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Abstract. This paper discusses and illustrates the qvf command for fitting gen-
eralized linear models. The differences between this new command and Stata’s
glm command are highlighted. One of the most notable features of the qvf com-
mand is its ability to include instrumental variables. This functionality was added
specifically to address measurement error but may be utilized by the user for other
purposes. The qvf command was developed in the C-language using Stata’s new
plugin features and executes much faster than the glm ado-file.
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1 Introduction

This paper describes software for analyzing measurement error models. Software pro-
duction by StataCorp was funded by a National Institutes of Health (NIH) Small Busi-
ness Innovation Research Grant (SBIR). The goal of the work described in the grant is
the production of software to analyze statistical models where one or more covariates are
measured with error. The software development included two major features. The first
development feature is the development of the Stata program to support communication
to dynamically linked user-written computer code. StataCorp was responsible for this
development and support for user-written code in the C/C++ programming languages
was added to Stata version 8. Stata refers to compiled user-written code as plugins and
maintains documentation on their web site at http://www.stata.com/support/plugins.

Following the presentation in Carroll, Ruppert, and Stefanski (1995), we will discuss
the instrumental variables method for handling additive measurement error in gener-
alized linear models (GLMs); see Hardin and Hilbe (2001) for detailed information on
GLMs. The associated software may be used whether or not there is measurement error
in a particular analysis.

The project described was supported by Grant Number R44 RR12435 from the National Institutes
of Health, National Center for Research Resources. The contents of this article are solely the respon-
sibility of the authors and do not necessarily represent the official views of the National Center for
Research Resources.

c© 2003 StataCorp LP st0049



352 QVF: Fast calculation of GLMs

Utilizing the short introduction in Hardin and Carroll (2003), we show the usage of
the new qvf command. In many cases, this new command will produce identical results
to the glm command.

2 Comparison to the existing glm command

The subsections that follow compare the existing glm command with the new qvf com-
mand. Both of these command can use the observed or expected information matrix
during optimization and to form default standard errors. To use the expected informa-
tion matrix in glm (specified in the iteratively reweighted least squares algorithm); the
user specifies the irls option with the glm command. To use the observed information
matrix, the user specifies the oim option with the qvf command.

2.1 Missing features

There are a few features of the glm command that are not included in the new qvf

command. The most notable difference is that the qvf command does not support the
predict command. The genesis of the new command was to support measurement error
analysis, and in most cases the first step of the analysis is the generation of expected
values for a missing covariate. This step would be required for prediction and is not
available for any of the commands included in the SBIR development.

The glm command also produces model diagnostics that are not present in output
from the qvf command. These diagnostics include calculation of Akaike’s information
criterion, the Bayes information criterion, and log likelihoods.

2.2 Additions and enhancements

There are several additions and enhancements over what the glm command will provide.

The new command has built-in support for bootstrapping. Since the support was
written into the C-language code development, model fitting for the bootstrap samples
is very fast.

The qvf command has built-in support for instrumental variables. This is actually
the raison d’être for qvf. The purpose of writing a new command when one already
existed was a desire to make the fast GLM we created for simex available for general
purpose use and out of the recognition that we needed to support instrumental variables
to support the measurement error analyses; these analyses are, in fact, the motivation
for the SBIR project.

The qvf command also supports calculation of Murphy–Topel type standard errors,
see Murphy and Topel (1985) and Hardin (2002), when fitting generalized linear models
with instrumental variables.
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2.3 Equivalent model specifications

The qvf and glm commands produce equivalent results for model fits where there are
no instrumental variables. There may be numeric differences in results due to different
convergence criteria.

Both commands support the calculation of standard errors based on the expected
information matrix, observed information matrix, robust variance matrix, semi-robust
variance matrix, and the cluster variants of the robust matrix calculations. Jackknife
variance estimates are only allowed with the glm command, and Murphy–Topel variance
estimates are allowed only with the qvf command (only when instrumental variables
are specified).

3 QVF syntax and options

In the subsections that follow, we will show the three main features of qvf. First is that
qvf is similar to glm. We will demonstrate the fast internal qvf bootstrap. Finally, we
will show how to use qvf to analyze data with instrumental variables.

3.1 QVF as GLM

The qvf and glm commands use similar syntax and display similar output. Sometimes
it is possible to simply substitute qvf for glm. For example,

. use http://www.stata-press.com/data/r8/lbw
(Hosmer & Lemeshow data)

. qvf low age lwt race smoke ptl ht ui, family(bin) link(logit)

Generalized linear models No. of obs = 189
Optimization : MQL Fisher scoring Residual df = 181

(IRLS EIM) Scale param = 1
Deviance = 204.347465 (1/df) Deviance = 1.128992
Pearson = 180.583157 (1/df) Pearson = .997697

Variance Function: V(u) = u(1-u) [Bernoulli]
Link Function : g(u) = log(u/(1-u)) [Logit]
Standard Errors : EIM Hessian

low Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0332327 .0357713 -0.93 0.353 -.1033431 .0368777
lwt -.0120948 .0066158 -1.83 0.068 -.0250617 .000872

race .4462621 .2150445 2.08 0.038 .0247827 .8677415
smoke .9255414 .3980923 2.32 0.020 .1452947 1.705788

ptl .5397383 .3469187 1.56 0.120 -.1402099 1.219686
ht 1.799337 .6872194 2.62 0.009 .4524118 3.146262
ui .7148045 .4634311 1.54 0.123 -.1935037 1.623113

_cons -.1029665 1.284609 -0.08 0.936 -2.620754 2.414821
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Replacing qvf with glm

glm low age lwt race smoke ptl ht ui, family(bin) link(logit)

produces identical results. Note that qvf uses iterated, reweighted least squares (IRLS)
optimization, while glm uses Newton–Raphson optimization of the log likelihood. This
difference could be adjusted for by adding the irls option to the glm command.

The options that are recognized by both the qvf and glm commands are family,
link, ltolerance, iterate,

[

ln
]

offset, level, oim, robust, cluster, scale, and
vfactor. Options specific to qvf are mtopel, which calculates Murphy–Topel variance
estimator (available only for instrumental variables models), and mess, which controls
the messages the qvf plugin command displays. Finally, qvf uses the options bstrap,
brep(), btrim(), seed(), saving(), and replace to control the fast internal bootstrap.

3.2 The fast bootstrap

The qvf command can calculate the bootstrap estimator of variance using a fast internal
bootstrap. To demonstrate the bootstrap, we will use this simulated dataset:

. set seed 1

. set obs 2500
obs was 0, now 2500

. gen x1 = uniform()

. gen x2 = uniform()

. gen x3 = uniform()

. gen x4 = uniform()

. gen err = invnorm(uniform())

. gen y = 5 + 1*x1 + 2*x2 + 3*x3 + 4*x4 + err

To calculate a 999 replicate bootstrap variance estimator using qvf, we type

. qvf y x1 x2 x3 x4, bstrap brep(999) btrim(.05) seed(1)

Generalized linear models No. of obs = 2500
Optimization : MQL Fisher scoring Residual df = 2495

(IRLS EIM) Scale param = 1.040753
Deviance = 2596.677816 (1/df) Deviance = 1.040753
Pearson = 2596.678735 (1/df) Pearson = 1.040753

Variance Function: V(u) = 1 [Gaussian]
Link Function : g(u) = u [Identity]
Standard Errors : Bootstrap

Bootstrap
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.000742 .0683909 14.63 0.000 .8666982 1.134786
x2 1.996032 .0699536 28.53 0.000 1.858925 2.133139
x3 3.052939 .0683828 44.64 0.000 2.918911 3.186967
x4 3.967281 .0683857 58.01 0.000 3.833247 4.101314

_cons 4.998845 .0698154 71.60 0.000 4.862009 5.13568
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On a 3.2GHz Pentium 4, this will take less than a second. The only required option,
bstrap, tells qvf to calculate the bootstrap estimator of variance. The brep option
indicates the number of replications (default is 199), and the btrim option causes qvf

to trim 2 × 2.5% of the bootstrap replication prior to the calculation of the bootstrap
variances. The seed option initializes the random number generator used by the boot-
strap. The only reason to specify a seed is to generate identical results over multiple
runs; this is rarely used. Note that the Stata set seed command does not affect the
internal random number generator used by the qvf plugin.

The equivalent Stata bootstrap command using glm (with no trimming) would be

. bootstrap "glm y x1 x2 x3 x4" _b, reps(999)

which requires about 55 seconds on the same system. You can use the qvf command
with the Stata bootstrap command if you require some of the additional functionality
that the Stata bootstrap command provides

. bootstrap "qvf y x1 x2 x3 x4" _b, reps(999)

The above requires about 23 seconds. We can observe from these times that about 60%
the speed improvement in our internal bootstrap comes from the fast GLM and 40%
from internalizing the bootstrap. The more complicated or larger the model or dataset,
the more this ratio will favor the fast GLM.

The qvf will calculate the estimated time it will take to produce a result. If qvf

determines it will take more than 30 seconds, a time to completion estimate is printed.
This estimate is fairly accurate if the workload on the computer during the initial few
seconds of the bootstrap is representative of conditions during the entire bootstrap.
Even if workload conditions change dramatically, no further estimate is printed.

Bootstrap replicates and confidence intervals

As with the Stata bootstrap command, the confidence intervals displayed by qvf are
based on the variance matrix and are not calculated based on percentiles of the bootstrap
replicates. The qvf saving() and replace options can be used to save the individual
bootstrap replicates to a file and to perform further analysis on the bootstrap replicates.

The saving() option will save each bootstrap replicate, comma separated, in the
same order they are displayed. The iteration count for that replicate is added as well.
So, for our example, the stored data are listed in the following order: x1, x2, x3, x4, and
cons. Note that the saving() option will save all bootstrap replicates without regard
to any trimming percentages.

For example, the mean bootstrap parameter estimate is sometimes desired:

. qui qvf y x1 x2 x3 x4, bstrap brep(999) seed(1) saving("bootrep.txt") replace

. infile x1 x2 x3 x4 cons _skip(1) using bootrep.txt, clear
(999 observations read)
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. summarize

Variable Obs Mean Std. Dev. Min Max

x1 999 .9982838 .0702145 .765967 1.265923
x2 999 1.997864 .0716246 1.785184 2.28865
x3 999 3.054167 .0702604 2.844582 3.263436
x4 999 3.97179 .0709933 3.751332 4.165956

cons 999 4.994867 .0724652 4.744656 5.238493

To display median bootstrap parameter estimates and confidence intervals based on
standard percentiles, simply add the detail option to the summarize command above.
To calculate a specific percentile based confidence interval, try

. _pctile x1, p(2.5, 50, 97.5)

. return list

scalars:
r(r1) = .8637648224830627
r(r2) = 1.000898361206055
r(r3) = 1.135726928710938

which displays the median bootstrap replicate for parameter x1 and its 95% percentile
based confidence interval: [ .8638, 1.1357 ].

3.3 Instrumental variables

To use qvf to fit GLM-type models with instrumental variables, we use the following
syntax:

qvf depvar varlist1 varlist2 (varlist1 varlist3)
[

...
] [

, options
]

where

varlist1: the exogenous variables for which we have no instruments.

varlist2: the endogenous variables for which we have instruments varlist3.

varlist3: the exogenous instrumental variables for the varlist2 variables.

This syntax will fit a GLM-type model using instrumental variables of depvar on varlist1
and varlist2 using varlist3 (along with varlist1) as instruments for varlist2.

Three estimators of variance are available when using instrumental variables:

robust: the Huber/White/sandwich estimator of variance is the default
for qvf when instrumental variables are used.

mtopel: the Murphy–Topel variance estimator. This estimator is only
available when instrumental variables are present.

bstrap: the bootstrap estimator of variance.
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To demonstrate qvf with instrumental variables, we will use the simulated dataset we
created in section 3.2. First, we generate two instruments that are correlated ρ = .8
with the endogenous variables x3 and x4:

. gen t1 = .8*x3 + .6*invnorm(uniform())

. gen t2 = .8*x4 + .6*invnorm(uniform())

The analysis itself is

. qvf y x1 x2 x3 x4 (x1 x2 t1 t2)

IV Generalized linear models No. of obs = 2500
Optimization : MQL Fisher scoring Residual df = 2495

(IRLS EIM) Scale param = 2.879088
Deviance = 7183.324663 (1/df) Deviance = 2.879088
Pearson = 7183.32456 (1/df) Pearson = 2.879088

Variance Function: V(u) = 1 [Gaussian]
Link Function : g(u) = u [Identity]
Standard Errors : OIM Sandwich

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.003203 .0707847 14.17 0.000 .8644672 1.141938
x2 1.995794 .0731505 27.28 0.000 1.852421 2.139166
x3 3.137879 .212108 14.79 0.000 2.722155 3.553603
x4 4.09093 .1969634 20.77 0.000 3.704889 4.476971

_cons 4.892393 .1614647 30.30 0.000 4.575928 5.208858

As expected, the standard errors for x3 and x4 are larger then when no instrumental
variables are present. The equivalent ivreg syntax would be

. ivreg y x1 x2 (x3 x4 = t1 t2), robust

Note the slight difference in syntax. The qvf command follows the syntax of the Stata
regress command for a two-stage least-squares analysis.

4 Formal Stata syntax

qvf depvar
[

varlist
] [

(varlist)
] [

weight
] [

if exp
] [

in range
] [

message(#)

family(string) link(string) ltolerance(#) iterate(#)
[

ln
]

offset(varname) mtopel level(#) oim robust cluster(varname)

scale(string) vfactor(#) bstrap brep(#) btrim(#) seed(#)

saving(string) replace
]

General options

message(#) specifies the desired (observed) level of printed messages of the plugin
module. Users can use this option to suppress or request warning and informational
messages.
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0) Display nothing, not even fatal error messages.

1) Display fatal error messages only.

2) Display warning messages (default).

3) Display informational messages.

4) Display more informational messages.

Note that the ado-code that handles the I/O to the plugin may still print error
messages regardless of the message level setting.

The message command can also be used to see intermediate details of the internal
calculations of the code. These were used by the authors to debug the code. The
notation and mnemonics used are not documented and may not correspond to any-
thing in the printed documentation. Furthermore, the numbers may be in a raw and
unadjusted format that is difficult to interpret.

5, 6, 7) Display details with increasing verbosity.

Message levels are cumulative.

family(string) specifies the distribution of the dependent variable. The gaussian

family is the default. The choices and valid family and link combinations are the
same as for Stata’s glm command.

link(string) specifies the link function. The default is the canonical link for the
family() specified. The choices and valid family and link combinations are the
same as for Stata’s glm command.

ltolerance(#) specifies the convergence criterion for the change in deviance between
iterations. The default is 1e − 6.

iterate(#) specifies the maximum number of iterations allowed in fitting the model;
The default is 100. It is rare that one needs to increase this.

[

ln
]

offset(varname) specifies an offset to be added to the linear predictor. See [R] glm
for more information.

Standard error options

mtopel specifies that the Murphy–Topel variance estimator should be used. This option
is valid for instrumental variables models.

level(#) specifies the confidence level, in percent, for confidence intervals of the coef-
ficients.

oim specifies that the variance matrix should be calculated using the observed informa-
tion matrix (OIM) rather than the usual expected information matrix (EIM).
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robust specifies that the Huber/White/sandwich estimator of variance is to be used in
place of the traditional calculation. This is the default for instrumental variables.
robust combined with cluster() allows observations which are not independent
within cluster (although they must be independent between clusters).

cluster(varname) specifies that the observations are independent across groups (clus-
ters). See [R] glm for more information.

scale(x2|dev|#) overrides the default scale parameter. See [R] glm for more infor-
mation.

vfactor(#) specifies a scalar by which to multiply the resulting variance matrix. See
[R] glm for more information.

Bootstrap options

bstrap specifies that bootstrap standard errors should be calculated. The bootstrap is
internal to the code for the regression calibration command. The estimated time to
perform the bootstrap will be displayed should the bootstrap require more than 30
seconds.

brep(#) specifies the number of bootstrap samples generated to calculate the bootstrap
standard errors of the fitted coefficients. The default is brep(199).

btrim(#) specifies the amount of trimming applied to the collection of bootstrap sam-
ples prior to calculation of the bootstrap standard errors. The default is btrim(.02),
meaning that 1% of the samples (rounded) will be trimmed at each end. Trimming
has no effect on the parameter estimates.

When the bootstrap is run with mess(3), an informational message similar to this
one will display,

Average number of iterations per GLM call: 3.6
Maximum number of iterations for a GLM call: 5
Minimum number of iterations for a GLM call: 3
Trimming total of 4 bootstrap replications (2.0%).
Maximum change in standard errors due to trimming: 2.4%

indicating that 4 samples (2 on each end) were trimmed and that this trimming
resulted in a 2.4% change in magnitude of one of the standard errors. All other
standard errors changed less than 2.4%. This simple diagnostic gives an indication
of how trimming influenced the bootstrap standard errors.

seed(#) specifies a random number seed used in generating random samples for the
bootstrap calculations. This option has no effect if bootstrapping is not specified. Its
main purpose is to allow repeatability of bootstrap results. The default is seed(0),
which will seed the random number generator using the system clock.
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saving(string) specifies the file to which the bootstrap replicates will be saved. The
saving() option will save each bootstrap replicate, comma separated, in the same
order they are displayed. The iteration count for that replicate is added as well.
Note that the saving() option will save all bootstrap replicates without regard to
any trimming percentages.

replace replaces the file specified in the saving() option (if that file already exists).
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