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Abstract. This paper derives and gives explicit formulas for a derived sandwich
variance estimate. This variance estimate is appropriate for generalized linear
additive measurement error models fitted using instrumental variables. We also
generalize the known results for linear regression. As such, this article explains
the theoretical justification for the sandwich estimate of variance utilized in the
software for measurement error developed under the Small Business Innovation
Research Grant (SBIR) by StataCorp. The results admit estimation of variance
matrices for measurement error models where there is an instrument for the un-
known covariate.
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1 Introduction

This is the second of five papers describing software for fitting measurement error
models. Software production by StataCorp was funded by a National Institutes of
Health (NIH) Small Business Innovation Research Grant (SBIR). The goal of the work
described in the grant is the production of software to analyze statistical models where
one or more covariates are measured with error. The software development includes
two major features. The first development feature is the development of Stata pro-
grams to support communication to dynamically linked user-written computer code.
StataCorp was responsible for this development and support for user-written code in
the C/C++ programming languages was added to Stata version 8. Stata refers to com-
piled user-written code as plugins and maintains documentation on their web site at
http://www.stata.com/support/plugins.

In this paper, we investigate the derivation of the sandwich estimate of variance
for a generalized linear additive measurement error model fitted using instrumental
variables (IV). The general idea in this context has been proposed, for example, in
Carroll, Ruppert, and Stefanski (1995), and explicitly described for two-stage models
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in Hardin (2002); though this latter reference does not explicitly mention measurement
error as motivation. We also include a restatement of the findings for the simple case
of linear regression with instrumental variables and discuss the implications.

In section 2, we summarize the methods for fitting GLMs. In section 3, we state the
instrumental variables technique and provide explicit formulas for the sandwich estimate
of variance for GLMs with instrumental variables following the arguments of Hardin
(2002) and Murphy and Topel (1985). In section 4, we summarize the simplification
of our general formula for the case of linear regression. Section 5 presents an example
application, and we present a summary in section 6.

We investigate the case of fitting a generalized linear model (GLM) where one or
more of the covariates are measured with error. We have instruments available that
are uncorrelated with the error term of the model but correlated with the covariates
measured with error. Using the instrumental variables approach, we have an estimating
equation that includes the instrumental variables regressions in the estimation of the
GLM.

The usual variance estimate of the coefficient vector from the GLM does not take
into account the estimation of the instrumental variables regressions. We must derive
a variance estimate that takes into account these regressions as well as the GLM esti-
mation. As we show, the sandwich estimate of variance for estimating equations is a
valid estimator. This variance estimate defines estimating equations that include all
of the parameters—the parameters from the instrumental variables regressions and the
parameters from the GLM.

Hardin and Carroll (2003) present an overview of both generalized linear models and
the notational conventions that we employ in the present discussion. A second source
of information in the case of univariate measurement error is the gllamm command; see
Rabe-Hesketh, Skrondal, and Pickles (2003).

2 Estimation

Hardin and Carroll (2003) reference sources for estimation algorithms for the classical
GLM. In those references, it is assumed that the list of covariates is measured without
error. Recall that we use Xz for covariates measured without error, Xw for covariates
measured with error, Xs for the instruments of Xw, and Xr for the augmented matrix
of exogenous variables [Xz Xs].

We begin with an n × p matrix of covariates measured without error given by the
augmented matrix X = (Xz Xu), where Xu is unobserved, and Xw = Xu plus mea-
surement error. Xz is an n × pz matrix of covariates measured without error (possibly
including a constant), and Xw is an n × px (pz + px = p) matrix of covariates with
classical measurement error that estimates Xu. We wish to employ an n × ps (where
ps ≥ px) matrix of instruments Xs for Xw.
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Greene (2003) discusses instrumental variables and provides a clear presentation to
supplement the following concise description. The method of instrumental variables
assumes that some subset Xw of the independent variables is correlated with the error
term in the model. In addition, we have a matrix Xs of independent variables that are
correlated with Xw. Given X, Y and Xw are uncorrelated. Using these relationships, we
can construct an approximately consistent estimator that may be succinctly described.
One performs a regression for each of the independent variables (each column) of Xw

on the instruments and the independent variables not correlated with the error term
(Xz Xs). Predicted values are obtained from each regression and substituted for the
associated column of Xw in the analysis of the GLM of interest. This construction
provides an approximately consistent estimator of the coefficients in the GLM (it is
consistent in the linear case). Section 3 addresses forming a valid variance estimator for
the coefficients in the GLM.

If we have access to the complete matrix of covariates measured without error (if
we know Xu instead of using instruments Xs), we denote the linear predictor η =∑p

j=1[Xz Xu]jβj , and the associated derivative as ∂η/∂βj = [Xz Xu]j . The estimating

equation for β is then
∑n

i=1(yi − µi)/V(µi)(∂µ/∂η)i[Xz Xu]ji.

However, since we do not observe Xu, we use Xr = (Xz Xs) to denote the aug-
mented matrix of exogenous variables, which combines the covariates measured without
error and the instruments. We regress each of the px components (each of the j columns)
of Xw on Xr to obtain an estimated (pz + ps)× 1 coefficient vector γj for j = 1, . . . , px.

The complete coefficient vector γ = (γT
1 γT

2 · · · γT
px

)T for these IV regressions is
described by the estimating equation

Ψ2 =

⎡

⎢⎢⎢⎣

Xr
T (Xw 1 − Xrγ1)

Xr
T (Xw 2 − Xrγ2)

...
Xr

T (Xw px
− Xrγpx

)

⎤

⎥⎥⎥⎦
(1)

We may then form an n×px matrix X̂u = [Xrγ̂1 Xrγ̂2 · · · Xrγ̂px
] of predicted values

from the instrumental variables regressions to estimate Xu. Combining the (predicted
value) regressors with the independent variables measured without error, we may write
the estimating equation of the GLM as

Ψ1 =

n∑

i=1

yi − µi

V(µi)

(
∂µ

∂η

)

i

[Xz Xrγ]ji (2)

where

[Xz Xrγ]ji =

{
(Xz)ji if 1 ≤ j ≤ pz

(Xrγj−pz
)
i

if pz < j ≤ pz + px

Operationally, we obtain a two-stage estimate β̂ by first replacing each unknown
covariate Xw i for i = 1, . . . , px with the fitted values of the regression of Xw i on
(Xz Xs). We call the resulting n × px matrix of fitted values X̂u. We then perform
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the (second stage) usual GLM fit of Y on (Xz X̂u). This GLM fit provides an estimate
of β. Our goal is to construct a valid variance estimate of β.

3 The sandwich variance estimate

The variance matrix estimate from the IRLS algorithm used to compute the (second

stage) GLM fit assumes that X̂u = Xu. This is clearly unacceptable. An alterna-
tive approach is accounted for in Murphy and Topel (1985); this variance estimator is
included in the software developed as part of this small business innovation research
project. We derive an appropriate sandwich estimate of variance that takes into ac-
count the estimation of Xu. Excellent reviews of the sandwich variance estimator
and its properties are given in Carroll and Kauermann (2001) and Carroll et al. (1998),
while the classic references are Eicker (1963), Eicker (1967), Huber (1967), and White
(1980). Application of the sandwich estimate of variance for panel data is discussed in
Xie, Simpson, and Carroll (2000). Our application is a special case of Hardin (2002),
which describes the general derivation of asymptotic and sandwich variance estimators
for two-stage models. In fact, the instrumental variables approach to measurement error
is a special case of two-stage estimation.

The two-stage derivation resulting in an estimate for β involves estimating the com-
bined parameter vector given by Θ = (βT γT)T. These results are from the estimating
equations given in equations 1 and 2. While we are ultimately interested in β, we must
consider all of the parameters in forming the associated variance matrix.

Our goal is the construction of the sandwich estimate of variance given by VS =
A

−1
B A

−T. We form the variance matrix, A, for Θ by obtaining the necessary
derivatives. The variance matrix A (information matrix) may be calculated numerically,
but the analytic derivatives are not difficult and are given by

A =

⎡

⎢⎢⎣

−
∂Ψ1

∂β (pz+px)×(pz+px)

−
∂Ψ1

∂γ (pz+px)×{px(pz+ps)}

−
∂Ψ2

∂β {px(ps+pz)}×(pz+px)

−
∂Ψ2

∂γ {px(pz+ps)}×{px(pz+ps)}

⎤

⎥⎥⎦

−1

where

∂Ψ1

∂βk

= −
n∑

i=1

[
1

V(µi)

(
∂µ

∂η

)2

i

− (µi − yi)

{
1

V(µi)2

(
∂µ

∂η

)2

i

∂V(µi)

∂µ
−

1

V(µi)

(
∂2µ

∂η2

)

i

}]

[XZ XRγ]ji[XZ XRγ]ki

j = 1, . . . , pz + px; k = 1, . . . , pz + px

yields a matrix of size (pz + px) × (pz + px) (3)
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∂Ψ1

∂γℓk

= −

n∑

i=1

[
1

V(µi)

(
∂µ

∂η

)2

i

− (µi − yi)

{
1

V(µi)2

(
∂µ

∂η

)2

i

∂V(µi)

∂µ
−

1

V(µi)

(
∂2µ

∂η2

)

i

} ]

[XZ XRγ]jiXR kiβℓ+pz

j = 1, . . . , pz + px; k = 1, . . . , pz + ps; ℓ = 1, . . . , px

yields a matrix of size (pz + px) × {px(pz + ps)} (4)

∂Ψ2

∂βk

= 0

k = 1, . . . , pz + px

yields a matrix of size {px(pz + ps)} × (pz + px) (5)

∂Ψ2

∂γℓk

= −

n∑

i=1

XR jiXR ki

j = 1, . . . , pz + ps; k = 1, . . . , pz + ps; ℓ = 1, . . . , px

yields a block diagonal matrix of size {px(pz + ps)} × {px(pz + ps)}

where each block matrix is of size (pz + ps) × (pz + ps) (6)

The elements of the variance matrix are formed from the definitions above. Mapping
these equations is accomplished by defining the matrix A using

[XZ XRγ]ji =

{
XZ ji if 1 ≤ j ≤ pz(
XRγ(j−pz)

)
i

if pz < j ≤ pz + px

in which we apply the notation

XZ ji = ith observation of the jth column of XZ

XR ji = ith observation of the jth column of XR

γj−pz
= IV coefficient vector from regressing XW(j−pz) on XR

βℓ+pz
= (ℓ + pz)th coefficient of β

(
XRγ(j−pz)

)

i
= ith observation of (the predicted values from) XRγj−pz

γℓk
= kth coefficient of the ℓth IV coefficient vector

Equation 3 defines the (j, k) elements of A for j, k = 1, . . . , pz + px. Equation 4
defines the (j, k) elements of A for j = 1, . . . , pz + px and k = pz + px + ℓ, where ℓ =
1, . . . , px(pz +ps). This notation addresses the cross derivatives for all of the (pz +ps)×1
coefficient vectors γm for m = 1, . . . , px. Equation 5 calculates the (j, k) elements of A

for j = pz + px + ℓ, where ℓ = 1, . . . , px(pz + ps) and k = 1, . . . , pz + px. Equation 6
defines the (j, k) elements of A for j, k = pz +px +ℓ, where ℓ = 1, . . . , px(pz +ps). These
are the covariances of all of the (pz + ps) × 1 coefficient vectors γm for m = 1, . . . , px.
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Noting that Ψi = [Ψ1i Ψ2i], the middle of the sandwich estimate of variance is then
given by B =

∑n

i=1 ΨiΨ
T
i . A suitable estimate may be formed using

Ψ̂1i =

{
yi − µi

V(µi)

(
∂µ

∂η

)

i

[XZ XRγ̂]ji

}j=1,...,(pz+px)

(pz+px)×1

Ψ̂2i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
(XW 1 − XRγ̂1j)XR ji

]j=1,...,(pz+ps)

(pz+ps)×1

[
(XW 2 − XRγ̂2j)XR ji

]j=1,...,(pz+ps)

(pz+ps)×1

...[
(XW px

− XRγ̂pxj)XR ji

]j=1,...,(pz+ps)

(pz+ps)×1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{px(pz+ps)}×1

The sandwich estimate of variance for β is then the upper (pz + px) × (pz + px)
matrix of VS obtained from the derived estimates of A and B.

The preceding description is implemented in the qvf command provided as part of
the newly developed software.

4 The linear-regression case

In the linear-regression case (identity link and Gaussian variance), the derivation of the
sandwich estimate of variance greatly simplifies. This simplification is shown in detail
in White (1982). Here, we present the results of the simplification and summarize the
implications.

The naive (model-based) covariance matrix utilizes the fact that V (Y − XWβ) =

V{Yi − XW iβ} I = σ2
I where σ2 is the mean square of Yi − XW iβ̂. Thus, V(β̂) ≈

σ2(XT
PXP)−1, where XP = XS

(
X

T
S XS

)−1
X

T
S XW is a matrix of the predicted values

from using the instruments XS. Therefore, the correct asymptotic variance can be
obtained simply by performing a standard linear regression of Y on XP.

The sandwich estimate of variance is then clearly given by

(
X

T
PXP

)−1
X

T
P (Y − XWβ) (Y − XWβ)

T
XP

(
X

T
PXP

)−1

such that the usual sandwich estimate from the linear regression of Y on XP is correct.

Thus, for the standard linear regression case, we may obtain both a model-based
and a sandwich estimate of variance by considering only the second stage regression.
These simplifications are not true in the general case of a GLM and may be discerned
from the two-stage regression formula given in StataCorp (2003).
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5 Example application

Carroll, Ruppert, and Stefanski (1995) (hereafter, CRS) present several examples using
data from the Framingham Heart Study (see chapters 4 and 5). This dataset consists
of three measurements taken two years apart on 1,615 men aged 31–65. The outcome
variable is chd, indicating the presence of coronary heart disease within an eight-year
period following the third set of collected measurements. The predictors include age,
the patient’s age in years; smoke, an indicator of whether the patient smokes; sbp, the
systolic blood pressure; and chol, a categorical (three categories) of cholesterol.

In the examples, CRS uses the transformed predictor lbsp given by log(sbp−50). For
illustration, we use the indicator variable smoke as an instrument for the transformed
systolic blood pressure lbsp where the systolic blood pressure is the mean of two mea-
surements for the patient by different technicians. Our use of the smoke variable as an
instrument is for illustrative purposes, as this is not a good instrument. The purpose
in choosing smoke as the instrument is to magnify the comparative results of the naive
(GLM variance estimate ignoring the estimation from the IV regressions) and sandwich
estimate of variance. Table 1 lists the coefficient estimates and standard errors.

Table 1: Instrumental variables logistic regression results. Naive standard errors are
the result of ignoring the estimation from the instruments. Sandwich standard errors
are the result from the sandwich estimate of variance presented in the previous section.

Naive Sandwich
Variable Coeff Std. Error Std. Error
lbsp −20.6183 9.3636 14.3143
age 0.1914 0.0590 0.0884
chol 0.0171 0.0046 0.0069
constant 74.7127 37.3035 57.1535

This example demonstrates the difference between the two approaches. The naive
standard errors are calculated from the variance matrix resulting from the GLM fit using
the fitted values for the lbsp variable. This naive variance estimate does not take into
account the estimation of lbsp and is invalid.

The associated software developed for measurement error analysis includes sup-
port for various models and variance estimates. These estimates include the sandwich
variance estimate described here, as well as bootstrap, asymptotic (model-based), and
Murphy–Topel (for instrumental variables approach to measurement error).

6 Summary

This paper presents a sandwich estimate of variance for generalized linear models with
instrumental variables. The presentation includes detailed formulas for the calculation
of the variance estimate. These formulas admit the calculation of a valid variance
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estimate for the coefficient vector for any regression model within the generalized linear
models framework. These results may be extended to quasi-likelihood cases as well.

As Binder (1992) points out, the bread of the sandwich estimate of variance is not,
in general, symmetric. We have asymmetry for the case of GLMs with instrumental
variables due to the augmented matrices of cross derivatives. We have also shown that
in the special case of linear regression, our derivation simplifies such that we may use
the results of the second stage regression without modification.
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