows that sample selectivity is a problem, which suggests that
8While it may seem plausible that the country dummy variables captures effects that would be relevant in predicting

farmer’s decisions to plant cereals in a particular grid cell, there are several countries in which all grid cells have
cereals planted. Thus the binary country indicator variables for these countries would completely determine the
binary selection variable. For this reason, the set of country dummy variables were excluded from the selection
equation.
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previous cross-sectional studies that do not consider selectivity inconsistently estimate the effects

of climatological and other explanatory factors on yields. The estimated elasticity of yields with

respect to temperature is lower under the heckit model specification. We find the elasticity of cereal

yields with respect to precipitation to be 2.43, which is smaller than the estimated elasticity from

the OLS regression.

While this model does control for sample selection bias, it does not control for spatial correlation

in unobserved factors. To allow for these correlations, we employ an estimator for spatial error

models that controls for endogenous sample selection, recently developed by Flores-Lagunes and

Schnier (2010). The estimator that Flores-Lagunes and Schnier (2010) propose maintains the

intuition of Heckman’s model, but is within the broader family of GMM estimators. Specifically,

it uses a selection equation analogous to the spatial probit estimator of Pinkse and Slade (1998).

The estimates from the spatial probit are then used to construct the spatial econometric equivalent

of the IMR, which is then included in the outcome equation. The Pinkse and Slade estimator

yields consistent estimates of the selection equation, which are themselves necessary to obtain

consistent estimates of the parameters in the response equation. Flores-Lagunes and Schnier (2010)

note that when the parameters in the selection equation are different from those in the outcome

equation (as is generally desirable to ensure identification), the appropriate IMR is a function of the

spatial correlation coefficient in the outcome equation. To increase the efficiency of the estimates,

all of the model parameters are estimated simultaneously through solving a system of stacked

moment conditions. While this estimator is less efficient than a maximum likelihood estimator, it

is consistent and asymptotically normally distributed with an estimable variance-covariance matrix.

To proceed, let yields be represented as a latent variable y∗i and the planting decision be repre-

sented by the latent variable P ∗i , such that:

yi = y∗i if P ∗i > 0 yi = 0 otherwise

Pi = 1 if P ∗i > 0 Pi = 0 otherwise

Explicitly modeling the selection and response equations taking into consideration spatial depen-

dence in the errors, we have P ∗i = z′iα + ε1i, ε1i = ρ1

∑
j 6=i

w1
ijε1j + vi and y∗i = x′iβ + h′iπ +
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(Irri · x̃i)′ ξ + ε2i, ε2i = ρ2

∑
j 6=i

w2
ijε1j + ui, where w1

ij is the (i, j) element of the (n + b) × (n + b)

spatial weights matrix corresponding to the selection equation, and w2
ij is the (i, j) element of the

n×n spatial weights matrix corresponding to the outcome equation. Note that both equations are

general enough to allow for spatial dependence in the errors, where the degree of spatial correlation

is denoted by coefficients ρ1 and ρ2, respectively. The innovations v and u are assumed iid and

multivariate normal such that (vi, ui) ∼ N(0,Σ), where:

Σ =

 σ2
v σvu

σvu σ2
u


From these equations, we can write the model equations in their reduced form:

P ∗i = z′iα+
∑
j

ω1,ijvj (6)

y∗i = x′iβ + h′iπ + (Irri · x̃i)′ ξ +
∑
j

ω2,ijuj (7)

where ωk,ij =
[
(I−ρkWk)−1

]
ij

is the (i, j) element of the k − th equation spatial multiplier ma-

trix (I − ρkWk)
−1. Flores-Lagunes and Schnier (2010) note that the probit model with spatially

autoregressive errors introduces a fully non-spherical variance-covariance matrix that renders the

regular probit estimator inconsistent. Estimation of the selection equation therefore proceeds along

the lines of the spatial probit model of Pinkse and Slade (1998), to obtain consistent estimates.

From McMillen (1995), we have the following variance and covariance calculations:

Var(ε1) = σ2
v

∑
j

(ω1,ij)
2

Var(ε2) = σ2
u

∑
j

(ω2,ij)
2
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E(ε1iε2i) = σvu
∑
j

ω1,ijω2,ij

Using Var(ε1i), Pinkse and Slade (1998) construct “generalized” residuals with which to construct

appropriate moment conditions for consistent estimation of the model parameters, taking into

consideration the induced heteroskedasticity. Letting the vector of parameters in the selection

equation be given as θ1 = [α′, ρ1] and letting δi(θ1) = z′iα/
√

Var(ε1i) be the index function of a

probit model weighted by the standard deviation of the residuals from the selection equation, the

“generalized” residuals of the selection equation are:

ε̃1i(θ1) =
√
σ2
v

∑
j

(ω1,ij)
2 · {Pi − Φ [δi(θ1)]} · φ [δi(θ1)]

Φ [δi(θ1)] {1− Φ [δi(θ1)]}

The GMM estimator for θ1 is given as:

θ1,GMM = argmin
{
S(θ1)′MnS(θ1)

}
(8)

where S(θ1) = 1
nZ
′ε̃1(θ1), where Z is the matrix of variables in the selection equation and ε̃1(θ1)

is the vector of generalized residuals, and Mn is a conformable positive definite moment-weighting

matrix. Consistent estimates of θ1 are then used to construct the “adjusted” IMR (McMillen, 1995)

to be used in the outcome equation. The “adjusted” IMR is given as:

λ̂i ≡

∑
j

ω1,ijω2,ij√∑
j

(ω1,ij)
2
· φ [−δi(θ1)]

1− Φ [−δi(θ1)]
(9)

This “adjusted” IMR depends on the spatial correlation coefficient from the outcome equation

(ρ2), which is not estimated in the first-stage spatial probit. Likewise estimating the conditional

outcome response (including estimating the spatial correlation coefficient) requires the inclusion

of this “adjusted” IMR as an additional explanatory variable in the outcome equation. All of the

parameters in both the selection and the outcome equations can be estimated simultaneously in

order to increase the efficiency of the estimator. To accomplish this, Flores-Lagunes and Schnier
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(2010) stack the moment conditions of the selection and outcome equations:

g(Z,X,H, X̃, θ) =
[
s(Z, θ)′,m(X,H, X̃, θ)′

]′
where, now, θ = [α′, ρ1, β

′, π′, ξ′, η, ρ2]. The components of this matrix are as follows:

s(Z, θ) = Z′ε̃1(θ)

m(X,H, X̃) =
[
P ·
(
X,H, X̃, λ̂

)]′
ε̃2(θ)

where ε̃1 is the vector of generalized residuals and ε̃2(θ) = y−Xβ −Hπ− (Irr · X̃)− ηλ̂(ρ1, ρ2, α).

Stacking the generalized residuals from the spatial probit estimation with the residuals from the

outcome equation, we get ε̃(θ) ≡ [ε̃′1(θ), ε̃′2(θ)]. Then a consistent GMM estimator for all of the

model parameters is:

θGMM = argmin
{
gn(θ)′Mngn(θ)

}
(10)

where gn =
1
n
Z′ε̃(θ) and, again, Mn is a conformable positive definite moment-weighting matrix.

We use the optimally-weighted GMM estimator, which obtains efficient estimates of the model

parameters in two steps. The first step estimates the model parameters using an equally-weighted

GMM estimator, from which the optimal weights are constructed. These optimal weights are then

used in the second step GMM estimation.

The results from the spatial heckit estimation of equations (6) and (7) are reported in column

(b) of Table 3. There is highly significant (and strong) spatial correlation among the unobserved

error terms in both the selection and response equations. The spatial correlation coefficient in the

selection equation is 0.62, while the spatial correlation in the outcome equation is 0.69, suggesting

the potential for a high degree of spill-overs among neighboring grid cells. Since country fixed effects

are not controlled for in the selection equation, it is possible that these unobserved factors capture

effects that would otherwise be captured by country effects. In the outcome equation, however,
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country effects are explicitly controlled for, so the unobserved errors in the outcome equation must

be distinct from country effects.

The estimates in the lower panel of Table 3 cannot be interpreted as marginal effects of small

changes in the explanatory variable on cereal yields.9 Interpreting these coefficient estimates as

such ignores some potentially important nonlinear effects introduced through the incorporation

of the “adjusted” IMR as an additional explanatory variable in the outcome equation. Thus the

true marginal effects should take into consideration both the direct effect that the explanatory

variable in question has on the outcome variable, and also, for particular explanatory variables,

the indirect effect of these independent variables on the probability that the selection equation

dependent variable is positive. Expected yields conditional upon the affirmative decision to plant

cereals are given as:

E[yi|P ∗i > 0,xi, hi,x̃i] = x′iβ + h′iπ + (Irri · x̃i)′ ξ + ηλ̂i (11)

This expression can be expanded and re-written as:

E[yi|P ∗i > 0,xi, hi,x̃i] = x′iβ + h′iπ + (Irri · x̃i)′ ξ + η ·


∑
j

ω1
ijω

2
ij√∑

j

(
ω1
ij

)2 ·
φ

[
− z′iα√

Var(ε1i)

]
1− Φ

[
− z′iα√

Var(ε1i)

]


Writing the conditional expectation in this form provides some valuable insight into the benefits

of modeling spatial dependence. In most applications, the modeling spatial correlation in the

unobserved error term simply increases the efficiency of the parameter estimates by correcting

bias in the variance-covariance matrix. This expanded expression indicates that the failure to

account for spatial correlation when the data exhibit sample selection bias can itself lead to biased

parameter estimates, in addition to problems of inefficiency. This is seen by the inclusion of the∑
j ω

1
ijω

2
ij/

√∑
j

(
ω1
ij

)2
term, which incorporates the spatial multiplier matrices (I − ρkWk)

−1,

9Clearly, if xj /∈ z, then small changes in xj do not affect the probability of planting cereals, and therefore
the marginal effects for such explanatory variables are simply the parameter estimates obtained from the outcome
equation.
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k = 1, 2. If spatial correlation is nonexistent in neither the selection or the outcome equation,

then ρ1 = ρ2 = 0, and (I − ρkWk)
−1 = I, so that

∑
j ω

1
ijω

2
ij =

√∑
j

(
ω1
ij

)2
= 1 ∀i, and the

conditional expectation obtained from equation (11) is the same as what would be obtained by

estimating a sample selection model without incorporating spatial correlation in the error terms.

If, however, spatial correlation in the error terms is present, then estimating the model using a

standard, non-spatial approach will result in conditional expectations that may be significantly

different than those obtained from models incorporating spatial effects. This also has implications

for the computation of marginal effects. For a generic linear covariate included in both the selection

and outcome equations (i.e., xj ∈ x, z), the marginal effects are given by:

∂E[yi|P ∗i > 0,xi,hi, x̃i]
∂xj

= βj − η

(
αj√

Var (ε1i)

)
∑

j ω
1
ijω

2
ij√∑

j

(
ω1
ij

)2

[(λi)2 + (δi(θ1))λi
]

(12)

where λi ≡ φ[δi(θ1)]/Φ[δi(θ)] 6= λ̂i is the standard (i.e., not “adjusted”) inverse Mills ratio. Again,

the marginal effects will be biased if the spatial correlation is not incorporated. Since many of

the explanatory variables for which the marginal effects would be particularly interesting enter the

outcome equation in a nonlinear fashion, the above general form for computing marginal effects

needs to be modified to incorporate higher order effects and interactions.

Because of the inherent nonlinearities introduced through the IMR, the marginal effects will

vary by observation. There are generally two standard approaches for estimating average effects.

One standard approach involves evaluating the marginal effects at the mean of the data. Another

approach involves computing the marginal effect for each observation and then averaging. Greene

(2003) has suggested that, assuming the data are well-behaved, these two approaches are asymp-

totically equivalent. In our analysis, we used the latter approach because there is a great deal of

variation in values for the exogenous explanatory variables across Sub-Saharan Africa.

Obviously, the marginal effects, elasticities and semi-elasticities are themselves nonlinear func-

tions of the model parameters. To compute standard errors and confidence intervals for both

elasticities and semi-elasticities, we employ an approach analogous to parametric bootstrap tech-

19



niques introduced by Krinsky and Robb (1986). In this approach, random drawings are taken from

a multivariate normal distribution with a mean and variance-covariance matrix obtained in the

estimation of the model parameters. For each drawing from this multivariate normal distribution,

the elasticities are re-calculated, generating an empirical frequency distribution from which con-

fidence intervals can be obtained. The semi-elasticities and elasticities of yields with respect to

temperature and precipitation changes (respectively) are reported in panels (a) and (b) in Table 4

for each of the three econometric models estimated.

[Table 4 about here]

All three models predict roughly the same elasticity of yields with respect to temperature

changes, and they are significantly different from zero based on bootstrap confidence intervals. All

three models suggest that a 1◦C increase in temperatures lowers cereal yields by roughly 7.5 percent.

The semi-elasticity computed from the OLS estimates suggest the largest reduction in yields, while

the semi-elasticity computed from the non-spatial heckit suggest the smallest reduction in yields

among the three models considered. The semi-elasticity computed from the spatial heckit estimator

lies within the range spanned by these two non-spatial estimators. The results from the three models

predict a positive effect on yields with increased precipitation, although these elasticities are not

significantly different from zero. The reason may be because simple changes in monthly mean

precipitation are difficult to interpret as causal variables, since the timing of such precipitation

is vitally important. As was the case with the temperature semi-elasticities, the precipitation

elasticities vary widely over space.

While not reported, it should be noted that many of the coefficients associated with the country

dummy variables are significantly different from zero. This suggests that, even after controlling for

the effects of temperature, precipitation, and soil chemistry, there is strong evidence that country-

specific factors do significantly contribute to predicting cereal yields.
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5 Simulation Experiment

Of all the explanatory variables we include in our model, only grid cell irrigation is explicitly

under the control of policymakers. Analysis of this variable allows us to investigate how policy

interventions (such as improvements to or expansions of irrigation infrastructure) affect cereal

yields in Sub-Saharan Africa, both in the absence of any climatic changes and under assumptions

of spatially-heterogeneous temperature and precipitation changes drawn from a combination of

general circulation models. Because temperature and precipitation are interacted with grid-cell

level irrigation in the outcome equation of the spatial heckit model, the effect of changes in these

climatic variables on cereal yields will vary over space based on the level of irrigation in a particular

grid cell. As would be expected, average yields for grid cells with irrigation (1,129 kg per hectare)

are significantly higher than for grid cells without irrigation (773 kg per hectare). Irrigation helps

to offset some of the declines in yields brought on by higher temperatures (see the lower panel of

column (b) in Table 3). From the spatial heckit model, we see that a 1 percent increase in grid

cell access to irrigation increases yields by roughly 1.35 percent, although the estimated elasticity

is not significantly different from zero (see panel (c) of Table 4).

[Table 5 about here]

We can use equation (11) to estimate the effects of additional irrigation on expected yields both

with and without climate change. Table 5 reports average temperatures and levels of precipitation

both historically and in the future for a select group of countries and regions in Sub-Saharan

Africa. These figures represent the averages from 23 general circulation models compiled by Cline

(2007). Using the projected changes in temperatures and precipitation, we modify our initial data

to simulate future climate conditions.10 Based on these climate conditions, we estimate that average

cereal yields across Sub-Saharan Africa will be only 806 kg per hectare, down approximately 15

percent from the currently observed average level of 950 kg per hectare. From this new base
10For simplicity, we are assuming that the shape of a grid cell’s annual distribution of temperatures and monthly

precipitation levels are unchanged, but rather that the distributions are simply shifting laterally. This simplification
allows us to assume that the standard deviations of temperature and precipitation will be the same in the future as
they are at present.
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average yield, we can examine how improvements in irrigation infrastructure can be expected to

affect yields, partially ofsetting some of the damage resulting from anticipated climatic changes.

We consider four scenarios for infrastructure investment:

(i) Uniform irrigation increase of 5 percentage points

(ii) Targeted increase of 5 percentage points for cells with some (but incomplete) irrigation cov-

erage

(iii) Targeted increase of 5 percentage points for cells with high levels of irrigation

(iv) Targeted increase of 5 percentage points for cells with no irrigation

For scenario (ii), we identify cells where the irrigation coverage is in the bottom quartile of all

nonzero levels of irrigation. For this sample, it is the case that roughly 25 percent of grid cells with

nonzero levels of irrigation coverage only have irrigation infrastructure in place for 0.65 percent or

less of the total area of the grid cell. For scenario (iii), we identified cells with levels of irrigation

in the top quartile of cells with positive levels of irrigation, which corresponds with irrigation

coverage of only 3.81 percent of the grid cell or more. The results from these various scenarios

are summarized in Table 6. The results suggest that increasing irrigation infrastructure uniformly

results in the largest average increase in cereal yields, with yields increasing 14 percent. While this

may significantly offset many of the expected losses resulting from climate change, this strategy is

also not very feasible, since it would require a massive mobilization of resources. Excluding this

scenario, the largest increase in yields is derived by implementing irrigation where there currently

is none. Under this scenario, average yields are expected to be 7.6 percent higher than the base

scenario incorporating climate change. While the yield increases resulting from this strategy are

not nearly as significant as when the irrigation increases are across-the-board, the results of this

simulation suggest that targeting those cells without any existing irrigation infrastructure should

provide a larger average response than other targeting strategies.

[Table 6 about here]
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6 Conclusion

In this paper we estimated a spatial econometric model to examine grid cell level cereal grain

productivity in Sub-Saharan Africa. Our model specification allowed us to examine the dependence

of agricultural productivity on a variety of exogenous climatological and topographical factors,

taking into consideration spatial dependence and spatial heterogeneity while controlling for sample

selection. Consistent with many previous studies, we find that increasing temperatures have a

negative effect on cereal yields. Regardless of whether spatial dependence is modeled, our results

suggest that failing to control for sample selection bias may lead to overestimation of the negative

impacts of increasing temperatures on cereal yields. We cannot draw any conclusions about how

this omission affects estimates of the effects of precipitation on yields, since the resulting elasticities

with respect to precipitation are not significantly different from zero. Our findings suggest that

there is considerable spatial dependence affecting both the cell-level decision to plant cereals as well

as the conditional yield response.

While not reported, we find strong statistical evidence to support the notion that, even after

controlling for temperature, precipitation and soil characteristics, effects at the country level are

correlated with yields. Binary variables corresponding to a cell’s country of origin capture country-

specific effects, which are highly statistically significant and act as yield shifters, suggesting sub-

stantial spatial heterogeneity across Sub-Saharan Africa. These country effects could incorporate

many factors, including governmental subsidies for fertilizers, the general availability of fertilizers,

extension programs to assist farmers’ decision-making, a sound legal system which provides strin-

gent property rights, a system of functioning input and output markets, supply chain management,

price transmission, etc. We do not attempt to disentangle the sources of these country effects in

this study, leaving that task to future research.

Our methodological approach attempts to blend the spatially-explicit nature of agronomic crop

growth models with the simplicity of statistical models. By using spatially-explicit data at a rela-

tively high spatial resolution, we are able to partially avoid ecological biases that are often present

when estimating such relationships at coarser resolutions. We also incorporate a recently developed

estimator for spatial process models that controls for sample selection bias. While the use of 1◦×1◦
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grid cell data allows for interpretation of marginal effects at a higher resolution than the use of

country-level data would allow, our estimates are still partially subject to ecological bias, since farms

are ultimately the decision-making units of interest. Additionally, this approach does not explicitly

allow for adaptation, which is one of the touted advantages of the Ricardian approach. Similarly,

unlike the agronomic crop yield studies or other process based approaches, our approach quantifies

only statistical correlations, without necessarily identifying causality. While this may technically

be a weakness of our methodological approach, the strict exogeneity of many of our explanatory

variables presumes a very direct causal interpretation. Data limitations preclude modeling yield

responses in a manner more amenable to agronomic studies. We only have observations on annual

average temperatures and average monthly precipitation, whereas ideally one would prefer to have

average growing season temperatures or total temperature days and average growing season precip-

itation. We also lack observations on other traditional inputs into agricultural production, such as

labor hours and fertilizer applications. Additionally, because this study focuses on a cross-sectional

analysis, we forgo any dynamical elements that affect crop yields. If we assume trend stationar-

ity, then it could plausibly be argued that cross-sectional differences in yields could capture some

of the dynamical or temporal differences as well. The issue of how representative cross-sectional

differences are of dynamic differences over the ensuing decades warrants future investigation.

The elasticities estimated using simple OLS and the much more complex spatial sample selection

estimator are not vastly different from one another, especially for the semi-elasticities of yields with

respect to temperature and irrigation. This may lead some observers to question the value of such a

complex estimator. We argue that, while the benefits of this complexity may not be readily apparent

from the current study, it represents only one application, and judging the value of a methodological

approach based on a sample of one is not justified. We have shown that parameter estimates,

marginal effects and elasticities obtained by OLS will be biased under very general violations of

the standard OLS assumptions, and that this bias is increasing in the absolute value of both the

spatial effect and the sample selection effect. In our particular study, the spatial effect is quite

large, but this effect is muted by a relatively small sample selection effect. In applications where

these effects are larger, the potential bias correction obtained by using this new methodological
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approach can be significant. In any event, irrespective of the seemingly small differences between

the various elasticity estimates, we highlight the increased accuracy and precision that these new

estimates provide, since incorporating spatial dependence and sample selection corrections reduce

bias in the estimates themselves as well as in the variance of these estimates.
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Table 1: Summary Statistics for Dependent and Independent Variables

Variable Description N Mean Std. Dev. Min. Max.

Yield Cereal yields, 2000 (pounds per hectare, 000s) 1, 553 2.10 1.08 0.16 10.36
Plant Binary variable (=1 if cereals are planted) 1, 906 0.81 0.39 0 1
HII Human Influence Index 1, 906 13.04 7.12 0.00 41.00
Temperature Average annual temperature (degrees Celsius) 1, 906 24.60 3.47 10.21 30.32
Std. Dev. Temp. Standard deviation of temperature 1, 906 2.83 1.86 0.27 7.72
Precipitation Average monthly precipitation (mm) 1, 906 65.58 48.29 0.08 222.69
Std. Dev. Precip. Standard deviation of precipitation 1, 906 55.20 35.76 0.13 246.57
Elevation Elevation (m) 1, 906 677.22 432.97 4.59 2, 575.22
Rough. Roughness of terrain 1, 906 8.75 9.96 0.00 60.00
Dist. Distance to coast (km) 1, 906 721.58 436.83 4.10 1, 686.70
Irrigation Irrigation (% of grid cell with improved irrigation) 1, 906 1.37 3.73 0.00 52.89
Soil pH Soil pH index (ranging from 0–99) 1, 906 33.48 12.91 15.06 99.00
Soil Carbon Soil carbon density (kg C/m2) 1, 906 8.02 3.82 0.00 27.72
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Table 2: Selected Coefficients: OLS Estimation

Robust
Estimate Std. Error Std. Error

Constant 3.5148 1.1488∗∗∗ 1.4241∗∗

Temperature −0.0206 0.0881 0.1208
Temp.2 −0.0021 0.0019 0.0029
Std. Dev. Temp. 0.1214 0.0409∗∗∗ 0.0826
Precipitation 0.0017 0.0032 0.0032
Precip.2 (×1, 000) 0.0017 0.0128 0.0122
Std. Dev. Precip. 0.0037 0.0014∗∗∗ 0.0013∗∗∗

Elevation −0.0004 0.0001∗∗∗ 0.0002∗

Roughness −0.0003 0.0001∗∗∗ 0.0029
Distance to Shore 0.0047 0.0027∗ 0.0001∗∗∗

Irrigation −0.0901 0.0861 0.1184
Soil pH 0.0002 0.0032 0.0028
Soil Carbon 0.0196 0.0064∗∗∗ 0.0050∗∗∗

Irr. · Temp. 0.0037 0.0020∗ 0.0025
Irr. · Std. Dev. Temp. 0.0266 0.0079∗∗∗ 0.0100∗∗∗

Irr. · Precip. 0.0003 0.0005 0.0006
Irr. · Std. Dev. Precip. 0.0002 0.0004 0.0004
Irr. · pH −0.0007 0.0009 0.0010
Irr. · Carbon −0.0067 0.0015∗∗∗ 0.0020∗∗∗

Adjusted R2 = 0.61
N = 1,553

Note: * Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level
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Table 3: Selected Coefficients: Non-Spatial Heckit and Spatial Heckit Estimation

Selection Equation (a) (b)
Non-Spatial Heckit Spatial Heckit

Estimate Std. Error Estimate Std. Error

Constant 17.9100 3.8650∗∗∗ 18.1188 6.9954∗∗∗

Human Influence Index 0.0528 0.0162∗∗∗ 0.0558 0.0242∗∗

Temperature −1.7670 0.3281∗∗∗ −1.7619 0.5374∗∗∗

Temp.2 0.0372 0.0068∗∗∗ 0.0374 0.0106∗∗∗

Std. Dev. Temp. 0.1669 0.0876∗ 0.1750 0.1212
Precipitation 0.0483 0.0125∗∗∗ 0.0485 0.0136∗∗∗

Precip.2 (×1, 000) −0.3028 0.0608∗∗∗ −0.3162 0.0629∗∗∗

Std. Dev. Precip. 0.0479 0.0071∗∗∗ 0.0435 0.0072∗∗∗

Elevation 0.0009 0.0005∗∗ 0.0009 0.0005∗

Distance to Shore −0.0132 0.0111 −0.0006 0.0003∗∗

Roughness −0.0006 0.0002∗∗∗ −0.0136 0.0117
Irrigation 0.1256 0.0300∗∗∗ 0.1265 0.1347
Soil pH −0.0149 0.0064∗∗ −0.0149 0.0058∗∗

Soil Carbon 0.0899 0.0333∗∗∗ 0.0887 0.0338∗∗∗

ρ 0.6248 0.0463∗∗∗

N 1,906 1,906

Percent “Successes” Correctly Predicted: 97.94% 98.91%
Percent “Failures” Correctly Predicted: 89.52% 81.87%
Total Percent Correctly Classified: 96.38% 95.75%

Outcome Equation (a) (b)
Non-Spatial Heckit Spatial Heckit

Estimate Std. Error Estimate Std. Error

Constant 3.7760 1.1250∗∗∗ 3.7607 1.2837∗∗∗

Temperature −0.0792 0.0872 −0.0791 0.0979
Temp2 −0.0006 0.0019 −0.0006 0.0022
Std. Dev. Temp. 0.0330 0.0408 0.0337 0.0612
Precipitation 0.0044 0.0032 0.0045 0.0032
Precip.2 (×1, 000) −0.0273 0.0134∗∗ −0.0270 0.0159∗

Std. Dev. Precip. 0.0080 0.0015∗∗∗ 0.0081 0.0016∗∗∗

Elevation −0.0003 0.0001∗∗ −0.0003 0.0002∗

Roughness 0.0038 0.0027 −0.0004 0.0001∗∗∗

Distance to Shore −0.0004 0.0001∗∗∗ 0.0038 0.0026
Irrigation −0.0905 0.0841 −0.0904 0.1066
Soil pH −0.0016 0.0031 −0.0016 0.0027
Soil Carbon 0.0269 0.0066∗∗∗ 0.0269 0.0047∗∗∗

Irr. · Temp. 0.0050 0.0020∗∗ 0.0050 0.0022∗∗

Irr. · Std. Dev. Temp. 0.0273 0.0075∗∗∗ 0.0280 0.0104∗∗∗

Irr. · Precip. 0.0005 0.0005 0.0006 0.0005
Irr. · Std. Dev. Precip. −0.0002 0.0005 −0.0002 0.0004
Irr. · pH −0.0009 0.0009 −0.0011 0.0009
Irr. · Carbon −0.0079 0.0015∗∗∗ −0.0079 0.0018∗∗∗

Inverse Mills Ratio 0.8844 0.0863∗∗∗

Adjusted Inverse Mills Ratio 0.8788 0.3522∗∗

ρ 0.6926 0.0281∗∗∗

N 1,553 1,553
Adjusted R2 0.63

Note: * Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level32



Table 4: Elasticities of Yields With Respect to (a) Temperature, (b) Precipitation, and (c) Irrigation

95% Confidence Interval
Lower Upper Mean from 1,000

Estimate 2.5% Tail 2.5% Tail Replications
(a)
OLS –7.74 –11.08 –4.65 –7.71
Heckit –7.58 –11.01 –4.86 –7.70
Spatial Heckit –7.62 –11.87 –3.40 –7.62

(b)
OLS 10.62 -1.89 23.41 10.77
Heckit 2.43 -10.55 13.82 2.10
Spatial Heckit 5.28 -8.30 18.51 5.21

(c)
OLS 1.43 0.36 2.51 1.44
Heckit 1.17 –0.14 2.40 1.14
Spatial Heckit 1.35 –0.65 3.28 1.31
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Table 5: Present and Future Climate: Average Temperature and Precipitation

Temperature (◦C) Change Precipitation (mm per day) Change
1961-90 2070-99 (◦C) 1961-90 2070-99 (%)

Angola 21.52 25.53 4.01 2.75 2.62 -4.73%
Burkina Faso 28.16 32.38 4.22 2.12 2.29 8.02%
Cameroon 24.60 28.16 3.56 4.36 4.50 3.21%
DR Congo 23.95 27.93 3.98 4.21 4.27 1.43%
Ethiopia 23.08 26.92 3.84 2.04 1.97 -3.43%
Ghana 27.15 30.87 3.72 3.23 3.27 1.24%
Cote D’Ivoire 26.19 29.79 3.60 3.88 3.95 1.80%
Kenya 24.33 27.83 3.50 2.02 2.19 8.42%
Madagascar 22.28 25.53 3.25 4.12 3.91 -5.10%
Malawi 21.79 25.72 3.93 3.10 3.04 -1.94%
Mali 28.24 33.01 4.77 0.85 0.87 2.35%
Mozambique 23.44 27.28 3.84 2.82 2.80 -0.71%
Niger 27.13 31.53 4.40 0.46 0.68 47.83%
Nigeria 26.73 30.46 3.73 3.09 3.29 6.47%
Senegal 27.80 31.51 3.71 1.95 1.80 -7.69%
South Africa 17.72 21.89 4.17 1.31 1.20 -8.40%
Sudan 26.70 30.87 4.17 1.18 1.28 8.47%
Tanzania 22.25 26.01 3.76 2.88 2.91 1.04%
Uganda 22.36 26.04 3.68 3.24 3.30 1.85%
Zambia 21.57 25.86 4.29 2.75 2.61 -5.09%
Zimbabwe 21.03 25.39 4.36 1.85 1.81 -2.16%
Other Equatorial Africa 24.81 28.46 3.65 4.23 4.30 1.65%
Other Horn of Africa 26.79 30.35 3.56 0.81 0.96 18.52%
Other West Africa 25.77 29.29 3.52 5.24 5.32 1.53%
Average 3.93 2.52%
Source: Cline (2007)
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Table 6: Results of Simulation Experiments: Yield Changes Resulting from Improvements to Irri-
gation Infrastructure

Change in
Scenario Yields

(i) 14.3%
(ii) 3.4%
(ii) 3.7%
(iv) 7.6%

Note: Yield changes reflect average changes in cereal yields resulting from improvements to irrigation infrastructure
compared to a base scenario incorporating spatially-heterogeneous temperature and precipitation changes based off
estimates reported in Table 5.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Distribution of Key Variables in Sub-Saharan Africa

Sources: (a) Monfreda et al. (2008); (b)-(e) Nordhaus et al. (2006); (f) CIESIN (2011)
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