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Abstract. This paper introduces additive measurement error in a generalized
linear-model context. We discuss the types of measurement error along with their
effects on fitted models. In addition, we present the notational conventions to be
used in this and the accompanying papers.
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1 Introduction

This is the first of five papers describing software for fitting measurement error mod-
els. Software production by StataCorp was funded by a National Institutes of Health
(NIH) Small Business Innovation Research Grant (SBIR). The goal of the work described
in the grant is the production of software to analyze statistical models where one
or more covariates are measured with error. The software development includes two
major features. The first development feature is the development of Stata programs
to support communication to dynamically linked user-written computer code. Stata-
Corp was responsible for this development, and support for user-written code in the
C/C++ programming languages was added to Stata version 8. Stata refers to com-
piled user-written code as plugins and maintains documentation on their web site at
http://www.stata.com/support/plugins.

The software for measurement error analysis, the second development feature, was
co-developed by StataCorp in conjunction with Raymond J. Carroll, James W. Hardin,
Henrik Schmiediche, Tamara Stoner, and H. Joseph Newton. Professor Carroll was the
design expert for the functionality of the software and provided formulas for known re-
sults, as well as deriving asymptotic standard error formula for estimators—work that
had not previously appeared in the literature. Hardin, Schmiediche, and Stoner worked
on the C/C++ programming languages and ado-code development, while Newton as-
sisted in both design and certification of the resulting software.

This work was premiered in a workshop held at the 2003 Boston Stata Users’ Group
meeting in March of 2003.

The project described was supported by Grant Number R44 RR12435 from the National Institutes

of Health, National Center for Research Resources. The contents of this article are solely the respon-

sibility of the authors and do not necessarily represent the official views of the National Center for

Research Resources.

c© 2003 StataCorp LP st0047
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We investigate the nature and effects of additive measurement error on fitted gener-
alized linear models (GLMs). Measurement error is defined and categorized along with
discussion of the transportability of models. We include a restatement of the findings
for the simple case of linear regression and discuss the implications. This restatement
serves as a particularly illustrative vehicle for identifying the important issues. We fol-
low closely the arguments and developments of Carroll, Ruppert, and Stefanski (1995)
but deviate from the notational conventions in that reference.

We investigate analysis strategies of fitting a GLM where one or more of the covariates
are measured with error. It is important to note that there are several avenues for
identifying and estimating this measurement error and we must be able to estimate this
source of variation to proceed with model fitting.

The main purpose of this initial paper is to provide a single source for identifica-
tion of the jargon and notation used to describe various types of measurement error
data. While measurement error itself is fairly easy to describe, the manner in which
we can estimate the necessary quantities that allow proper analysis incorporates several
different collections of measurements. Readers will find this initial article valuable for
reminders of these details as well as for identifying the role various notational quantities
play. This article is software free in the sense that we will not discuss any of the specific
commands that were written in support of this grant. Later articles will provide detailed
descriptions as well as syntax specifications for the developed programs.

2 Notational conventions

The usual notation in the measurement error literature involves naming individual ma-
trices: Z for covariates measured without error, W for error-prone observed covariates,
S for the instruments of W, and R for the augmented matrix of exogenous variables
[Z S]. To avoid confusion with the measurement error notation and the usual notation
associated with GLMs (the W weight matrix in the IRLS algorithm), we denote the usual
measurement error notational conventions as subscripts of X:

Table 1: Notational conventions

n the number of observations in the sample
p the number of covariates in the analysis of interest (p = pz + px)
Y the response variable in the analysis; (n × 1)
Xz the covariates measured without error; (n × pz)
Xu the (unknown) covariates measured with error; (n × px)
Xw the error-prone observed covariates for Xu; (n × pw), pw = kpx, k ≥ 1
Xs the instruments for Xw; (n × ps)
XT the extra exogenous variables for the instruments Xs; (n × pt)
Xr the augmented matrix of exogenous variables [Xz XT]; {n × (pz + pt)}

Table 1 lists the notational conventions. Table 2 illustrates the allowable data orga-
nizations for the accompanying software.
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Table 2: Allowable data organizations

Code pz px pw ps pt Restrictions
1 pz 0 0 0 0 pz ≥ 1
2 pz px px 0 0 pz ≥ 0, px ≥ 1
3 pz px kpx 0 0 pz ≥ 0, px ≥ 1; k ≥ 2
4 pz px 0 px pt pz ≥ 0, px ≥ 1; pt ≥ px

Data organizations described by code 1 do not need special measurement error soft-
ware. There are no covariates measured with error, and analyses proceed in a customary
fashion. Data organizations described by code 2 require user specification of the mea-
surement error variance since there are no data replicates from which to estimate the
error variance. Data organizations described by code 3 will admit user specification of
the measurement error variance, or we can estimate this variance from the replicate
data. Note that if there is more than one covariate measured with error (px > 1), then
each one of the covariates measured with error must have the same number and miss-
ingness of replicate measurements k (pw = kpx) per observation. Data organizations
described by code 4 must have an instrument for each unknown covariate. In addition,
there must be a list of extra exogenous variables with at least as many covariates as
there are unknown covariates. Estimation may then use instrumental variables methods
to generate the unknown covariates prior to estimating the model of interest. Standard
errors may then be calculated using standard two-stage estimation methods; see Hardin
(2002), for example.

Data organizations described by code 3 deserve further discussion. First, Stata users
will note that this organization requires a wide format instead of a long format. Second,
since the measurement error variance assumes that the order of the replicate error-prone
measurements is important, the missingness pattern (per observation) must be the same
for each replicate group.

Assume that the variables w11 and w12 are replicate measures for the unknown
variable xu1. Likewise, assume that the variables w21 and w22 are replicate measures
for the unknown variable xu2. For an observation i to be included in the analysis, the
missingness must match for w11 and w21 as well as for w12 and w22. Put another way,
for a given observation to be included in the analysis, the missingness pattern of the
ordered groups (w11,w12) and (w21,w22) must be the same; see table 3. Extensions to
three or more replicates proceed under these same restrictions.

(Continued on next page)
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Table 3: Missingness patterns for observation i

xu1 xu2 Included
w11 w12 w21 w22 in analysis?
observed observed observed observed yes
missing observed observed observed no
observed missing observed observed no
observed observed missing observed no
observed observed observed missing no
missing missing observed observed no
missing observed missing observed yes
missing observed observed missing no
observed missing missing observed no
observed missing observed missing yes
observed observed missing missing no
missing missing missing observed no
missing missing observed missing no
missing observed missing missing no
observed missing missing missing no
missing missing missing missing no

The method of regression calibration—Hardin, Schmiediche, and Carroll (2003a)—
and the method of simulation extrapolation—Hardin, Schmiediche, and Carroll (2003b)
—can be used to fit generalized linear models for data that are organized by codes 2 and
3. The qvf command, developed as part of the accompanying software, is a fast version
of the [R] glm command that allows instrumental variables specifications so that it can
be used for data that are organized by code 4; since it is a replacement for glm, the qvf

command may also be used, in many instances, for fitting models to data organized by
code 1.

3 Measurement error in simple linear regression

Many textbooks provide a cursory description of measurement error in the context of
linear regression. Typically, this description focuses on simple linear regression and
illustrates the effect of measurement error as a bias of the estimated slope toward zero.
This type of bias is known as attenuation.

As Carroll, Ruppert, and Stefanski (1995) point out, this conclusion must be qual-
ified for multiple regression, as the effect of measurement error depends on the rela-
tionship between the error-prone measurement, the unknown covariate we are trying to
measure, and the remaining covariates measured without error. For nonlinear regres-
sion models, the measurement error effects will depend on whether there is one or more
covariates, whether we have univariate or multivariate measurement error, and whether
the error-prone proxy is biased.
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We begin with an illustration of the effects of measurement error for the case of
simple linear regression to facilitate the present discussion. The model is given by
Y = β0 +β1Xu +ǫ, where the true covariate Xu has mean µx and variance σ2

x, the error
term ǫ is independent of the covariate, and the error term has mean zero and variance
σ2

ǫ . Under simple additive measurement error, we observe only Xw where Xw = Xu+U.
U has mean zero, variance σ2

u, and is independent of the covariate Xu.

Were we simply to regress Y on Xw, we would not obtain a consistent estimate of
β1 but instead obtain an estimate of β1∗ = λβ1 where

λ =
σ2

x

σ2
x + σ2

u

< 1

is the attenuation factor. Stata users also call this factor the reliability ratio; see
[R] eivreg.

For illustration, consider the following do-file:

clear
set seed 12345
if "‘1’" != "" {

set seed ‘1’
}

set obs 10

gen double xu = invnorm(uniform())
summ xu
replace xu = xu/sqrt(r(Var))
label var xu " "
* sigma^2_x = 1.00

gen double err = invnorm(uniform())
summ err
replace err = err/sqrt(r(Var))*.5
* sigma^2_e = 0.25

gen double u = invnorm(uniform())
summ u
replace u = u/sqrt(r(Var))
* sigma^2_u = 1.00

* generate error-prone version of "unknown" xu
gen double xw = xu + u
label var xw " "

* beta0 = 0
* beta1 = 1
gen y = 0 + 1*xu + err
label var y " "

regress y xu
mat btrue = e(b)
gen double ytrue = btrue[1,2] + btrue[1,1]*xw
label var ytrue " "
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regress y xw
predict double yhat
label var yhat " "

twoway (scatter y xu, m(+)) (scatter y xw, m(Oh)) (line ytrue xw, clp(dot)) /*
*/ (line yhat xw), /*

*/ legend( label(1 "True values") label(2 "Error-prone values") /*
*/ label(3 "True least-squares line") /*
*/ label(4 "Error-prone least-squares line") )

Running this do-file produces the illustration of the issues at hand. The graph
resulting from the execution of this do-file is presented in figure 1.

� 3� 2

� 10
1

2

�3 �2 �1 0 1 2

True values Error�prone values

True least�squares line Error�prone least�squares line

Figure 1: Illustration of the additive measurement error model. For these data, we
have σ2

x = σ2

u = 1 and σ2

ǫ = .25. The least-squares slope using the true covariate

would be β̂1 = 1.1502, and the least-squares slope using the error-prone measurements
is β̂1∗ = 0.5337 ≈ 1.1502{σ2

x/(σ2

x + σ2

u)} = 0.5751. For each true value represented by
the plus sign, there is an observed circle at the same height, but it is measured with
horizontal error (error in the covariate). The measurement error tends to widen the
scatterplot, thus pulling the fitted regression slope toward a horizontal line.
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We included a check for a first argument in the preceding do-file. Interested readers
can run the do-file with a single argument specifying a random number seed to see
slightly different results.

It is a common misconception that the presence of measurement error always atten-
uates (biases the estimated coefficient toward the null) the estimated slope. In fact, this
conclusion depends on the assumption of additive measurement error. Carroll, Ruppert,
and Stefanski (1995) point out circumstances and error models where this conclusion is
incorrect.

4 Estimating the measurement error variance

In assessing the error process, we might use external data sources. In such cases, the
transportability of the results is in question. In other words, if the external data sources
are not produced under a similar measurement error process, then using that external
data source for estimation of measurement error quantities in the current dataset is not
appropriate. The use of external sources for estimating the error process carries with
it the assumption that the error process in the data of interest is the same as for the
external source.

An estimate of the measurement error variance is needed to adjust for the bias in
estimated coefficients in a measurement error analysis. There are several techniques
for obtaining this estimated variance. In the following subsections, we describe each of
these techniques. From one perspective, the models we seek to fit are special cases of
missing-data problems. We seek to include a covariate in our model for which we do
not have observations, or for which we do not have complete observations. Using other
sources of information, we must build up an unbiased representation of this unknown
covariate to use in model fitting. Standard errors must then be adjusted to account for
this extra source of variability.

There are, thus, two steps to addressing measurement error. The first step is the
construction of a proxy for the missing covariate. In general, we may have no observa-
tions or some subset of observations for the covariate of interest. We must have some
other source of information to substitute for the missing observations for this covariate.
This information could come from unbiased replicate error-prone measurements. This
is useful as it provides an observation-wise point estimate of the missing covariate as
well as a source for estimating the error variance. Alternatively, we might have an un-
biased instrument for the missing covariate along with additional covariates to use in
an instrumental variables regression approach. A third approach utilizes an error-prone
measurement error proxy with an externally determined estimate of the measurement
error.

4.1 User-specified variance

The easiest adjustment is provided by a user-specified estimate of the measurement
error variance. This specification may be the result of some external study though one



336 Measurement error

must be concerned with the transportability of the estimate. The analysis may concern
a subset of a much larger collection of replicate measures from which a sound estimate
of the measurement error variance may be obtained. Finally, the analysis may include
covariates that have a long history of estimation in other related studies from which the
measurement error variance is largely believed to be “known”.

For any of these cases, the analyst may choose to specify an estimate of measurement
error variance despite the presence of information in the data that would otherwise allow
calculation of an estimate. In effect, this specification of the error variance is exactly
what is behind the Stata eivreg command except that the command refers to the
reliability (a function of the error variance).

4.2 Replicate measures

Replicate measures of the unknown covariate provide a very good means for estimating
the measurement error covariance. Carroll, Ruppert, and Stefanski (1995) point out
that certain types of covariates can be subject to drift such that later measurements
from proxy variables tend to exhibit a shift in the mean across the observations. When
Xu has multiple columns, it is assumed that for each observation, there are the same
number of replicate proxy measures obtained. As such, the order of these measures
is important in regard to drift. The measurement error covariance is calculated by
summing a function of

∆ij

(
Xw ij − Xw i·

) (
Xw ij − Xw i·

)
T

where i is the observation and j is the replicate number; ∆ij is an indicator that replicate
j is nonmissing (for each column of Xw) for observation i. It may be difficult to see
initially, but this formula is the reason for the results listed in table 3.

4.3 Instrumental variables

We may have an unbiased measure for the unknown covariate along with a list of exoge-
nous variables. Using the covariates measured without error Xz along with the other
exogenous variables XT, we can address the bias in the estimated coefficients through
standard instrumental variables techniques. First, the instrument Xs is regressed on
the augmented matrix of covariates Xr = [Xz XT]. Fitted values from this regression
are then used in place of the instruments in a standard analysis.

A variance estimate of the resulting coefficients in the standard analysis may be
calculated using standard instrumental variables techniques. These variance estimators
include the Murphy–Topel, sandwich, and bootstrap estimators. All are included in the
accompanying software.
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5 Generalized linear models

This section provides a short review of generalized linear models without reference to
measurement error. The section is meant as a short introduction to the full complement
of models that are supported in the accompanying software wherein we describe the
analyses of interest apart from the considerations we must make with measurement error.
All of the techniques that we describe for addressing the bias induced by measurement
error are addressed for the class of generalized linear models.

Nelder and Wedderburn (1972) introduced theory and an algorithm appropriate for
obtaining maximum likelihood estimates where the response follows a distribution in
the exponential family. This idea is extended in Wedderburn (1974), where it is shown
that one need only assume moment properties (without relying on an underlying distri-
bution), thus implying a quasi-likelihood model.

The treatment of generalized linear models (GLMs) has received attention in many
articles and books such as McCullagh and Nelder (1989), Lindsey (1997), and Hardin
and Hilbe (2001). These sources provide the detailed derivations of appropriate estima-
tion algorithms.

The derivation of the iteratively reweighted least squares (IRLS) algorithm appropri-
ate for fitting GLMs usually begins with the likelihood for an exponential family. The
useful conclusion of the derivation is that a new estimate of the coefficient vector may
be obtained via weighted ordinary least squares. Estimates are obtained by iterating
the process to convergence.

The usual method for deriving classical likelihood-based regression models is to
choose a distribution that matches the outcome variable. Once a distribution is cho-
sen, a linear combination of covariates with unknown coefficients is substituted for the
expected value of the distribution. In some cases, we also reparameterize this linear
combination to enforce any range restrictions on the location parameter imposed by the
distribution.

This mechanical description is an easy method for deriving specific regression models
(linear regression, Poisson regression, logistic regression, etc.). However, it turns out
that we can start by specifying an entire family of distributions for the outcome rather
than one specific distribution. In so doing, we not only derive a general model, but we
also derive a very efficient estimation algorithm.

Generalized linear models are the result of assuming the exponential family of distri-
butions for the outcome variable. Continuing in the usual mechanical fashion of deriving
a model, there are two helpful assumptions we can make. First, we can generalize the
parameterization of the linear combination of covariates and associated coefficients as
a link function, and second, we can derive a simple algorithm for estimation by substi-
tuting the Fisher scoring matrix for the Hessian. The resulting estimation method is
known as iteratively reweighted least squares. Since all of the members of the exponen-
tial family have variance that is proportional to the mean, we can fully describe any
member through a link and variance function. A final generalization from Wedderburn
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(1974) allows us to choose these two functions without constraining them to originate
from the same family member.

This section does not contain enough material to fully appreciate the study of
generalized linear models. See the classic reference McCullagh and Nelder (1989) or
Hardin and Hilbe (2001), which is specific to using Stata. The advantage of discussing
measurement error models as extensions of generalized linear models is that the discus-
sion then admits a wide range of models without introducing more theoretical justifica-
tions.

The exponential family of distributions includes a location parameter θ, a scale
parameter a(φ), and a normalizing term c(y, φ). The associated probability density
function is then given by

f(y; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
(1)

where E(y) = b′(θ) = µ and V(y) = b′′(θ)a(φ). The normalizing term is independent
of the parameter vector θ and ensures that the density integrates to one. Range re-
strictions on the parameter vector are addressed after the estimating equation has been
constructed. The variance function is in terms of the expected value of the distribution
and is also a function of the (possibly unknown) scale parameter a(φ). The density for
a single observation is

f(yi; θ, φ) = exp

{
yiθ − b(θ)

a(φ)
+ c(yi, φ)

}

and the joint density for n independent outcomes is the product of the individual out-
come densities:

f(y1, . . . , yn; θ, φ) =

n∏

i=1

exp

{
yiθ − b(θ)

a(φ)
+ c(yi, φ)

}

The likelihood is simply a restatement of the joint density, where the outcomes are
taken as given, and we model the parameters as unknown:

L(θ, φ|y1, . . . , yn) =

n∏

i=1

exp

{
yiθ − b(θ)

a(φ)
+ c(yi, φ)

}

In many model-building derivations, covariates are introduced into consideration in
terms of the expected value of the outcome. In this case, we will wait to introduce the
covariates into the estimating equation. We introduce a subscript for θ in anticipation
of introducing the covariates.

The log likelihood for the exponential family is

L(θ, φ|y1, . . . , yn) =

n∑

i=1

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
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The goal is to obtain a maximum likelihood estimator for θ. Since our focus is only on
θ, we derive a LIML estimating equation where we treat the dispersion parameter a(φ)
as ancillary.

We have from basic principles that E(∂L/∂θ) = 0. The LIML estimating equation is
then Ψ(Θ) = ∂L/∂θ = 0 where ∂L/∂θ =

∑
i(yi − b′(θ))/a(φ). Utilizing the GLM result

that in canonical form b′(θ) = µ, we write

∂L

∂θ
=

n∑

i=1

yi − µi

a(φ)

substituting µ for the expected value.

Since our goal is to introduce covariates that model the outcome, we include a sub-
script on µ allowing the mean to reflect a dependence on a linear combination of the
covariates and their associated coefficients. Later, we consider the effects on fitted mod-
els when one or more of the covariates are measured with error. We use the chain rule
to obtain a more useful form of the estimating equation; this is the usual presentation
in discussions of the GLM:

∂L

∂βj

=

(
∂L

∂θ

)(
∂θ

∂µ

)(
∂µ

∂η

)(
∂η

∂βj

)

=

n∑

i=1

(
yi − b′(θi)

a(φ)

)(
1

V(µi)

)(
∂µ

∂η

)

i

(xji)

=

n∑

i=1

yi − µi

a(φ)V(µi)

(
∂µ

∂η

)

i

xji

This presentation utilizes L for the quasilikelihood, g() for the link function relating
the expected outcome to the linear predictor (the sum of the products of the covariates
with their associated coefficient), and V() for the variance function in terms of the
expected outcome. The derivation of the estimating equation along with the derivation
and justification of the iteratively reweighted least squares algorithm is given in detail
in Hardin and Hilbe (2001).

In terms of measurement error models, we must consider the case for which one or
more of the X variables are measured with error. We differentiate the covariates using
the notation presented earlier, Xz for covariates measured without error and Xw for
covariates measured with error, and note that the first subscript j of the covariate in the
estimating equation is in {1, . . . , pz + px} referring to each covariate in the model. The
benefit of utilizing the generalized linear model framework is that we simultaneously
produce valid results for the entire collection of models represented by the exponential
family.

Additional information can be found in the documentation for the glm command
as well as in a forthcoming article on the qvf command produced under the associated
grant. What is important about the derivation in terms of the exponential family of dis-
tributions is that we have an estimation equation for which we can discuss measurement
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error. Discussion of measurement error in this framework allows us to derive results for
the entire family. Thus, support for the generalized linear models framework ultimately
allows us to simultaneously address needs in linear regression, Poisson, logistic, probit,
negative binomial, and many other models.

The software developed in support of this work is written in terms of generalized
linear models. Each new command that we introduce is written in terms of a specific
algorithm for addressing measurement error and applies these algorithms in terms of
GLMs so that users may apply the specific technique to a wide collection of models.

6 Summary

Analyses with measurement error data must address the bias induced through the ex-
tra variance component. We have provided a notational convention that allows us to
describe a collection of various data organizations. Depending on the amount of infor-
mation contained in the data, analyses may be adjusted for bias and standard errors
calculated. Various methods for this adjustment are described in Carroll, Ruppert, and
Stefanski (1995).
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