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From the help desk: hurdle models

Allen McDowell
Stata Corporation

Abstract. This article demonstrates that, although there is no command in Stata
for fitting hurdle models, the parameters of a hurdle model can be estimated in
Stata rather easily using a combination of existing commands. We also include a
likelihood evaluator to be used with Stata’s ml facilities to illustrate how to fit a
hurdle model using ml’s cluster(), svy, and constraints() options.
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1 Introduction to hurdle models

A hurdle model is “a modified count model in which the two processes generating the
zeros and the positives are not constrained to be the same” (Cameron and Trivedi 1998).
Mullahy (1986) states, “The idea underlying the hurdle formulations is that a binomial
probability model governs the binary outcome of whether a count variate has a zero
or a positive realization. If the realization is positive, the “hurdle is crossed”, and
the conditional distribution of the positives is governed by a truncated-at-zero count
data model.” Following Mullahy, but with a change in notation, let F1(β1) represent
the probability that the hurdle is crossed, and let f2(y,β2)/F2(β2), y ∈ Γ+ be the
conditional distribution of the positives, where f2 satisfies

∑

y∈Γ+
f2(y,β2) = 1, F2

is the summation of f2 on the support of the conditional density (i.e., the truncation
normalization), and y ∈ Γ+ = {1, 2, 3, . . . }. The general form of the hurdle model
likelihood function is then

L =
∏

i∈Ω0

{1 − F1(β1)}
∏

i∈Ω1

{f2(y,β2)F1(β1)}

F2(β2)

where Ω0 = {i|yi = 0}, Ω1 = {i|yi �= 0}, and Ω0 ∪ Ω1 = {1, 2, . . . , N}. Taking the
natural logarithm of both sides and rearranging terms, we see that the log likelihood
can be written as

ln(L) =
∑

i∈Ω0

ln{1 − F1(β1)} +
∑

i∈Ω1

ln{F1(β1)} +
∑

i∈Ω1

[

ln{f2(y,β2)} − ln{F2(β2)}

]

Since the likelihood function is separable with respect to the parameter vectors β1

and β2, the log likelihood can always be written as the sum of the log likelihoods
from two separate models: a binomial probability model and a truncated-at-zero count
model. As such, the hurdle model log likelihood can always be maximized, without
loss of information, by maximizing the two components separately. This feature of
hurdle models allows us to fit hurdle models in two separate steps using existing Stata
commands. For example, we could use cloglog, logit, probit, or glm to model the
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binomial probability model, and trpois0 (Hilbe 1999) or trbin0 (Hilbe 1999) to model
the truncated count model. The procedure is demonstrated below for a hurdle model
consisting of a complementary log-log binomial probability model and a truncated-at-
zero Poisson count model. A likelihood evaluator for the same model is also included to
illustrate how to fit the same hurdle model using ml’s facilities so that we can compare
the statistical results from the two procedures and extend our modeling capabilities for
hurdle models by including ml’s cluster(), svy, and constraints() options.

2 The Poisson hurdle model specification

We start with the binomial process, which determines whether the dependent variable
takes on the value zero or a positive value. The probability mass function is

Pr(Y = y) =

⎧

⎨

⎩

π, y = 0

1 − π, y = 1, 2, 3, . . .

The zero-truncated Poisson process has probability mass function

Pr(Y = y|Y �= 0) =

⎧

⎨

⎩

λy

(eλ−1)y!
, y = 1, 2, 3, . . .

0, otherwise

Thus, the unconditional probability mass function for Y is

Pr(Y = y) =

⎧

⎨

⎩

π, y = 0

(1 − π) λy

(eλ−1)y!
y = 1, 2, 3, . . .

and the log likelihood for the tth observation, assuming the observations are indepen-
dently and identically distributed, is

ln L(πi, λi, yi) =

⎧

⎨

⎩

lnπi, y = 0

ln{(1 − πi)
λ

yi
i

(eλi−1)yi!
} y = 1, 2, 3, . . .

If we model πi using the complementary log-log link and λi using the log link, with a
little algebra we have

πi = e−exiβ1

and

λi = exiβ2
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Thus, the log likelihood can be written

ln L = ln

{

∏

i∈Ω0

(

e−exiβ1

)

∏

i∈Ω1

(

1 − e−exiβ1

)

∏

i∈Ω1

eyixiβ2

(eexiβ2 − 1)yi!

}

=

{

∑

i∈Ω0

−exiβ1 +
∑

i∈Ω1

ln(1 − e−exiβ1

)

}

+

{

∑

i∈Ω1

yixiβ2 −
∑

i∈Ω1

ln(eexiβ2

− 1) −
∑

i∈Ω1

ln(yi!)

}

= ln{L1(β1)} + ln{L2(β2)}

We can see that the log likelihood describes the sum of a log likelihood for the binary
outcome model, ln L1(β1), and a log likelihood for a truncated-at-zero Poisson model,
lnL2(β2). As indicated above, the β1 and β2 vectors of parameters are separable.
This separability implies that the Hessian will be block diagonal so that the covariances
between β1 and β2 are zero. Therefore, we will not lose information if we fit a hurdle
model by estimating the parameters of the binomial probability model separately from
the parameters of the truncated Poisson model.

3 Fitting hurdle models in two steps

To demonstrate that we can use existing commands to fit a hurdle model, let’s begin
by simulating some data that follow a hurdle process as described above. First, we
generate two normally distributed random variables that will serve as the independent
variables in the model.

. clear

. set obs 2000

. set seed 1000

. generate x1=invnorm(uniform())

. generate x2=invnorm(uniform())

Using those newly generated covariates, we next generate a variable that follows
a truncated-at-zero process. To do this, we make use of the user-written command
rndpoix (Hilbe and Linde-Zwirble 1998), which generates a variable from a Poisson
process and names it xp. Once the variable xp has been generated, the observations
containing zeros can be dropped, leaving us with a truncated-at-zero Poisson random
variable.

. generate lambda=exp(.2*x1 + .7*x2 + 1)

. rndpoix lambda
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. drop if xp == 0

Next, we generate a variable using the binomial model described above.

. generate pi = exp(-exp(.9*x1 + .1*x2 + .2))

. generate bernoulli = uniform()>pi

Finally, we repopulate the truncated-at-zero poisson variable with zeros if the “hur-
dle” has not been crossed.

. replace xp = 0 if bernoulli==0

. rename xp y

. keep in 1/1000

Now that we have generated the data, we can proceed to fit a hurdle model in two
steps.

Step 1: First, we can estimate the parameters of the binomial probability model
using Stata’s cloglog command.

. cloglog bernoulli x1 x2, nolog

Complementary log-log regression Number of obs = 1000
Zero outcomes = 315
Nonzero outcomes = 685

LR chi2(2) = 319.71
Log likelihood = -463.18843 Prob > chi2 = 0.0000

bernoulli Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .9287196 .0647568 14.34 0.000 .8017986 1.055641
x2 .0998809 .0497777 2.01 0.045 .0023184 .1974435

_cons .1495369 .0491899 3.04 0.002 .0531264 .2459474

Step 2: Now, we can estimate the parameters of the truncated Poisson model with
the user-written command trpois0 (Hilbe 1999).

. trpois0 y x1 x2 if y > 0, nolog

0-Truncated Poisson Estimates Number of obs = 685
Model chi2(2) = 498.18
Prob > chi2 = 0.0000

Log Likelihood = -898.3545976 Pseudo R2 = 0.2171

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .2472253 .0363057 6.81 0.000 .1760675 .3183831
x2 .6801573 .0319771 21.27 0.000 .6174832 .7428313

_cons .0166542 .0528191 0.32 0.753 -.0868694 .1201777

Notice that the 95% confidence intervals contain the population parameters we used
to generate the data.
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4 Fitting hurdle models in one step with ml

Since there is no loss of information when fitting a hurdle model in two steps, if we
estimate the parameters jointly using ml, we should obtain identical estimates of the
model parameters and their variances. Furthermore, the log likelihood obtained from
estimating with ml should equal the sum of the log likelihoods obtained from fitting the
binomial probability model and the truncated Poisson models separately. In addition
to demonstrating these points, once we have developed a likelihood-evaluator program
so we can fit a hurdle model using ml, we can easily extend our modeling capabilities
by utilizing ml’s cluster(), svy, and constraints() options. Below is a likelihood-
evaluator program capable of fitting a Poisson hurdle model that is equivalent to the
two-step model we presented above.

program hurdle_ll
version 8
args lnf beta1 beta2
tempvar pi lambda
quietly generate double ‘pi’ = exp(‘beta1’)
quietly generate double ‘lambda’ = exp(‘beta2’)
quietly replace ‘lnf’ = cond($ML_y1==0,-‘pi’, ///
log(1-exp(-‘pi’)) + $ML_y1*‘beta2’ - ///
log(exp(‘lambda’)-1) - lngamma($ML_y1+1))

end

Using the same simulated data as before, we invoke the ml estimator with the com-
mands

. ml model lf hurdle_ll (y = x1 x2) (x1 x2)

. ml max, nolog

Number of obs = 1000
Wald chi2(2) = 210.26

Log likelihood = -1361.543 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
x1 .9287196 .0647568 14.34 0.000 .8017986 1.055641
x2 .0998809 .0497777 2.01 0.045 .0023184 .1974435

_cons .1495369 .0491899 3.04 0.002 .0531264 .2459473

eq2
x1 .2472253 .0363057 6.81 0.000 .1760675 .3183831
x2 .6801573 .0319771 21.27 0.000 .6174832 .7428313

_cons .0166541 .0528191 0.32 0.753 -.0868694 .1201777

Comparing the results of the ml estimator with the results of glm and trpois0, we
see that the parameter estimates and their standard errors are the same. Also, the log
likelihood we obtained using the ml estimator is equal to the sum of the log likelihoods
from the two-step estimation.
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If the data are clustered, then observations within any cluster cannot be assumed to
be independent, and the estimated variances of the model’s parameters can be biased.
We can obtain unbiased estimates in the presence of clustering simply by adding the
cluster(clusterid) option to the ml model statement

. ml model lf hurdle_ll (xp = x1 x2) (x1 x2), cluster(clusterid)

where clusterid is a variable that identifies the clusters.

If your data were collected through a complex survey design, you must account for
the sampling design to obtain unbiased variance estimates for the population parameters
that are being estimated and, if the sample is weighted, to obtain unbiased estimates of
the population parameters themselves. To account for the complex survey design, just
svyset your data and add the svy option to the ml model statement

. svyset [pweight=weightvar], strata(strataid) psu(psuid) fpc(fpcvar)

. ml model lf hurdle_ll (xp = x1 x2) (x1 x2), svy

where weightvar is a variable containing the sampling weights, strataid is a variable that
identifies the strata, psuid is a variable that identifies the psu, and fpcvar is a variable
containing a finite population correction.

To perform constrained estimation, specify a set of numbered constraints using the
constraint command and add the constraints(numlist) option to the ml model

statement.

5 Summary

This article has presented a general form of the likelihood for hurdle models. Because
the likelihood function is separable, with respect to the parameters to be estimated,
we have shown that hurdle models can be represented as the sum of two independent
models: a binomial probability model and a truncated-at-zero count model. Also, the
parameters of a hurdle model can be estimated by fitting the two component models
separately. This feature of hurdle models sets them apart from popular extensions to
hurdle models such as the zero-inflated Poisson (zip) and the zero-inflated negative
binomial (zinb) models. The zip and zinb models allow for a mixing process for
the zeros, so the likelihoods are not separable with respect to the parameters to be
estimated. An ml estimator, although unnecessary for estimation, has been provided
for a hurdle model with a complementary log-log binomial probability model and a
truncated-at-zero Poisson model to demonstrate the relative ease with which we can
extend Stata’s modeling capabilities to include options for dealing with clustered data,
complex survey data, and constraints. While it is possible to write an all-encompassing
command for fitting hurdle models in Stata, given the wide variety of possible models
and the ability to fit the components of the hurdle model separately, the utility of doing
so seems negligible.
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