

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2003)
3, Number 2, pp. 185–202

Speaking Stata: Problems with lists

Nicholas J. Cox
University of Durham, UK

n.j.cox@durham.ac.uk

Abstract.

Various problems in working through lists are discussed in view of changes in
Stata 8. for is now undocumented, which provokes a detailed examination of ways
of processing lists in parallel with foreach, forvalues, and other devices, including
new, concise ways of incrementing and decrementing macros and evaluating other
expressions to do with macros in place. New features for manipulating lists held
in macros and the new levels command are also reviewed.

Keywords: pr0009, lists, for, foreach, forvalues, levels, macros, tokenize

1 Introduction

Writing a regular column is a challenging exercise and, in many ways, a surprising one.
The obligation to file copy regularly, even if only once a quarter, has had the unexpected
side-effect of increasing my respect for journalists. More seriously, the challenge of
writing a series of contributions raises the issue of how long a column can be sustained
before all the author’s hobbyhorses have been ridden into the ground, especially when
my self-defined territory deliberately excludes many large chunks of Stata that are
supremely well-documented, or just not part of my expertise. Stata itself goes a long
way toward relieving any doubts on that score. A new release brings so many features
that I will not have time to comment on more than a few before the next release appears
in turn. As the British say, the task is like painting the Forth Bridge, a bridge supposedly
long enough that, by the time the painters have reached the end, they must go back
and start again.

The news in 2003, which is not news to almost all readers, is that Stata 8 is out.
The big news within that for most users includes new graphics and dialogs, but—as
promised in my last column—the main topic in this column is once again dealing with
lists, which in one way or another has been one of my most persistent themes. You know
that in many Stata problems you want to do (almost) the same thing again and again.
You want to work your way through a list. Often Stata does this for you. Automatic
looping over observations for many operations comes as a surprise to users who have
become accustomed to spelling out such loops in other software. But often you have to
ask Stata to do it for you, and our concern is with the tools provided for that purpose.

I have, inevitably, a list of things I want to go through on this general topic of lists.
Here is the menu:

c© 2003 Stata Corporation pr0009

186 Speaking Stata

• for is on its way out (a news item, with some journalistic comment).

• How can you best work your way through parallel lists without for (a detailed
discussion, with explanation of codes)?

• Have you checked out [P] macro lists yet (another news item, rather drier)?

• levels is a simple new command to help with some list problems (something easy
to digest to end with).

2 Farewell to for?

First give the bad news, it is said. If you used Stata 7 or a previous version, then quite
possibly the demise of for will have been a small piece of bad news for you.

Strictly, demise is, as yet, too strong a word. More precisely, for is no longer on
display as part of the official Stata repertoire. The code is still there, and if you used
for in your do-files or programs, they should still work in Stata 8. If your do-files do not
work, it will be for some other reason. The online help and the manual entry have gone,
so for either or both of those you must depend on whatever is accessible to you from
previous versions. This is not prohibition, but it certainly amounts to discouragement.
for is to be assigned to history, and you are best advised to make greater use of the
alternatives, particularly if you imagine using Stata for some time to come.

Why has this been done, particularly in view of Stata’s longstanding commitment
to maximizing continuity from release to release? for has long served many users well.
Some regard it as one of their favorite commands. But it has severe limitations, several
of which were rehearsed in a previous column (Cox 2002b). I will mention here just
three.

First, for was, frankly, idiosyncratic and did not mesh well with the rest of Stata.
Particularly limiting was the fact that it could not make use of local or global macros in
the ways that might be expected. There was no deep-seated bug here, and for was not
behaving differently from other Stata commands in this respect; merely, its behavior
often clashed with users’ preconceptions of how it should behave.

Second, once for had been learned by many users, they often tried to build in
multiple loops and multiple commands. For all sorts of reasons, this often did not work.
for was just not strong enough to bear the weight that some users tried to put on it.
This was not because the code was incompetently written; it is just too difficult a task
to handle what were in one sense complete programs codified as just one command line.
Even when for did work, the resulting code was often difficult to read, understand, or
revise. Users were thus being tempted into bad habits because of the features that for
appeared to offer.

N. J. Cox 187

Third, for was slow. Frequently, that was not obvious to users because of the speed
of Stata and of their computers, but for was implemented as interpreted code, thus
imposing an overhead. One of the main characteristics of the new commands foreach
and forvalues introduced in Stata 7 is that they are implemented as compiled code
and thus run much faster.

foreach and forvalues, new in Stata 7, are now the main workhorses for looping
through lists. If these are new to you, apart from the online help, see [P] foreach and
[P] forvalues or my earlier tutorial (Cox 2002b). The assumption here, naturally, is
that you have access to a full set of manuals. Failing that, the online help should always
provide some assistance. You may need to supplement those manual entries with some
reading about local macros, particularly within [U] 21 Programming Stata. These
references to the Programming Reference Manual do not mean that you have to write
Stata programs to be able to use these constructs. On the contrary, they are often used
interactively, and you can incorporate them in do-files or code you run from the do-file
editor.

(Once again, what is a Stata program? Simply, whatever is defined by a Stata
program command. Note that this definition is not circular, as a question in one lan-
guage (discussion of Stata) is answered by an answer in another language (Stata). How-
ever, we will not be writing any Stata programs in this column.)

For Stata programming before Stata 7, while was the main workhorse in previous
versions, and it is still useful for some problems. For interactive use, for was the main
workhorse in previous versions, but as said, its use is now officially discouraged.

3 Problems in parallel

All this leaves open one large question. for offered machinery for handling problems
involving two or more lists in parallel. Indeed, to a large extent, this is precisely what
for was designed to do. How are these parallel problems best handled now in Stata 8?

Here to start with is a small but genuine example. I have been bitten by it with
climatological data, and a questioner on Statalist was bitten by it with employment
data. You have monthly data, but they come as columns, so that your Stata dataset
contains variables clearly and helpfully named jan through dec. You realize that you
would be much better off with the data as one long column, and the smart way to
arrange that is by a reshape. However, reshape expects such variables to have a
common stub, so that they are, say, m1-m12, the stub being m and the suffixes 1 through
12. You need to rename before you can reshape. You could grind your way through
the twelve commands

. rename jan m1

. rename feb m2

and so forth, but it is not long before you want a better way of doing this, especially
when the next version of the problem to bite you involves hundreds of variables. Setting

188 Speaking Stata

aside the fact that a special tool exists for this task (Cox and Weesie 2001), how can
this be done from first principles? for adepts will know a solution:

. for var jan-dec \ new m1-m12 : rename X Y

Some users might prefer not to rely on the identifiers X and Y provided by default to
refer to the current members of the first (X) and second (Y) lists, and they might want
to specify their own:

. for OLD in var jan-dec \ NEW in new m1-m12 : rename OLD NEW

Feel free to prefer that as more explicit style, at least as a matter of historical taste.
The only biting constraint on choice is that the identifiers should not occur literally
within the command. The rationale is simple: each instance of these identifiers will
be substituted in turn by the successive members of the lists, so we must ensure that
happens only when desired.

Standing back from the detail of how it might be written, admire the concise one-
command solution, on which we cannot improve with Stata 8 tools without writing a
program to do the work off-stage. Indeed, for those who feel that nostalgia is not what
it used to be, here is an example of for at its best.

Let us take it apart, step by step. for is being presented with two lists. We are
assuming here that the variable list jan-dec refers to the 12 variables you want, which
are adjacent in memory, and in the right order. In practice, that is probably true. If
necessary, you should verify this using describe or ds or the Variables window. The
list of new variable names will be used in the successive renames. More generally, what
for does is to check that the lists are what is claimed—that (a) jan-dec really is a list
of variables in memory and that (b) m1-m12 does define new variable names that are
legal and all not in use—and that the lists do have the same length (12 elements in our
case). That is a lot of useful checking, just in case our assumptions do not match the
dataset in Stata’s memory. Once it is done, for cycles through what follows—in this
case, just a rename command with different pairs of old and new variable names.

More generally, what for offered, for two or more lists of a certain length, was to
go through them in parallel. Member i = 1, . . . , I of a first list was linked with the
corresponding members of any other lists, so, whatever the complexity of the code, for
would cycle through just I runs of the commands specified.

3.1 Using foreach and forvalues

How can this be done with either foreach or forvalues? At first sight, there are
two basic difficulties. First, each of those commands takes just one list as argument.
Second, if those commands are nested, the result is to run not through lists in parallel
but through all cross-combinations of lists, producing in effect an array of results. This
is worth understanding, irrespective of our current example, so let us pause to explain
in detail. Consider this simple example:

N. J. Cox 189

. foreach letter in a b c {

. forvalues i = 1 / 3 {

. display "‘letter’‘i’"

. }

. }

What happens here is that we get 9 results, not 3, as can be seen by following
through the loops. The outer foreach loop starts with a from its list. Then the inner
forvalues loop starts with 1 from its list. As a result, the combination a1 will be
printed. The innermost loop always cycles fastest, so continuing, we get a2 and a3.
Then we jump to the outer loop once more, and so on. In succession, therefore, we will
get a1, a2, a3, b1, b2, b3, c1, c2, and c3.

More generally, what nested loops offer, using any combination of foreach and
forvalues for two or more lists, is to go all through the combinations, the Cartesian
product if you prefer. For lists with I, J , K, . . . members, we will get I × J × K . . .
results, hence the idea of an array of results. For many problems, this is exactly what
you want. Populating a matrix is one class of examples. What you need to do is to
initialize a matrix of the required size and then cycle over rows and columns, overwriting
each element with the required number from some calculation. There is a case study of
getting a matrix of Kendall’s tau in Cox (2002b).

This is all extremely useful, but it would be disappointing if it now appeared that
the side-effect of the syntax of these commands is that getting results from parallel lists
is no longer easy. Fortunately, it is not too difficult. The key point is that, although
foreach and forvalues do not offer machinery for doing this themselves, there are
several ways of ensuring that you do it in harmony.

Returning to our rename problem, last seen as something like

. for var jan-dec \ new m1-m12 : rename X Y

here are various ways to do it. Each will be discussed in some detail; we will summarize
the main ideas afterwards.

3.2 Automated foreach with arranged stepping through an integer

sequence

We cycle through the variables with foreach and arrange that we step through an
integer sequence in harmony. So, we have the idea of a loop

. foreach v of var jan-dec {

. ...

. }

and we will step, one by one, through the integers 1 through 12. Here is the most
common way to do that, in Stata 7 and later:

190 Speaking Stata

. local i = 1

. foreach v of var jan-dec {

. ...

. local i = ‘i’ + 1

. }

and we will fill in the whole block

. local i = 1

. foreach v of var jan-dec {

. rename ‘v’ m‘i’

. local i = ‘i’ + 1

. }

The logic is simple. Outside the loop, we initialize the local macro i to 1. Once
inside the loop, the first statement becomes

. rename jan m1

Here are two steps: The local macro ‘v’ is replaced by its contents, which the first
time around the loop is the name of the first variable in jan-dec, namely jan. Just as
with for, foreach acts on the keyword var to treat jan-dec as a varlist and to unpack
it. Even before that, there is a check that it really is a valid varlist.

Similarly, the local macro ‘i’ is replaced by its contents, which the first time around
the loop is 1.

Putting the original and substituted text together, we have the command just given.
Then we increment the local macro (increase it by 1) so that it now takes on the value
2. Note that incrementing, without qualification, always means adding 1. Similarly,
decrementing, unqualified, always means subtracting 1.

In a sense, what is happening here is that we are trading on ambiguity. When first
initialized, the macro is set to 1 by a numeric operation, as local i = 1 forces an
evaluation of the expression to the right of the equal sign =, and what is there looks to
Stata like something numeric to be evaluated. In contrast, the command local i = "1"

would have insisted to Stata that the thing put into the macro is a one-character string.
We did not say that, although we could have. When you look at it, you will not detect
much evaluation needed, but remember that you are smarter than Stata. Later, when
we substitute the contents of i within "‘letter’‘i’", the current value is substituted
as a character within a string. Later still, when i is being incremented, the absence
of " " again signals a numeric rather than a string operation. In other words, we are
flipping back and forth between treating macro contents (for example, 1) as numbers
(1) and single-character strings ("1"). Most of the time, we can be cavalier about this,
but occasionally you will need to think harder about what Stata is understanding by
what you are asking it to do.

To summarize our progress so far: We have now one way to do it. It may not appeal
very much, but it works. You could have done exactly that in Stata 7, but here now is
a new twist, introduced in Stata 8, which is worth mastering. It will be familiar to you

N. J. Cox 191

if you have experience in programming C or almost any language modeled on C. Let’s
show this in practice first and then explain:

. local i = 1

. foreach v of var jan-dec {

. rename ‘v’ m‘i++’

. }

We have lost a line and gained a reference to ‘i++’, which is one of a set of quadru-
plets. Seen all at once, with our example macro name i, they are ‘i++’, ‘++i’, ‘i--’,
and ‘--i’. In context, Stata sees ‘i’ and knows that this means to “evaluate the local
macro i and then put its contents here” as part of parsing a command that is then
executed (if legal). What we have now with ‘i++’ is threefold:

1. Evaluate the local macro i.

2. Put its contents here.

3. Add 1 to the value of the macro.

So if before Stata reads this, i evaluated to 1, then after Stata reads this, it will
evaluate to 2. The incrementation is performed in place.

The other quadruplets are all similar. ‘++i’ increments before use, ‘i--’ decre-
ments after use, and ‘--i’ decrements before use. Double characters (++ and --)
represent single operators. The key to learning their meaning is just to take the left-to-
right order of macro name and operator literally. What comes first is done first.

What is more, these operators apply only to local macros and nothing else. After
global i = 1, display $i++ is illegal. display "$i++" is perfectly legal but does
nothing special: you just get shown 1++, which might even be something you want to
print. But, on reflection, you will see that this restriction is no restriction, as once you
can do it with local macros, you can indirectly do it with other objects.

3.3 Automated forvalues with arranged stepping through a varlist

Our first way of tackling this problem was to cycle through the variables with foreach

and to ensure a cycle in step through an integer sequence. The second way is the reverse
of this. The loop then starts with the idea

. forvalues i = 1/12 {

. ...

. }

We therefore need a way to select each variable in turn, and, in fact, there are several
ways. The overriding desire in practice is to type as little as possible: after all, it is easy
but tedious to do in 12 statements. At the same time, it helps to know lots of tricks,
even if some of them do not really help much until we have to tackle more complicated
problems.

192 Speaking Stata

. forvalues i = 1/12 {

. local v : word ‘i’ of jan feb mar apr may jun jul aug sep oct nov dec

. rename ‘v’ m‘i’

. }

or, if you like,

. local vars "jan feb mar apr may jun jul aug sep oct nov dec"

. forvalues i = 1/12 {

. local v : word ‘i’ of ‘vars’

. rename ‘v’ m‘i’

. }

The construct : word # of takes the specified word from the string to its right and
puts it into what is named to its left, which in practice is usually a local macro. Words
are delimited by spaces, except that " " bind tighter than spaces can separate. In the
string

Stata statistical software

there are, as you would expect, 3 words, whereas in the string

Stata "data analysis" software

there are also 3 words, in this sense. In the string

1 2 3

there are also three words, as the word is being used in a programming sense, not a
linguistic one. So, as you will guess, each time around the loop we pick the ith word
from the string specified. Whether we specify the list of months outside or inside is not
very important. I prefer the outside, largely because, if this is code you revisit some
time later, it will be just a little clearer what is going on.

That is some improvement, but we would like to be more concise still. One specific
trick is to use ds (see [R] describe) to expand the varlist for you:

. ds jan-dec

. forvalues i = 1/12 {

. local v : word ‘i’ of ‘r(varlist)’

. rename ‘v’ m‘i’

. }

This use of ds is not completely general. What we are relying on here is a side-effect.
ds will expand the varlist supplied but also leave behind that list in r(varlist). ds is
an example of an r-class command, which leaves behind results with names of the form
r(result). For an introduction, see [U] 21.8 Accessing results calculated by other

programs.

By the way, extra features were added to ds in June 2003. If your Stata 8 is earlier
than this, you will need to update it to see what they are.

r-class commands leave results in memory until the next r-class command is executed,
or sometimes earlier, so they should be regarded as ephemeral. So you need to be aware

N. J. Cox 193

that, in some other block of code, you could lose r(varlist) to a command executed
before you use it. Here is a more general structure:

. ds jan-dec

. local vars "‘r(varlist)’"

. forvalues i = 1/12 {

. local v : word ‘i’ of ‘vars’

. rename ‘v’ m‘i’

. }

The difference is that we copy the contents of r(varlist) somewhere safe before
some other command either destroys or overwrites it. If your interest inclines more
to programming, also check out unab, documented at [P] unab, as another way of
unabbreviating a varlist.

Once more, you could have done that in Stata 7, but Stata 8 has introduced a way
of doing it more concisely. Here is an example:

. ds jan-dec

. local vars "‘r(varlist)’"

. forvalues i = 1/12 {

. rename ‘: word ‘i’ of ‘vars’’ m‘i’

. }

We have lost one line putting word ‘i’ of ‘vars’ into local i. You will probably
guess that what we have here is another feature whereby a macro reference is actually
an in-line computation. When faced with nested macro delimiters, ‘ ’ within ‘ ’, the
rule for Stata is like that for parentheses in elementary algebra: evaluate the innermost
expression first and work from the inside outwards (and work also from left to right).
Let us dissect

‘: word ‘i’ of ‘vars’’

the way that Stata would. Strip the outermost delimiters

‘ ’

and discover within the expression

: word ‘i’ of ‘vars’

Substitute the current values of local macros i and vars, getting, say,

: word 1 of jan feb mar apr may jun jul aug sep oct nov dec

Finally, instead of putting the results of that expression (which will be the single variable
name jan) in a local macro, as would commonly be done, just place the result exactly
where the instruction was found.

I want to interject here two small pieces of advice. It is natural to panic a little
on meeting this feature and to see only a confusing little snowstorm of delimiters, but,
as implied, it should be no more confusing than dealing with parentheses, brackets, or
braces in algebra. (Remember, innermost first!) Also, choose a font within Stata, or

194 Speaking Stata

within your text editor, that differentiates clearly between left single quotes and right
single quotes. Stata’s own fonts are, as you might guess, one set of possibilities.

There is another way to do this that we should cover before leaving this example.

. tokenize jan feb mar apr may jun jul aug sep oct nov dec

. forvalues i = 1/12 {

. rename ‘‘i’’ m‘i’

. }

tokenize is yet another command from Stata programming that can be used in-
teractively. See [P] tokenize. It takes its argument, splits it into tokens, and assigns
those tokens to local macros 1 and up, according to how many tokens there are. By
default, tokens are just words in the Stata sense used earlier. (They are more general
than words, as they can be delimited by something other than spaces, but that is a
different story for now.) So, after this tokenize, local macro 1 will contain "jan", local
macro 2 will contain "feb", and so on, all the way up to local macro 12, which will
contain "dec". The effect of tokenize is here equivalent to 12 statements: local 1

"jan", local 2 "feb", all the way up to local 12 "dec".

The body of the loop is just the single command rename ‘‘i’’ m‘i’. The nested
quotes around the first argument are no worry: the “innermost first” rule is the thread
that lets you traverse the maze. The first time around the loop, the local macro i,
which is controlled by the forvalues command, contains 1, so we substitute for that

rename ‘1’ m1

leaving just local macro 1 to substitute, giving

rename jan m1

As forvalues cycles through 1 through 12, this logic yields commands all the way
up to rename dec m12.

We have squeezed almost all the juice out of this example. But before we leave it,
note that we can put together the best features of the last two solutions:

. ds jan-dec

. tokenize ‘r(varlist)’

. forvalues i = 1/12 {

. rename ‘‘i’’ m‘i’

. }

3.4 Summary of tools and tricks

A summary was promised of the main tools and tricks available for this example. The
example may have seemed trivial, but it has allowed us to introduce most of the devices
that are useful in practice.

N. J. Cox 195

1. You can cycle through a varlist with foreach and arrange that you cycle through
an integer sequence in harmony. You can increment in the long-winded way local

i = ‘i’ + 1 or in the new, short-winded way with a reference to ‘i++’.

2. You can cycle through an integer sequence with forvalues and arrange that you
cycle through a varlist in harmony. Knowing that ds leaves behind an unabbre-
viated varlist can save a lot of typing. For selecting a variable name, use word #

of or ensure through tokenize that what you want lies within local macros from
1 up.

3.5 A second example

Let us turn now to a fresh example, in which we can use these ideas but in which some
other elements are also needed.

In his interesting survey Statistical Rules of Thumb, van Belle (2002, 107–108) refers
to (mean − median)/standard deviation as a measure of skewness, noting that it lies
between −1 and 1 (for proof, see Hotelling and Solomons 1932). This measure was new
to me, and I wondered how it compared with other measures, such as the moment-based
skewness measure, as calculated by summarize, or

(upper quartile − median) − (median − lower quartile)

upper quartile − lower quartile

=
upper quartile − 2 × median + lower quartile

upper quartile − lower quartile

which also lies between −1 and 1. To illustrate the approach, we need only show how
to pick up results for the first two measures.

The first step is to see that we can obtain the elements of this unfamiliar measure
as results accessible after summarize, so that we could go

. foreach v of var varlist {

. quietly summarize ‘v’, detail

. di "‘v’ {col 33}" %6.3f ‘r(skewness)’ "{col 44}" ///
%6.3f (‘r(mean)’ - ‘r(p50)’) / ‘r(sd)’

. }

All this does is to put out a list of variable names and results for familiar and
unfamiliar measures of skewness. We have paid some attention to layout (using SMCL

col directives, as explained at [P] smcl) and to format, but otherwise the results are
not put anywhere except the monitor. Further examination of the results will usually
be much easier if they are placed in new variables. At first sight this is a little awkward,
as we have one pair of results for each variable, so how will they fit alongside the
existing dataset? As long as we have more observations than variables, we just compile
new variables by the side of, and unrelated to, the existing dataset. (If we have more

196 Speaking Stata

variables than observations, we need to increase the number of observations or put the
results elsewhere. Let us continue with the simpler optimistic assumption.)

This little problem must be solved backwards. We want each new skewness result
to be put into a separate observation, which in turn implies that we need to loop over

replace ... = ... in observation

and that itself requires a generate before the loop is executed. (No replace can be
undertaken without a previous generate.) Jumping to a solution,

. generate varname = ""

. generate vanbelle = .

. generate skewness = .

. local i = 1

. quietly foreach v of var varlist {

. summarize ‘v’, detail

. replace varname = "‘v’" in ‘i’

. replace vanbelle = (‘r(mean)’ - ‘r(p50)’) / ‘r(sd)’ in ‘i’

. replace skewness = ‘r(skewness)’ in ‘i++’

. }

Some details here deserve spelling out. We need to initialize each variable we are
going to use. The recording of variable names here is rather more than an adornment.
As these values bear no relation to the structure of the existing dataset, the very first
sort after this will destroy all links to the present order of the variables, so we should
record variable names explicitly. We also need to initialize a local macro, here i to
1, so that we can step through the observations. After we put all the results for a
particular variable in a particular observation, this can be incremented. For the names
of particular r-class results, you will need to refer to the manual or (what is sometimes
quicker) work them out by examining a return list.

Once that is done, a graph can be produced

. scatter vanbelle skewness, mlabel(varname)

which, naturally, you may inspect for your favorite dataset.

This example should not be left before we grasp one awkward detail. Suppose
that a variable were actually constant. In this situation, the standard deviation is
necessarily zero, and the measure discussed by van Belle therefore is indeterminate.
That may seem appropriate if you are not inclined to discuss the skewness of a constant.
Another approach is to insist that if the variable is a constant, the mean and median
are necessarily equal and the measure thus necessarily zero. Indeed, whenever the mean
and median are equal, the measure is necessarily zero. In Stata terms, a more careful
coding for that recipe would be

cond((‘r(mean)’ == ‘r(p50)’) & (‘r(mean)’ < .), 0,
(‘r(mean)’ - ‘r(p50)’) / ‘r(sd)’)

where we have trapped the case of missing means or medians.

N. J. Cox 197

The kind of approach described here may be compared to that in cookery or do-
it-yourself programs. We all know that expert cooks sometimes make mistakes just
like everybody else, except that they presumably do so less often than most others.
What you see, however, lacks all the gaffes, small or large, which were edited out before
publication. Similarly, this example was something I really wanted to do, but I did not
get all the details right the first time. How you do it is up to you, but working your way
up from the first beginnings to a more complete script in a text editor is an approach
that appeals to many Stata users.

3.6 Three or more lists in parallel

What about processing three or more lists in parallel? In essence, there are no new
ideas needed, and the story is just more of the same. foreach or forvalues will give
you automated stepping through one list; any others are your own responsibility. In
most cases, there will be some structure to the problem that you can and should exploit
as fully as you can.

One word of caution: tokenize cannot be applied to yield two or more lists of
numbered macros. Each tokenize overwrites the results of any previous tokenize, or
for that matter, any other assignment to local macros with names 1 and up. This points
up the value of using word # of.

4 Macro lists

One new feature in Stata 8 that you may have missed among the larger features is
documented dryly under the rather cryptic heading [P] macro lists. The online help
is accessible under macrolists. In essence, this is a set of new utilities designed for
manipulating lists held in macros (either local or global). The loss of generality here
is negligible, as it is not difficult to get other kinds of lists into macros. The utilities
take as arguments either one or two macro names, work on the contents of the named
macros and, as appropriate, place their results in a named macro or return a number
(0 for false or 1 for true), a size, or a location. Examples are

. local sorted : list sort tobesorted

which, not surprisingly, sorts a list; and

. local included : list A in B

which returns 1 if the elements of A are all included in B , and 0 otherwise. (Often,
there is just one element in A; that is a useful special case.)

The introduction of these extra utilities and other syntax elements in Stata 8 greatly
enriches the facilities for list manipulation. Even when some operation is not provided
as a language primitive, it is typically a step or two away.

Want a list not of successive integers, but of powers of 10?

198 Speaking Stata

. forvalues i = 1/6 {

. local j = 10^‘i’

. local newlist "‘newlist’‘j’ "

. }

or

. forvalues i = 1/6 {

. local newlist "‘newlist’‘=10^‘i’’ "

. }

Note the trailing space. Want to reverse a list, say the one in local macro mylist?

. forvalues i = ‘: list sizeof mylist’(-1)1 {

. local newlist "‘newlist’‘: word ‘i’ of ‘mylist’’ "

. }

or

. tokenize ‘mylist’

. forvalues i = ‘: list sizeof mylist’(-1)1 {

. local newlist "‘newlist’‘‘i’’ "

. }

Want to replicate a list, as a block, three times?

. forvalues i = 1/3 {

. local newlist "‘newlist’‘mylist’ "

. }

In fairness, note that

. local newlist : display _dup(3) "‘mylist’ "

has been possible for some time in Stata. Finally, want to replicate a list, repeated
elements adjacent, three times?

. tokenize ‘mylist’

. forvalues i = 1/‘: list sizeof mylist’ {

. local ‘i’ : display _dup(3) "‘‘i’’ "

. local newlist "‘newlist’‘‘i’’ "

. }

Naturally, if the list is very short, you could just type out the solutions.

5 levels and the problems it solves

A new command, levels, was added to Stata 8 on 16 April 2003. levels displays
a sorted list of the distinct values of a variable taking on integer or string values. To
put it another way, levels displays the levels of a categorical variable, very broadly
so defined. Its name echoes the terminology of levels of a factor long standard in
experimental design (see, for example, Cochran and Cox 1957, 148; Fisher 1942; or

N. J. Cox 199

Yates 1937, 5) and, incidentally, the name of commands with broadly similar intent
in some other statistical software. As the date implies, you may need to update your
copy of Stata 8 to use levels. In addition, as its release follows the original release of
Stata 8, levels is not documented in the manuals.

Let us explain precisely what is meant here by a variable taking on integer values.
What is crucial is the content of a variable, not its storage type; thus, if a float variable
contained the distinct values 1, 2, 3, 4, and 5, those are its levels. But a float variable
containing 3.14159 is beyond the reach of levels.

levels serves two different functions. Occasionally, it serves to give a compact
display of distinct values. More commonly, it can be useful when you desire to cycle
through the distinct values of a variable, particularly with foreach. What makes this
easy is that levels leaves behind a list in r(levels), which may be used in a subsequent
command. Alternatively, the list may be assigned to a local macro. One key advantage
of that, to repeat a point made earlier, is that r-class results are ephemeral. Putting a
copy of those results in a local macro of your choice is good practice; at least, if you
overwrite it, then that will be your fault. Either way, the key point is that levels

automates the making of a list, which means that you never have to specify a list of
values directly.

A common pattern is repeating some analysis for each distinct group of some classi-
fying variable, such as a categorical variable in the strict sense or the different members
of a panel. Sometimes such repetition is possible directly through by: (Cox 2002a) or a
by() option, but often it is not. Even when by: is supported, stepping through group
by group may be preferred. For example, many graphs done by() are subdivided into
several small panels; a portfolio of graphs produced one at a time is sometimes more
convenient.

A first template might look something like

. levels factor, local(levels)

. foreach l of local levels {

. di "-> factor = ‘l’"

. whatever if factor == ‘l’

. }

This is, as said, a template, and several commands may be executed for each distinct
level. Indeed, once the basic structure of the foreach loop has been worked out, it is
usually easy to elaborate. In contrast, multiple commands executed under the aegis of
for often become unreadable and unmanageable.

Let us focus on the role of levels in facilitating this loop. First, levels examines
the variable factor and puts a list of its distinct levels in the local macro levels. The
name is yours to choose; this is merely one possible idiom. You will at the same time
get a display of the levels, and you might want to see if that fits your idea of what is
going on. Second, foreach looks for its argument inside the local macro we just created.
Clearly, you need not work out for yourself what the distinct levels are, let alone type
them out.

200 Speaking Stata

A more general point is that levels just records what is present in the data, which
is trite but can be useful. Consider two kinds of little problems. One is that the possible
levels of some variable are known, more or less, but there remains a possibility of gaps.
If a key variable is number in household, we know we can cycle from 1 upwards, but
what about the high end? Even in a very large dataset, we might get some households
of 11 and some of 13, say, but none of 12. At worst, cases that do not exist might crash
some code. There are other ways to tackle this problem, but levels is an easy solution.

The other kind of little problem is that your levels may be essentially unstructured.
Many organizations assign multi-digit identifiers on some kind of logic of their own, but
users see in their datasets only irregular sequences. Typing out hundreds or thousands
of these identifiers is an extremely unattractive prospect.

Arranging a display that informs the user which group is being analyzed seems an
obvious detail, but it is very easy to overlook. Unless the number of groups is very
small and the patterns are known to be distinct, it is all too common to lose track of
which results you are examining; at worst, there can be weeping, wailing, and gnashing
of teeth later when groups of results are found to be useless because all are unlabeled.
In the case of printed results, display can be used, as above, and indeed, bold and
attractive titles can be quickly produced with the aid of a few SMCL directives. In the
case of a graph, one natural possibility is to make use of a small but distinct title option,
such as subtitle(), caption(), or source().

A questioner on Statalist wanted separate line graphs for the temperatures recorded
for each patient in a panel. This is as easy as it should be:

. levels id, local(levels)

. foreach l of local levels {

. line temp time if id == ‘l’, subtitle(id is ‘l’)

. more

. }

What more does is to hold the graph until the user has finished with it. On occasion,
especially when the graphs are being saved to files, you might not want even to look
at them while they are being produced; more can then be suppressed. Another small
detail is that this example assumes numeric identifiers. If the identifiers were string,
the appropriate test would clearly be if id == "‘l’".

Having said all that, there is another solution to this problem and one that is in fact
more general, based on the function egen, group(). See [R] egen. This function maps
the distinct groups of the varlist supplied to integers 1 and up. Not only can it be used
for groups defined by several variables, but it can be used with any kind of variable,
including those with numeric values with fractional parts. Thus, once you have found
out the maximum value of the group variable generated, you can use forvalues to
cycle over the groups so defined. Given this, why introduce levels? The rationale is
perhaps twofold. First, although egen, group() has been in Stata for some time, users
have often overlooked its use for problems for this kind. Second, levels has a certain
directness as a tool designed for its purpose.

N. J. Cox 201

6 Summary

This column started with what will have been a piece of bad news to those who are
fond of for (although my argument would be that most such fondness was misplaced).
But I hope that bad news has been more than balanced by useful information about the
newer or more esoteric devices surveyed, especially those for handling lists in parallel
or for easily going through all the members of a list. As in previous columns, the tools
needed for interactive solutions of various list problems have typically been borrowed
from the repertoire of Stata programming. Familiarizing yourself with them is a good
way to improve your Stata skills and cut down on tedious and error-prone typing of a
long list of nearly identical commands.

7 What’s next

Tables are one of the staple products of data analysis, and Stata provides many general-
purpose and special-purpose tabulation commands. We will look at some problems that
appear to fall between the gaps and what can be done about them.

8 Acknowledgments

Kit Baum and Nicholas Winter contributed to the development of levels.

9 References

Cochran, W. G. and G. M. Cox. 1957. Experimental Design. New York: John Wiley &
Sons.

Cox, N. J. 2002a. Speaking Stata: How to move step by: step. Stata Journal 2(1):
86–102.

—. 2002b. Speaking Stata: How to face lists with fortitude. Stata Journal 2(2): 202–222.

Cox, N. J. and J. Weesie. 2001. dm88: Renaming variables, multiply and systematically.
Stata Technical Bulletin 60: 4–6. In Stata Technical Bulletin Reprints, vol. 10, 41–44.
College Station, TX: Stata Press.

Fisher, R. A. 1942. The theory of confounding in factorial experiments in relation to
the theory of groups. Annals of Eugenics 11: 341–353.

Hotelling, H. and L. M. Solomons. 1932. The limits of a measure of skewness. Annals

of Mathematical Statistics 3: 141–142.

van Belle, G. 2002. Statistical Rules of Thumb. New York: John Wiley & Sons.

Yates, F. 1937. The Design and Analysis of Factorial Experiments. Harpenden: Imperial
Bureau of Soil Science Technical Communication 35.

202 Speaking Stata

About the Author

Nicholas Cox is a statistically minded geographer at the University of Durham. He contributes
talks, postings, FAQs, and programs to the Stata user community. He has also co-authored
twelve commands in official Stata. He was an author of several inserts in the Stata Technical

Bulletin and is executive editor of The Stata Journal.

