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random-coefficients model
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Abstract. This article discusses the Swamy (1970) random-coefficients model
and presents a command that extends Stata’s xtrchh command by also providing
estimates of the panel-specific coefficients.
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1 Introduction

Fixed- and random-effects models incorporate panel-specific heterogeneity by including
a set of nuisance parameters that essentially provide each panel with its own constant
term. However, all panels share common slope parameters. Random-coefficients models
are more general in that they allow each panel to have its own vector of slopes randomly
drawn from a distribution common to all panels. Stata’s xtrchh command provides es-
timates of the parameters characterizing the distribution from which the panel-specific
parameters are drawn. The command included with this article extends Stata’s imple-
mentation by also providing best linear unbiased predictors of the panel-specific draws
from that distribution.

Section 2 develops the Swamy (1970) random-coefficients model. Section 3 then
presents the syntax and usage of a command called xtrchh2 that implements the esti-
mator in Stata, and section 4 presents an example. Section 5 lists the results stored by
xtrchh2.

2 Swamy’s random-coefficients model

Following Swamy (1970), consider a random-coefficients model of the form

yi = Xiβi + ǫi (1)

where i = 1...P denotes panels, yi is a Ti × 1 vector of observations for the ith panel,
Xi is a Ti × k matrix of nonstochastic covariates, and βi is a k× 1 vector of parameters
specific to panel i. The error term vector ǫi is distributed with mean zero and variance
σiiI. The panels do not need to be balanced.

Each panel-specific βi is related to an underlying common parameter vector β:

βi = β + vi (2)
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where E{vi} = 0, E{viv
′
i} = Σ, E{viv

′
j} = 0 for j �= i, and E{viǫ

′
j} = 0 for all i and

j. Combining (1) and (2),

yi = Xi(β + vi) + ǫi

= Xiβ + ui

with ui ≡ Xivi + ǫi. Moreover,

E{uiu
′
i} = E{(Xivi + ǫi)(Xivi + ǫi)

′}

= XiΣX′
i + σiiI

≡ Πi

Stacking the equations for the P panels,

y = Xβ + u (3)

where

Π ≡ E{uu′} =

⎡
⎢⎢⎢⎣

Π1 0 · · · 0

0 Π2 · · · 0
...

...
. . .

...
0 0 · · · ΠP

⎤
⎥⎥⎥⎦

Estimating the parameters of (3) is a standard problem in generalized least squares
(GLS), so

β̂ =
(
X′Π−1X

)−1

X′Π−1y

=
(∑

i
X′

iΠ
−1

i Xi

)−1 ∑
i
X′

iΠ
−1

i yi (4)

=
∑

i
Wibi

where

Wi =

[∑
j

{
Σ + σjj

(
X′

jXj

)−1
}−1
]−1 {

Σ + σii

(
X′

iXi

)−1
}−1

and bi ≡
(
X′

iXi

)−1

X′
iyi, showing that β̂ is a weighted average of the panel-specific

OLS estimates. The final equality in (4) makes use of the fact that

(
A + BDB′

)−1

= A−1 − A−1BEB′A−1 + A−1BE (E + D)
−1

EBA′−1

where E≡(B′
A

−1
B)

−1. See Rao (1973, 33).

The variance of β̂ is

Var(β̂) =
(
X′Π−1X

)−1

=
∑

i

{
Σ + σii(X

′
iXi)

−1
}−1

In addition to estimating β, one often wishes to obtain estimates of the panel-specific
βi vectors as well. As discussed by Judge et al. (1985, 541), if attention is restricted
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to the class of estimators {β∗
i } for which E {β∗

i | βi} = βi, then the panel-specific OLS

estimator bi is appropriate. However, if one does not condition on βi, then the best
linear unbiased predictor is

β̂i = β̂ + ΣX′
i

(
XiΣX′

i + σiiI
)−1
(
yi − Xiβ̂

)

=
(
Σ−1 + σ−1

ii X′
iXi

)−1
(
σ−1

ii X′
iXibi + Σ−1β̂

)

Greene (1997, 672) suggests using the following method to obtain the variance of

β̂i. Define Ai ≡
(
Σ−1 + σ−1

ii X′
iXi

)−1

Σ−1. Then

β̂i =
[
Ai (I − Ai)

] [ β̂
bi

]

and

Var(β̂i) =
[
Ai (I − Ai)

]
Var

(
β̂

bi

)[
A′

i

(I − Ai)
′

]

Note that

Var

(
β̂

bi

)
=

[
Var(β̂) Cov(β̂,bi)

Cov(β̂,bi) Var(bi)

]

The GLS estimator β̂ is both consistent and efficient; and, although inefficient, bi is nev-
ertheless also a consistent estimator of β. Thus, making use of Lemma 2.1 of Hausman
(1978), Asy.Cov(β̂,bi) = Asy.Var(β̂) − Asy.Cov(β̂, β̂ − bi) = Asy.Var(β̂). After some
algebraic manipulation,

Asy.Var(β̂i) = Var(β̂) + (I − Ai)
{

Var(bi) − Var(β̂)
}

(I − Ai)
′

To make the above formulas feasible, each σii may be replaced with the consistent OLS

estimate

σ̂ii =
(yi − Xibi)

′(yi − Xibi)

Ti − k

Swamy (1970) showed that a consistent estimator of Σ is

Σ̂ =
1

P − 1

(
P∑

i=1

bib
′
i − Pbb

′

)
−

1

P

P∑

i=1

σ̂ii(X
′
iXi)

−1

where b ≡ 1

P

∑
i bi. However, that estimator may not always be positive definite in

finite samples. A practical solution is to ignore the final term, and both Stata’s xtrchh
command and the xtrchh2 command accompanying this article do that.

A natural question to ask is whether the panel-specific βis differ significantly from
one another. Under the null hypothesis

H0 : β
1

= β
2

= · · · = βP (5)
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the test statistic

T ≡

P∑

i=1

(bi − β†)′
{
σ̂−1

ii (XiXi)
}

(bi − β†)

where

β† ≡

{
P∑

i=1

σ̂−1

ii (XiXi)

}−1
P∑

i=1

σ̂−1

ii (XiXi)bi

is distributed χ2 with k(P − 1) degrees of freedom.

3 Stata implementation

3.1 Syntax

xtrchh2 depvar varlist
[
if exp

] [
in range

] [
, i(varname) t(varname)

level(#) offset(varname) noconstant nobetas
]

Syntax for predict

predict
[
type
]

newvarname
[
if exp

] [
in range

] [
,
[
xb | stdp | xbi

]
group(#)

nooffset
]

3.2 Options

i(varname) specifies the variable that contains the unit to which the observation be-
longs. You can specify the i() option the first time you estimate, or you can use the
iis command to set i() beforehand. Note that it is not necessary to specify i()

if the data have been previously tsset, or if iis has been previously specified—in
these cases, the group variable is taken from the previous setting. See [XT] xt.

t(varname) specifies the variable that contains the time at which the observation was
made. You can specify the t() option the first time you estimate, or you can use the
tis command to set t() beforehand. Note that it is not necessary to specify t()

if the data have been previously tsset, or if tis has been previously specified—in
these cases, the time variable is taken from the previous setting. See [XT] xt.

level(#) specifies the confidence level, in percent, for confidence intervals. The default
is level(95) or as set by set level; see [U] 23.6 Specifying the width of

confidence intervals.

offset(varname) specifies that varname is to be included in the model with its coeffi-
cient constrained to be 1.

noconstant suppresses the constant term (intercept) in the regression.

nobetas requests that the panel-specific β̂is not be displayed.
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Options for predict

xb, the default, calculates the linear prediction based on β̂.

stdp calculates the standard error of the linear prediction based on β̂.

xbi calculates the linear prediction based on the group-specific β̂i, where i is specified
with the group(#) option. The predictions are calculated for all available observa-
tions in the dataset, not just those in group i; you can use if or in to restrict that
behavior.

group(#) specifies which group-specific β̂i to use with the xbi option. The default is
group(1). group(#) has no effect if xbi is not specified.

nooffset is relevant only if you specified offset(varname) for xtrchh2. It modifies
the calculations made by predict so that they ignore the offset variable; the linear
prediction is treated as xitb instead of xitb + offsetit.

3.3 Remarks

The xtrchh2 command fits Swamy’s random-coefficients model as described in the previ-
ous section. The estimates of β̂ are identical to those produced by xtrchh. Additionally,
xtrchh2 displays the best linear unbiased estimates of the panel-specific coefficients; an
option allows that output to be suppressed. Note that one can simply use the statsby

command to obtain the panel-specific OLS estimates if they are desired. Saved results
are stored in e() macros; see Saved results below.

4 Example

To illustrate the usage of xtrchh2, the following example uses the same dataset as
[XT] xtrchh.

. webuse invest2, clear

. xtrchh2 invest market stock, i(company) t(time)

The output is shown on the next page. The header displays the number of observa-
tions and summarizes the structure of the panel data. It also contains a Wald test of
the joint significance of the slope parameters in β̂. Below the estimate of β̂ is the test
statistic for the null hypothesis shown in (5). The remainder of the output consists of

the estimated panel-specific β̂is.

(Continued on next page)
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Swamy random-coefficients regression Number of obs = 100
Group variable (i): company Number of groups = 5

Obs per group: min = 20
avg = 20.0
max = 20

Wald chi2(2) = 17.55
Prob > chi2 = 0.0002

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

market .0807646 .0250829 3.22 0.001 .0316031 .1299261
stock .2839885 .0677899 4.19 0.000 .1511229 .4168542
_cons -23.58361 34.55547 -0.68 0.495 -91.31108 44.14386

Test of parameter constancy: chi2(12) = 603.99 Prob > chi2 = 0.0000

Group-specific coefficients

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Group 1

market .1027848 .0108566 9.47 0.000 .0815062 .1240634
stock .3678493 .0331352 11.10 0.000 .3029055 .4327931
_cons -71.62927 37.46663 -1.91 0.056 -145.0625 1.803978

Group 2

market .084236 .0155761 5.41 0.000 .0537074 .1147647
stock .3092167 .0301806 10.25 0.000 .2500638 .3683695
_cons -9.819343 14.07496 -0.70 0.485 -37.40575 17.76707

Group 3

market .0279384 .013477 2.07 0.038 .0015241 .0543528
stock .1508282 .0286904 5.26 0.000 .0945961 .2070603
_cons -12.03268 29.58083 -0.41 0.684 -70.01004 45.94467

Group 4

market .0411089 .0118179 3.48 0.001 .0179461 .0642717
stock .1407172 .0340279 4.14 0.000 .0740237 .2074108
_cons 3.269523 9.510794 0.34 0.731 -15.37129 21.91034

Group 5

market .147755 .0181902 8.12 0.000 .1121028 .1834072
stock .4513312 .0569299 7.93 0.000 .3397506 .5629118
_cons -27.70628 42.12524 -0.66 0.511 -110.2702 54.85766
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5 Saved results

xtrchh2 saves in e():

Scalars
e(N) number of observations e(g avg) average group size
e(chi2) χ2 e(N g) number of groups
e(df m) model degrees of freedom e(chi2 c) χ2 for comparison test
e(g max) largest group size e(df chi2c) degrees of freedom for
e(g min) smallest group size comparison test

Macros
e(cmd) xtrchh2 e(depvar) name of dependent variable
e(predict) program used to implement e(chi2type) Wald; type of model χ2 test

predict e(title) title in estimation output
e(ivar) variable denoting groups

Matrices
e(b) β̂ vector e(V i) estimated Var(β̂i), i=1...P

e(V) estimated Var(β̂) e(Sigma) Σ̂

e(beta i) β̂i vector, i=1...P

Functions
e(sample) marks estimation sample
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