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Abstract.  Logistic regression is perhaps the most widely used method for ad-
justment of confounding in epidemiologic studies. Its popularity is understand-
able. The method can simultaneously adjust for confounders measured on differ-
ent scales; it provides estimates that are clinically interpretable; and its estimates
are valid in a variety of study designs with few underlying assumptions. To those
of us in practice settings, several aspects of applying and interpreting the model,
however, can be confusing and counterintuitive. We attempt to clarify some of
these points through several examples. We apply the method to a study of risk
factors associated with periventricular leucomalacia and intraventricular hemor-
rhage in neonates. We relate the logit model to Cornfield’s 2 x 2 table and discuss
its application to both cohort and case—control study design. Interpretations of
odds ratios, relative risk, and [y from the logit model are presented.
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1 Background

Popular methods used to analyze binary response data include the probit model, dis-
criminant analysis, and logistic regression. Probit regression is based on the probability
integral transformation. A major drawback of the probit model is that it lacks nat-
ural interpretation of regression parameters. Discriminant analysis is computationally
simpler than the probit model. It assumes that predictor variables are normally dis-
tributed and that variables jointly assume a multivariate normal distribution. Because
many variables in regression analysis are dichotomous or discrete, discriminant analysis
assumptions are often violated. Furthermore, because discriminant analysis examines
the distribution of X in terms of Y, it is dependent on Bayes theorem to extract the
variable of primary interest. In contrast, the logistic regression model makes no as-
sumption about the variable distribution. It is a direct probability model because it is
stated in terms of Pr{Y = 1|X}. Another advantage of the logit model is its ability to
provide valid estimates, regardless of study design (Harrell 2001).
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214 Odds ratios and logistic regression

2 The logit model reflects the 2x2 table

The odds ratio (OR) is a popular measure of the strength of association between exposure
and disease. In a cohort study, the odds ratio is expressed as the ratio of the number of
cases to the number of noncases in the exposed and unexposed groups. The odds ratio
and its familiar computation are attributed to Cornfield (1951), which is calculated as
the ratio of the products of the pairs of diagonal elements in the 2 x 2 table:

_A><D

OR_BXC’

For illustration, data from Canterino et al. (1999) are used. This prospective cohort
study investigated factors for periventricular leucomalacia and intraventricular hem-
orrhage in preterm neonates. Using the development of severe lesions as the disease
outcome and the administration of antenatal steroids as exposure, an odds ratio is
calculated using the 2 x 2 table.

Table 1

Severe Lesions + Severe Lesions —

Steroids + 26 (A) 318 (B)
Steroids — 134 (C) 584 (D)
OR = (26 x584) _ 0.356
C (318 x 134)

The interpretation of the odds ratio is that the odds for the development of severe
lesions in infants exposed to antenatal steroids are 64% lower than those of infants
not exposed to antenatal steroids. Point estimates for the odds ratio and confidence
interval are available from Stata’s cc or cs command. In Stata 8, the default confidence
intervals are exact. However, for purposes of comparison with logistic regression, we
use the woolf option, which estimates the confidence interval using a Wald statistic.
(The Wald statistic is a quadratic approximation of the log-likelihood curve and is most
accurate in the region of the most common sample value. It is an approximation of,
but less accurate than, the score statistic, which is also a quadratic approximation
of the log likelihood and is most accurate in the region of the null value. Despite
the fact that it is an approximation, the Wald statistic provides a simple method for
estimating binomial distributions and, therefore, is widely used. Further details are
found in Clayton and Hills (1993) and Rothman and Greenland (1998).)
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. csi 26 134 318 584, or woolf

Exposed  Unexposed Total
Cases 26 134 160
Noncases 318 584 902
Total 344 718 1062
Risk .0755814 .1866295 .1506591
Point estimate [95% Conf. Intervall]
Risk difference -.1110481 -.1509528 -.0711434
Risk ratio .4049809 .2715012 .6040841
Prev. frac. ex. .5950191 .3959159 . 7284988
Prev. frac. pop .1927369
0dds ratio .3563315 .2291072 .5542043 (Woolf)
chi2(1) = 22.41 Pr>chi2 = 0.0000

The logistic model quantifies the effect of a predictor in terms of a log-odds ratio
using maximum likelihood estimation (MLE). Although computationally different, the
logistic regression model produces results that are nearly identical to the 2 x 2 table.
Notice that in the logistic model, the MLE estimation of the standard error yields a
confidence interval that is quite close to the Wald confidence interval in Stata’s cc
command (or cs command):

. logistic severe ster, nolog

Logistic regression Number of obs = 1062
LR chi2(1) = 24.84

Prob > chi2 = 0.0000

Log likelihood = -437.71032 Pseudo R2 = 0.0276
severe | Odds Ratio  Std. Err. z P>|z]| [95% Conf. Intervall]

ster .3563316 .0802959 -4.58 0.000 .22911 .5541973

Woolf’s approach computes the standard error for the log of the odds ratio as (Collett
1991)

11 1 1
SE In(OR) = <E+E+E+E>

The 95% confidence interval for the In(OR) is calculated as

95%CI for the In(OR) = In(OR) £ 1.96 x {SE In(OR)}

For our example, the computations are
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In(OR) = In(.356) = —1.032

11 1 1
SEM(OR) =/ — + — + — 4 — = 0.2253
n(OR) 5% T 318 T 131 T 584

95%CI for the In(OR) = —1.032 + 1.96 x .2253 = (—1.474, —.590)

Taking the antilog, we get the 95% confidence interval for the odds ratio:

95%CT for OR = (e 147 ¢7790) = (1229, .554)

As the investigation expands to include other covariates, three popular approaches
are available in Stata to produce an adjusted odds ratio. In our example, we control
for the presence of respiratory distress syndrome (RDS). The ¢s command uses a large-
sample estimate of the variance (Robins, Breslow, and Greenland 1986). The mhodds
command estimates the variance using a score variance (Clayton and Hills 1993). The
variance estimate in the logistic command is based on the MLE. Given the large overall
sample and individual cell sizes, all three methods produce nearly identical results.
Confidence intervals are identical to two decimal places. We would, however, expect
discrepancies to arise for small samples. Rothman and Greenland (1998) indicate that
the Mantel-Haenszel estimates are valid for sparse data, while the MLE estimator may
be biased.

Table 2
Stata command OR 95% CI

cs severe ster, by(rds) or 3357 2127, .5298

mhodds severe ster, by(rds) .3357 .2112, .5337
logistic severe ster rds 3375 2142, 5316

3 Interpretation of 5, and other coefficients in the logit
model

In epidemiology, study design determines the population parameters that may be es-
timated and available for interpretation. For example, relative risk, odds ratio, and
incidence may be estimated from cohort studies, while of the three, only the odds ra-
tio is available from case—control studies. Most practitioners also are aware that the
intercept, Gy, in a logit model is not interpretable when the model is derived from a
case—control study. Many, however, fail to recognize that these two facts are related.
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3.1 Cohort studies

In a cohort study, the odds of disease given exposure, Op|g4, is computed as (A/B).
The odds of disease in the absence of exposure, Op|g_, is (C/D). In a logistic model,
the ratio of the odds (AD/BC) is expressed as the difference in the log odds. That is,
the logit is the difference between the levels of the exposure odds:

IH(OR) =1In (g—g) = ln(OD\E+) - IH(OD|E,)

where In(Opp4) = In(4), the log odds of disease given exposure, and In(Opg-) =
ln(%)7 the log odds of disease given no exposure. The log odds in the absence of
exposure, In(Op|g—), may be considered the “baseline” odds, or the log odds in the
reference group. If In(Op|p_) is represented as ( in the model, then [By+ (1] represents
In(Op|g4 ). With these designations, we can express [::

IOglt = IH(ORD‘E+) - 11'1(01%D|E—) = [ﬂO + ﬂl} - [60} = 61

In the cohort study, Gy is interpreted as the log odds of disease in the absence of exposure,
and ; reflects the increase in the log odds attributed to exposure beyond baseline, with
P being the odds ratio. The logistic parameters can be used to estimate the incidence
in the exposed and unexposed groups. To summarize the relations,

Table 3
Group Odds Risk (Incidence)
A A (Bo+81)
Exposed 5= elBotb1) A+B 1ie(ﬁo+ﬁ1)
c c Po
Unexposed 5= ebo 1D = J—W

Using our example, the baseline incidence is 134/718 = 0.187, and the baseline
odds, Op|g—, are 134/584 = 0.230. Because this is a prospective cohort study, we
are able to interpret .187 and .230, respectively, as incidence and odds of lesions in
the absence to exposure to steroids in this clinic sample. The In(Op|g_) is In(.230),
or —1.47, and corresponds to [y in the logit model. The incidence of lesions given
exposure is 26/344 = 0.076, and odds of lesions given exposure are 26/318 = 0.082.
The In(ORp|g4) is In(.082) or —2.50. Thus, the difference between the two exposure
log odds is —2.50 — (—1.47) = —1.03, which is 31 in our logistic equation.

(Continued on next page)
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. logit severe ster, nolog

Logit estimates Number of obs = 1062
LR chi2(1) = 24.84

Prob > chi2 = 0.0000

Log likelihood = -437.71032 Pseudo R2 = 0.0276
severe Coef. Std. Err. z P>|z| [95% Conf. Interval]

ster -1.031894 .2253405 -4.58 0.000 -1.473553  -.5902345

_cons -1.472061 .0957863 -15.37  0.000 -1.659799  -1.284323

The example above demonstrates what 3, represents in a simple logistic model with
a single dichotomous independent variable. In this example, when [3; is zero, 3y reflects
a legitimate reference group. In practical analyses of cohort studies, however, models
are neither simple nor are the variables always dichotomous. Most logistic models are
developed using a mixture of dichotomous, ordinal, and continuous variables. In order
to interpret 3y in these settings, there must be a valid reference group when all factors
in the model are set to zero. As such, situations as these are rare.

To show the error that can arise in 3y when a continuous variable is included in a
model, consider an example using maternal age, ranging between 15 years and 44 years,
and the presence of severe lesions.

Table 4

. tab agecat severe, row

Key

frequency
row percentage

SEVERE
agecat 0 1 Total
Q1: 22 269 48 317
84.86 15.14 100.00
Q2: 28 197 46 243
81.07 18.93 100.00
Q3: 31 225 30 255
88.24 11.76 100.00
Q4: 36 211 36 247
85.43 14.57 100.00
Total 902 160 1,062
84.93 15.07 100.00

Table 4 shows maternal age and the distribution of severe lesions classified into
quartiles using the xtile command. In quartile 1, the risk of severe lesions is 15.14%
and the odds of severe lesions are .1784.
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We configured age differently in each of three models. In the first model, age was
entered as a continuous variable. In the second model, we entered age as a single
variable with four levels, using the medians of the quartile ranges. In the last model,
age quartiles were entered separately with three indicator variables, with the lowest age
category, Q1, used as the reference group.

Table 5
. A
Model Coefficients efo I +60ﬁ0
1) Age as a continuous variable:
Bo —1.5750 .207 172
logit severe age B1(AGE)  —.0054
2) Age is in quartiles (see Table 4):
Bo —1.4465 .235 .191
logit severe agecat B1(AGE)  —.0099

3) Age quartiles entered with indicators, with
Q1 as reference group:

Bo(AGE) —1.7235 179  .151
logit severe age28 age3l age36 B1(AGE) .2689

B2(AGE)  —.2914

O3(AGE)  —.0448

Of the models considered, only in Model 3 does 3y represent the baseline odds, and
the baseline risk of Q1 accurately (.179 and .151, respectively) when the age variables
are set to zero. Thus, when interval-scaled variables are used in logistic models, we
avoid interpreting [y. Rather, appropriate estimates of odds and risk can be obtained
using the lincom command. For example, following Model 1, if the odds and risk of
lesions for a mother aged 22 (the median value of Q1) are desired, we can run

. lincom age*22 + _cons

(1) 22 age + _cons = 0

severe Coef. Std. Err. z P>zl [95% Conf. Intervall]

(¢D) -1.693157 .1262063  -13.42  0.000 -1.940516  -1.445797

Using the coefficient —1.693, our estimate of the odds is .184, and the risk is .155, which
represents the odds and risk of severe lesions for neonates of mothers aged 22.

3.2 Case—control studies

Inferences about [y, however, cannot be made with a case—control study design. In
a cohort design as above, the investigator selects subjects based on exposure status
(i.e., the exposure marginals are fixed). The proportion of subjects with disease (the
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incidence) and the odds of disease in the exposed and unexposed groups are independent
of the size of the group. That is, A/(A+ B) and C/(C + D) are valid estimates of
incidence, and [ is a valid estimate of the baseline odds, In(C'//D). In a case—control
study, however, the investigator fixes the number of cases and controls (the disease
marginals are fixed) and, as such, artificially determines the proportion of disease in
each exposure group. The estimates of A/(A+ B) and C/(C + D), and consequently
of By, are no longer valid estimates because they are influenced by the size of the
samples drawn. Only the odds ratio remains independent of sample size. This is easily

demonstrated with the following data:

Table 6
Study A Study B
Disease + Disease — || Disease + Disease —
Exposure + 50 20 50 100
Exposure — 10 20 10 100
Total 60 40 60 200

Suppose two case—control studies are conducted to estimate the risk of disease as-
sociated with exposure. Both studies enroll the same number of cases. However, in
Study A, 40 controls are enrolled, whereas in Study B, 200 controls are enrolled. In
both studies, though, the proportion exposed in the case and control groups is identical.

Entering these data as cell counts, we get the following results:

Study A
. logit case exp [freq=sampleAl, nolog
Logit estimates Number of obs = 100
LR chi2(1) = 12.65
Prob > chi2 = 0.0004
Log likelihood = -60.974296 Pseudo R2 = 0.0940
case Coef. Std. Err. z P>|z| [95% Conf. Interval]
exp 1.609438 .4690416 3.43 0.001 .6901333 2.528743
_cons -.6931472 .3872983 -1.79 0.074 -1.452238 .0659436
Study B
. logit case exp [fregq=sampleB], nolog
Logit estimates Number of obs = 260
LR chi2(1) = 22.93
Prob > chi2 = 0.0000
Log likelihood = -128.9871 Pseudo R2 = 0.0816
case Coef.  Std. Err. z P>|z]| [957% Conf. Intervall
exp 1.609438 .3741657 4.30 0.000 .8760866 2.342789
_cons -2.302585 .3316625 -6.94 0.000 -2.952632 -1.652539
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The estimates of risk associated with exposure are the same for each study (8; = 1.609);
however, (3 differs in each study. Of course, the confidence intervals for §; are narrower
in Study B because the sample size is larger.

As Gould (2000) demonstrates, one of the attractive properties of logistic regression
is the constancy of the odds ratio. In the multiple logistic regression equation below,
STER and RDS are dichotomous variables, and WT is a continuous measure of birth
weight in 10-gram intervals.

. logistic severe ster rdsl wt, nolog

Logistic regression Number of obs = 1060
LR chi2(3) = 96.84

Prob > chi2 = 0.0000

Log likelihood = -399.65275 Pseudo R2 = 0.1081
severe | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

ster .3379093 .0789938 -4.64 0.000 .2137041 .5343026

rdsl 2.833678 . 7356233 4.01 0.000 1.703642 4.713272

wt .9871476 .0027758 -4.60 0.000 .9817221 .9926031

The interpretation of weight in the model is that for each 10-gram increase in birth
weight, the odds of severe lesions decrease by 1.29% (1 — .9871), adjusting for steroid
use and the presence of respiratory distress syndrome; that is, regardless of whether
steroids were used or whether RDS was present or absent. To show the constancy of
the odds ratio, we ran predict after the logistic model above to compute the predicted
probability, p. We then generated the predicted odds from the predicted probability, as
p/(1 — p). Finally, we randomly selected a pair of observations, which were separated
by 10 grams in birth weight, from each covariate pattern of STER and RDS.

Table 7
Odds Change in  Change in
STER RDS WT p [p/(1—p)] odds p
0 0 890 .12584 .14395
0 0 880  .12727 .14583 9871 .9888
0 1 1010  .28444 .39750
0 1 1000 .28707 40268 9871 .9908
1 0 1550 .02029 .02071
1 0 1540 .02055 .02098 9871 9874
1 1 1350 .07963 .08652
1 1 1340 .08059 .08765 9871 9881




222 Odds ratios and logistic regression

Notice that, as expected, the ratio of the odds within each pair is constant and is
identical to the model odds ratio. On the other hand, the ratio of probabilities is not
constant.

We need to point out that, in the above model, we assumed that the increase in
the odds is constant over birth weight. By entering weight as a continuous variable, we
forced the model to produce a constant increase in the odds. However, this assump-
tion of linearity of the logit may be quite untenable (Hosmer and Lemeshow 2000).
Moreover, the level of significance for weight in the model provides no evidence as to
whether the logit is linear in weight. Rather, graphical and statistical procedures are
used to determine whether the assumption of a linear logit for a continuous variable is
tenable. In Stata, useful graphical procedures are lintrend (see Garrett (1996)) and
lowess. Helpful statistical procedures include boxtid (see Royston and Ambler (1999))
and linktest.

4 The logit model is applicable for both cohort and case—
control studies

Prentice and Pyke (1979) have shown that the logit model can be applied to case—control
designs. Mathematical computation of In(OR) is the same irrespective of whether dis-
ease or exposure is the dependent variable (cohort or case-control study design); see
Appendix A. Technically, the interpretation of the two sets of parameters and estimated
coefficients will differ. Estimated parameters in the prospective model relate predictor
variables to occurrence of disease, while estimated parameters in a retrospective model
relate predictor variables to occurrence of exposure. In practice, however, epidemiolo-
gists do not draw this distinction (Schlesselman 1982).

An example of the “reversibility” of the logistic model is shown below. In the first
model, we estimated a 62% reduction in the risk of severe lesions due to steroid use
(OR = .38), controlling for clinical chorioamnionitis (CCA).

. logistic severe ster cca, nolog

Logistic regression Number of obs = 1062
LR chi2(2) = 44.80

Prob > chi2 = 0.0000

Log likelihood = -427.72883 Pseudo R2 = 0.0498
severe | 0dds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

ster .3803373 .0864227 -4.25  0.000 .2436426 .5937239

cca 2.818374 .6243629 4.68 0.000 1.8257 4.350788

In the second model, we exchanged the outcome variable (SEVERE) with the in-
dependent variable (STER). This model determines the risk of steroid use due to the
presence of severe lesions and clinical chorioamnionitis. The results show that severe
lesions are associated with a 62% reduction in the use of steroids, controlling for clinical
chorioamnionitis.
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. logistic ster severe cca, nolog

Logistic regression Number of obs = 1062
LR chi2(2) = 30.27

Prob > chi2 = 0.0000

Log likelihood = -653.69828 Pseudo R2 = 0.0226
ster | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

severe .3803373 .0864218 -4.256  0.000 .2436438 .593721

cca .5842499 .1396664 -2.26  0.025 .3656931 .9334274

In other words, the relationship between severe lesions and steroids is preserved,
regardless of how it is modeled. (The beta coefficient for CCA differs from the previous
model because it is being associated with a different outcome.) Although identical esti-
mates may not be necessarily attained, especially in models with continuous covariates,
Breslow and Power (1978) indicate that the parameter estimates will usually become
more similar with increasing degrees of adjustment (see Schlesselman (1982, 267-269)
for a discussion).

5 Summary

Odds ratios and logistic regression are powerful tools for researchers. The popularity
of these tools results from their versatility and relative ease of interpretation. The goal
of this paper is to provide additional examples on the use and interpretation of logistic
regression and odds ratios in epidemiologic and clinical research. Excellent literature
exists on the mathematical basis of logistic regression, as well as its application and
interpretation. The examples and interpretations presented herein highlight some of the
characteristics of logistic regression that may further aid in understanding the approach.

6 Appendix A: The mathematical relationship of the lo-
gistic model between cohort and case—control designs

The material in this appendix is based on formulas from Case—Control Studies
(Schlesselman 1982, 234-236).

The logit model expressed in terms of p, /g, in a cohort study is written as

lnijl :ﬂo+51$1++5nf€n

X
The probability of disease (d = 1) given exposure z in a case—control study, where

m and 7o represent sampling fractions for cases and control respectively, is written as

p/ _ 1Pz
* (771])1- + FQQI)
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where ¢/, = 1 — p!, and odds of disease given the exposure are expressed as

P _ TPs

q;/z T2qx

Relating the log odds of disease in a case—control study to the log odds of disease in
a cohort study we get

/
ln% = lnﬂ + ln&
9 T2 qx

Using substitution and where 5 = ln:—; + By, we have

/
: i
lnp—f ™ mPr = By + Brz1 + - Bnn

T T2 Gz

Therefore, the only difference in a case—control study and a cohort study using
the logistic model is in the (y. All other parameters are unaffected by study design
(Schlesselman 1982).
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