PRIVATE STRATEGIES, PUBLIC POLICIES & FOOD SYSTEM PERFORMANCE

Price Determination in the Bottled Water Industry: A Case Study of Poland Spring

by

Hong Wen* and Lawrence E. Haller*

WP - 41 August 1994

WORKING PAPER SERIES

A Joint USDA Land Grant University Research Project
Price Determination in the Bottled Water Industry:
A Case Study of Poland Spring

by

Hong Wen* and Lawrence E. Haller*

WP - 41 August 1994

* Graduate student and research assistant in the Food Marketing Policy Center,
Department of Agricultural and Resource Economics, University of Connecticut,
Storrs, CT 06269-4021.
Price Determination in the Bottled Water Industry:
A Case Study of Poland Spring

Abstract

This paper analyzes the price of a single brand in the bottled water industry. We find that the brand's price is negatively related to its own share. We also find that price is positively related to the four firm concentration ratio in the carbonated segment, but unrelated in the noncarbonated segment.
This paper analyzes the performance of a single brand in the bottled water industry. The brand studied is Poland Spring, which ranks among the top 10 brands (by volume) in both the carbonated and noncarbonated segments of the industry. Its manufacturer, Source Perrier S A, was the third largest vendor of bottled water at the end of 1992. This study uses quarterly data extracted from Information Resources, Inc.'s (IRI) InfoScan data base for the period beginning with the first quarter of 1988 and ending with the fourth quarter 1992.

Bottled water first gained popularity in the United States in the late 1970s and early 1980s. In the late 1970s, bottled water began to appear in bars and on the tables of restaurants in metropolitan areas. Since that time consumers have increasingly used bottled water as an accompaniment to or substitute for wine at mealtime (Beverage Marketing). Throughout the 1980s, it was the fastest growing segment of the beverage industry, experiencing double-digit growth throughout the decade.

Because of its rapid growth, the industry remains highly fragmented, with many small regional brands trying to establish a foothold in what is characterized as a "lucrative market" (Beverage Marketing). In addition to pure price competition, firms competing for market share in this industry are using a good deal of non-price competition, including advertising and product differentiation via brand names. Industry analysts predict that "competition will be greater and the prices lower" in the future (Beverage Marketing).

The first section of this paper extends oligopoly theory to show the relationship between the price a dominant firm charges and its market share and market conditions in a differentiated goods industry. The second section develops an estimatable model of price in the bottled water industry and discusses the data and methodology used. Third, we present the results of our estimations, and finally, we discuss and draw conclusions from the results.

Theoretical Development

Our formal analysis of the differentiated product dominant firm model begins with the dominant
firm's profit function:

\[\pi_i = p_i \cdot q_i - TC_i \]

where \(q_i = q(Q(p_{i-}), q_R(p_{i-}), P_R(p_{i-})) \) is firm \(i \)'s perceived demand,

\(Q = q_i + q_R \) is total industry output,

\(q_R \) is the sum of all rivals' output quantities, and

\(P_R \) is the rivals' price response function.

The first-order condition for profit maximization in the Bertrand (price setting) model, in terms of firm \(i \)'s price, marginal cost, and own-price elasticity of demand, \(\eta_i \):

\[\frac{d\pi_i}{dp_i} = -(p_i - MC_i) \eta_i + p_i = 0 \]

Using the fact that \(q_i = q(Q(p_{i-}), q_R(p_{i-}), P_R(p_{i-})) \), we can express \(\eta_i \) as

\[\eta_i = -\frac{\frac{dq_i}{dp_i} p_i}{\frac{dp_i}{q_i}} = \frac{\eta^M + \theta (1 - s_i) - \eta^C R S_i}{s_i} \]

where \(\eta^M = -\frac{\partial Q}{\partial p_i} \frac{p_i}{Q} > 0 \) is the price elasticity of market demand,

\(\theta = \frac{\partial q_R}{\partial p_i} \frac{p_i}{q_R} \geq 0 \) is the conjectural own-price elasticity of rivals' supply,

\(\eta^C = \frac{\partial q_i}{\partial P_R} \frac{P_R}{q_i} \geq 0 \) is the cross-price elasticity of own-firm demand, and

\(\eta^R = \frac{\partial P_R}{\partial p_i} \frac{p_i}{P_R} \geq 0 \) is the conjectural rival price response elasticity.

Substituting this into equation (2) and solving for \(p_i \) yields:

\[p_i = MC_i \frac{\eta_i}{\eta_i - 1} = MC_i \frac{\eta^M + \theta (1 - s_i) - \eta^C R S_i}{\eta^M + \theta (1 - s_i) - \eta^C R S_i - s_i} \]

The derivative of equation (6) with respect to market share is

\[\frac{\partial p_i}{\partial s_i} = MC_i \frac{\eta^M + \theta}{[\eta^M + \theta (1 - s_i) - \eta^C R S_i - s_i]^2} \]

This derivative will be positive unless \(\theta < 0 \) (firm \(i \)'s conjecture is that rivals will respond to a price cut by increasing their own output) and \(|\theta| > \eta^M \) (firm \(i \)'s conjecture is that rivals will expand their output...
by more than the total increase in market demand resulting from its price cut) (Harris, p. 274). In the case of constant costs, a firm’s price is a positive function of its market share. In the event of a marginal cost decrease, price also decreases. If the decrease in marginal cost increases market share, then one has an ambiguous price result.

Development of the Empirical Model

The theoretical model must be expanded to reflect institutional realities in the particular industry studied and the panel nature of the data set. The data set is three dimensional in nature — it contains observations across up to 22 markets for a time period of twenty quarters. In addition, it contains observations for both carbonated and noncarbonated water. To address this last dimension, we will assume that the structural variables affect both segments equally, and that only the relationship between market share and price differs for the two segments.

The dependent variable used is the Average Price per volume equivalent. The industry standard "volume equivalent" in soft drinks and bottled water is traditionally 192 ounces, an amount equal to a case of 8 ounce bottles. The Average Price is the average price paid by consumers for the quarter, net of all discounts except manufacturers’ coupons.

We use two alternative variables to examine the effects of share on price. The Volume Share is the quantity of Poland Spring sold during the quarter divided by the total quantity of all brands of carbonated and noncarbonated water sold in the market that quarter. Theory developed above, as well as previous empirical findings (e.g., Wills), leads us to expect a positive relationship between volume share and price. As an alternative specification, we replace market share with Brand CR4. Brand CR4 is constructed for each market by summing the market shares of the four leading brands in that market for the quarter. Previous empirical studies (e.g., Cotterill, Weiss) have found a positive relation between concentration and price. We therefore expect to find a positive relationship between concentration and price.

We use Private Label Price as an instrument for the unobservable marginal cost. Connor and Peterson argue that private label price represents the "competitive" price in a market since private label
goods are not promoted and are produced under contract to retailer specifications that usually copy leading brand ingredients, flavors, etc. Private label price effectively equals marginal cost. Higher private label prices merely reflect a higher cost of doing business in a given market and therefore prices for branded products should also be higher. The private label price represents the average price for all store brands offered by retailers in the market area.

We include two demographic variables that act as demand shifters. The Population of the market area is included to examine the effect of market size. If there are increasing economies of scale in the range of market sizes in this sample, population should have a negative influence on price. However, if firms incur higher costs in larger markets, these markets should have higher prices. This variable is constant over a calendar year and is obtained from Market Profiles, provided by IRI, supplemented with Progressive Grocer’s Market Scope.

Median Family Income can be considered a proxy for wage costs in the market, and so represent a cost of doing business for the retailer. Second, assuming that bottled water is a normal good, rising income will increase demand and, ceteris paribus, price. Median Family Income is constant over a calendar year and its source is Market Scope.

The Volume per Unit variable is included to control for the lower prices charged per ounce for water sold in larger “economy” size containers, such as two liter bottles. It is constructed by dividing number of 192 oz. “volume equivalents” sold within a market by the total number of units (12 oz. cans, one liter bottles, etc.) sold. Unless consumers actually pay more per ounce for larger sizes, this variable should have a negative sign.

The basic models we will estimate are

\[
Price = \beta_1 D_1 + \beta_2 D_2 + \beta_3 (D_1 \times Structure\ Var) + \beta_4 (D_2 \times Structure\ Var) + \beta_5 PvtLabelPr + \beta_6 Median\ Income + \beta_7 Population + \beta_8 VolPerUnit
\]

where Structure Var is either Market Share or Brand CR4;

\(D_1 \) is equal to one if the observation is for carbonated Poland Spring, zero otherwise; and

\(D_2 \) is equal to one if the observation is for noncarbonated Poland Spring, zero otherwise.
Results

Table 1 contains descriptive statistics for the data used in our estimations. As can be seen, the mean price for carbonated water is more than twice that for noncarbonated water. This price difference is not unique to Poland Spring. In the fourth quarter of 1992, for example, the mean price for all carbonated water in the U.S. was $4.64, while the mean price for noncarbonated water was $1.52 (IRI). There are marked differences in market share as well; the mean local share for carbonated Poland Spring is 7.76 percent, while the mean local share for noncarbonated Poland Spring is only 1.88 percent.

In order to get a better feel for the data, let us take a look at the data for Boston. In Figures 1 and 2, we see that in Boston Poland Spring's carbonated water reached a maximum market share of 3.88 percent and a maximum price per volume $7.88. For noncarbonated water (Figures 3 and 4), the maximum price is $1.95 and the maximum market share is 28.45 percent. Note that over time price has dropped and market share has increased for carbonated water; with a significant price decrease in the first quarter of 1991 corresponding to a jump in its market share. A similar price drop for its noncarbonated water did not produce a similar increase in market share. This suggests that the two product markets are separate and that there may be different relationships between price and market share in the two segments.

The mean CR₄ is similar for the two segments. Poland Spring's noncarbonated products are more widely distributed, however, and this accounts for the different means for CR₄ and for the following variables. In fact, Poland Spring's noncarbonated water accounts for more than 60 percent more observations (302 vs. 182) than its carbonated products.

The mean private label price was a little less than $1.50 for both segments, and the median family income averaged about $35,000. Mean population for both segments was about 3.6 million, which is larger than the mean population of 2.7 million for all IRI markets. Poland Spring tends to be sold more in larger markets. The mean of the Volume per Unit variable is quite different for the two segments. It is much larger for the noncarbonated water segment, indicating that Poland Spring sells its
noncarbonated water in larger containers.

Table 2 contains the results of our regressions. Equation 1 contains the structural variable Market Share. Overall, the model explains a high percentage of the variation in the price of Poland Spring, with an R^2 of 0.819. Market share is negative in both segments, and significant at the five percent level for the carbonated water segment and significant at the one percent level for the noncarbonated water segment. This finding is in contradiction to the theory presented above; its implications will be discussed below. The coefficient on carbonated water's market share is more than four times greater in magnitude than that for noncarbonated water, indicating that carbonated water faces a much steeper demand curve. Private Label Price is positive, as hypothesized, and significant at the one percent level. Private label price is clearly a good indicator of costs in local markets.

Larger markets have higher prices. Population is positive and significant at the one percent level. The magnitude of the coefficient indicates a price spread between the smallest and largest markets in the sample of about 55 cents. The coefficient for median family income is negative and significant at the one percent level. This is in contradiction to our hypothesis that median income should serve as an instrument for labor costs and so carry a positive sign. If demand for bottled water is higher in higher income markets, this greater demand may attract entrants to these markets and increase competition, thereby lowering price. Finally, the coefficient for the volume per unit variable is negative, as hypothesized, and significant at the one percent level. Consumers who purchase water in larger sized bottles do save money.

Turning to equation 2 containing brand level CR_t as the structural variable, we again see a high level of explanatory power, with an R^2 of 0.814. In this case, we see that CR_t is positive, as hypothesized, and significant at the five percent level for carbonated water, but it is not significant for noncarbonated water. This indicates that market power is being exercised in the carbonated water segment, providing a price umbrella for all brands, but not in the noncarbonated segment.

The remaining variables perform much as they did much in equation 1, except that the significance level of the coefficient for population drops to the five percent level and the significance of the
Discussion and Conclusions

The finding of a significant negative relationship between market share and price, in contradiction of our hypothesis, merits some discussion. Haller (1994), modelling brand price in the catsup industry, finds that the relationship between share and price when viewed in an interbrand context (Heinz' share vs. Hunts' share) is positive, but the relationship turns negative when viewed in an intrabrand context (variations in Heinz' share across markets or over time). The negative intrabrand relationship is determined by the short-run demand effects of price changes. Higher share brands do have, on average, higher prices but demand effects trace a negative relationship around the higher mean price.

We find evidence that market power is being exercised and price levels increased in more concentrated markets, at least in the carbonated water segment. Poland Springs is not frequently in the top four brands in the local markets it competes in, so it appears that it is following the price leadership of the top selling brands. There is no evidence to support a similar conclusion in the noncarbonated segment. Indeed, this segment appears to be effectively competitive.

Private label price is an excellent predictor of price and, following Connor and Peterson, an excellent instrument for marginal cost. We also find that prices are higher in larger markets, but we cannot determine from this data whether this is due to diseconomies of size (greater amounts of inputs necessary to deliver the same output) or merely due to higher input costs (the same amount of inputs at higher prices to deliver the same output), or both. Finally, we find that it is important to control for package size when modelling price for retail packaged food products, and that consumers do save money by buying bottled water in larger containers.
Figure 1
Market Share
Carbonated Water - Boston

Source: Information Resources, Inc.

Figure 2
Price
Carbonated Water - Boston

Source: Information Resources, Inc.
Figure 3

Source: Information Resources, Inc.

Figure 4

Source: Information Resources, Inc.
<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonated Water Segment (n = 182)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Price</td>
<td>$5.85</td>
<td>1.12</td>
<td>$4.30</td>
<td>$9.56</td>
</tr>
<tr>
<td>Volume Share</td>
<td>1.88</td>
<td>1.41</td>
<td>0.50</td>
<td>7.42</td>
</tr>
<tr>
<td>Brand CR₄</td>
<td>36.83</td>
<td>10.20</td>
<td>12.8</td>
<td>76.2</td>
</tr>
<tr>
<td>Private Label Price</td>
<td>$1.45</td>
<td>1.02</td>
<td>0.0</td>
<td>$3.69</td>
</tr>
<tr>
<td>Population</td>
<td>3,630,000</td>
<td>3,920,000</td>
<td>924,000</td>
<td>15,700,000</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$35,820</td>
<td>8,400</td>
<td>$20,730</td>
<td>$52,950</td>
</tr>
<tr>
<td>Volume per Unit</td>
<td>0.163</td>
<td>0.0165</td>
<td>0.146</td>
<td>0.245</td>
</tr>
<tr>
<td>Noncarbonated Water Segment (n = 302)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Price</td>
<td>$2.53</td>
<td>1.63</td>
<td>$1.23</td>
<td>$7.01</td>
</tr>
<tr>
<td>Volume Share</td>
<td>7.76</td>
<td>7.91</td>
<td>0.52</td>
<td>28.45</td>
</tr>
<tr>
<td>Brand CR₄</td>
<td>39.86</td>
<td>10.23</td>
<td>12.8</td>
<td>77.8</td>
</tr>
<tr>
<td>Private Label Price</td>
<td>$1.49</td>
<td>1.25</td>
<td>0.0</td>
<td>$9.48</td>
</tr>
<tr>
<td>Population</td>
<td>3,630,000</td>
<td>3,690,000</td>
<td>740,000</td>
<td>15,700,000</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$34,090</td>
<td>8,270</td>
<td>$20,730</td>
<td>$52,950</td>
</tr>
<tr>
<td>Volume per Unit</td>
<td>0.56</td>
<td>0.21</td>
<td>0.15</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Table 2 Regression Results for Poland Spring Bottled Water
Dependent Variable is Average Price per Volume

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>Equation 1</th>
<th>Equation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient (t-ratio)</td>
<td>Coefficient (t-ratio)</td>
</tr>
<tr>
<td>Market Share (Carbonated Segment)</td>
<td>-0.112 (-2.02)**</td>
<td></td>
</tr>
<tr>
<td>Market Share (Noncarbonated Segment)</td>
<td>-0.0273 (-3.68)*</td>
<td></td>
</tr>
<tr>
<td>Brand CR₄ (Carbonated Segment)</td>
<td></td>
<td>0.0150 (2.12)**</td>
</tr>
<tr>
<td>Brand CR₄ (Noncarbonated Segment)</td>
<td></td>
<td>0.00051 (0.92)</td>
</tr>
<tr>
<td>Private Label Price</td>
<td>0.204 (5.45)*</td>
<td>0.190 (5.07)*</td>
</tr>
<tr>
<td>Population (Millions)</td>
<td>0.0371 (3.10)*</td>
<td>0.0272 (2.19)**</td>
</tr>
<tr>
<td>Median Family Income ($Thousands)</td>
<td>-0.0137 (-2.56)**</td>
<td>-0.0094 (-1.74)**</td>
</tr>
<tr>
<td>Volume per Unit</td>
<td>-6.059 (-21.54)*</td>
<td>-6.456 (-24.26)*</td>
</tr>
<tr>
<td>Constant (Carbonated Segment)</td>
<td>7.11</td>
<td>6.31</td>
</tr>
<tr>
<td>Constant (Noncarbonated Segment)</td>
<td>6.18</td>
<td>6.08</td>
</tr>
<tr>
<td>R²</td>
<td>0.819</td>
<td>0.814</td>
</tr>
</tbody>
</table>

Note: There are 534 observations.
* Significant at 99% level, ** Significant at 95% level, *** Significant at 90% level
End Notes

1. For a more detailed derivation, see Haller (1994).

2. All rivals are assumed to be characterized by a single price response function, making this in effect a 2 firm model. The model can be fully generalized to n firms by incorporating n - 1 distinct price response functions.

3. Throughout this paper we will follow the convention of considering the price elasticities of demand to be positive numbers; for instance, firm i's own-price elasticity of demand is given by:

\[\eta_i = -\frac{\partial q_i}{\partial p_i} \frac{p_i}{q_i} \]
References

Regional Research Project NE-165
Private Strategies, Public Policies & Food System Performance
Working Papers

37. Ding, John Y. and Julie A. Caswell. 1993. "Relatedness and Performance: A Reexamination of the Diversification-Performance Link" Ohio State University, Columbus, OH and University of Massachusetts, Amherst, MA.

38. Ding, John Y., Julie A. Caswell and Richard T. Rogers. 1994. "Restructuring's Effect on Related and Unrelated Diversification Among Top Food Manufacturing Firms in the 1980s" Ohio State University, Columbus, OH and University of Massachusetts, Amherst, MA.

Purpose: The NE-165 Working Paper Series provides access to and facilitates research on food and agricultural marketing questions. It is intended to be a publication vehicle for interim and completed research efforts of high quality. A working paper can take many forms. It may be a paper that was delivered at a conference or symposium but not published. It may be a research report that ultimately appears in full or abbreviated form as a journal article or chapter in a book. Using the working paper series enables a researcher to distribute the report more quickly and in more extensive detail to key research users. A working paper may also be an end product in itself, for example, papers that collate data, report descriptive results, explore new research methodologies, or stimulate thought on research questions.

Procedures: Working papers may address any issues in the food and agricultural marketing area as described in the NE-165: Private Strategies, Public Policy and Food System Performance, project statement. This research agenda is available from Professor Ronald Cotterill, Executive Director of NE-165 at the address given below. A prospective working paper should be forwarded to the Executive Director who will coordinate a review of the paper by two research peers. Alternatively authors may submit two independent peer reviews with their paper. Based upon reviewer comments the Executive Director may accept, accept with revisions, or reject the submission. If accepted the Executive Director will issue working paper covers, and a mailing list to the author who shall have responsibility for preparing and distributing copies to all persons and organizations on the mailing list. Additional copies of working papers are available from the author or from the Food Marketing Policy Center at the University of Connecticut.

Professor Ronald W. Cotterill, Food Marketing Policy Center, Department of Agricultural and Resource Economics, U-21, University of Connecticut, Storrs, Connecticut 06269-4021, Tel. No. (203) 486-2742, FAX (203) 486-2461