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Testing for serial correlation in linear panel-data

models
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Abstract. Because serial correlation in linear panel-data models biases the stan-
dard errors and causes the results to be less efficient, researchers need to identify
serial correlation in the idiosyncratic error term in a panel-data model. A new
test for serial correlation in random- or fixed-effects one-way models derived by
Wooldridge (2002) is attractive because it can be applied under general conditions
and is easy to implement. This paper presents simulation evidence that the new
Wooldridge test has good size and power properties in reasonably sized samples.
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1 Introduction

Because serial correlation in linear panel-data models biases the standard errors and
causes the results to be less efficient, researchers need to identify serial correlation in
the idiosyncratic error term in a panel-data model. While a number of tests for serial cor-
relation in panel-data models have been proposed, a new test discussed by Wooldridge
(2002) is very attractive because it requires relatively few assumptions and is easy to
implement. This article presents the results of a size and power simulation study of this
new Wooldridge test. Because the test is so flexible, simulations must be performed for
a number of different cases. This paper presents results from simulations for both fixed-
and random-effects designs, with and without conditional homoskedasticity in the id-
iosyncratic error term, with balanced data, and with unbalanced data with and without
gaps in the individual series. The power simulations include both autoregressive and
moving-average alternatives. The test is found to have good size and power properties
with samples of moderate size.

Baltagi (2001) extensively discusses testing for serial correlation in the presence of
random and fixed effects. Many of these tests make specific assumptions about the
nature of the individual effects or test for the individual-level effects jointly.1 Some of
these tests, such as the Baltagi–Wu test derived in Baltagi and Wu (1999), are optimal
within a class of tests. In contrast, because the Wooldridge test is based on fewer
assumptions, it should be less powerful than the more highly parameterized tests, but
it should be more robust. While the robustness of the test makes it attractive, it is
important to verify that it has good size and power properties under these weaker
assumptions.

1See, for instance, the tests derived in Baltagi and Li (1995).
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2 Wooldridge’s test

Let’s begin by reviewing the linear one-way model,

yit = α + Xitβ1
+ Ziβ2

+ µi + ǫit i ∈ {1, 2, . . . , N}, t ∈ {1, 2, . . . , Ti} (1)

where yit is the dependent variable; Xit is a (1×K1) vector of time-varying covariates;
Zi is a (1 × K2) vector of time-invariant covariates; α, β

1
, and β

2
are 1 + K1 + K2

parameters; µi is the individual-level effect; and ǫit is the idiosyncratic error. If the µi

are correlated with the Xit or the Zi, the coefficients on the time-varying covariates Xit

can be consistently estimated by a regression on the within-transformed data or the first-
differenced data.2 If the µi are uncorrelated with the Xit and the Zi, the coefficients
on the time-varying and time-invariant covariates can be consistently and efficiently
estimated using the feasible generalized least squares method known as random-effects
regression.3 All of these estimators assume that E[ǫitǫis] = 0 for all s �= t; i.e., that
there is no serial correlation in the idiosyncratic errors, which would cause the standard
errors to be biased and the estimates to be less efficient.

Wooldridge’s method uses the residuals from a regression in first-differences. Note
that first-differencing the data in the model in (1) removes the individual-level effect,
the term based on the time-invariant covariates and the constant,

yit − yit−1 = (Xit − Xit−1) β
1

+ ǫit − ǫit−1

∆yit = ∆Xitβ1
+ ∆ǫit

where ∆ is the first-difference operator.

Wooldridge’s procedure begins by estimating the parameters β
1

by regressing ∆yit

on ∆Xit and obtaining the residuals êit. Central to this procedure is Wooldridge’s
observation that, if the ǫit are not serially correlated, then Corr(∆ǫit,∆ǫit−1) = −.5.
Given this observation, the procedure regresses the residuals êit from the regression
with first-differenced variables on their lags and tests that the coefficient on the lagged
residuals is equal to −.5. To account for the within-panel correlation in the regression
of êit on êit−1, the VCE is adjusted for clustering at the panel level. Since cluster()

implies robust, this test is also robust to conditional heteroskedasticity.

3 xtserial

This article uses the new Stata command xtserial, which implements the Wooldridge
test for serial correlation in panel data. The syntax of xtserial is

xtserial depvar
[
varlist

] [
if exp

] [
in range

] [
, output

]

You must tsset your data before using xtserial. See [TS] tsset for more information
about tsset.

2See Baltagi (2001) and Wooldridge (2002) for a discussion of these estimators.
3See Baltagi (2001) and Wooldridge (2002) for a discussion of these estimators.
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3.1 Options

output specifies that the output from the first-differenced regression should be dis-
played. By default, the first-differenced regression output is not displayed.

3.2 Example

Let’s consider an example using an extract from the National Longitudinal Study of
women who were 14–26 years old in 1968. Our model supposes that log wages, ln wage,
are a linear function of age, age; age squared, age2; total working experience, ttl exp;
tenure at current position and its square, tenure and tenure2; and a binary indicator
for living in the south, south.4,5 In the output below, we use xtserial to test the null
hypothesis that there is no serial correlation in this specification. We specify the output
option so that xtserial will display the regression with the first-differenced variables.

. use http://www.stata-press.com/data/r8/nlswork.dta
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. tsset idcode year
panel variable: idcode, 1 to 5159
time variable: year, 68 to 88, but with gaps

. gen age2 = age^2
(24 missing values generated)

. gen tenure2 = tenure^2
(433 missing values generated)

. xtserial ln_wage age* ttl_exp tenure* south, output

Regression with robust standard errors Number of obs = 10528
F( 6, 3659) = 105.13
Prob > F = 0.0000
R-squared = 0.0411

Number of clusters (idcode) = 3660 Root MSE = .30724

Robust
D.ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

age
D1 .0338027 .0161031 2.10 0.036 .0022308 .0653746

age2
D1 -.0002561 .0002672 -0.96 0.338 -.00078 .0002679

ttl_exp
D1 .0351088 .0099347 3.53 0.000 .0156307 .054587

tenure
D1 .0311144 .0055471 5.61 0.000 .0202387 .0419902

tenure2
D1 -.0030878 .0007035 -4.39 0.000 -.0044671 -.0017084

south
D1 -.0520378 .0278607 -1.87 0.062 -.1066619 .0025863

Wooldridge test for autocorrelation in panel data
H0: no first-order autocorrelation

F( 1, 1472) = 88.485
Prob > F = 0.0000

4See [XT] xt for more information about this dataset.
5Because the measure of education, highest grade completed, is time-invariant, it cannot be included

in the model.
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Note that the null hypothesis of no serial correlation is strongly rejected. Also, the
output from the first-differenced regression includes standard errors that account for
clustering within the panels. If there is serial correlation in the idiosyncratic error term,
clustering at the panel level will produce consistent estimates of the standard errors, and
as discussed by Baltagi (2001) and Wooldridge (2002), other estimators will produce
more efficient estimates.

3.3 Saved results

xtserial saves in r():

Scalars
r(corr) estimated coefficient on r(F) F statistic

lagged residuals
r(df) numerator degrees of r(df r) denominator degrees of

freedom of F statistic freedom of F statistic
r(p) p-value

4 How the data were generated

Consider a linear panel-data model of the form

yit = α + x1itβ1 + x2itβ2 + µi + ǫit

for i ∈ {1, . . . , N} t ∈ {1, . . . , Ti} and where α, β1, β2 are parameters to be estimated.

The simulations discussed below investigate the performance of the Wooldridge test
over four axes of interest. These axes are

1. sample size and structure,

2. random-effects and fixed-effects designs,

3. designs that simulate both the null hypothesis of no serial correlation and evaluate
the power of the test against different levels of autoregressive and moving-average
serial correlation, and

4. conditionally homoskedastic and conditionally heteroskedastic idiosyncratic er-
rors.

By varying the time periods at which individuals are observed, we obtain samples
of balanced data, unbalanced data without gaps, and unbalanced data with gaps. We
consider only the case in which the mechanism selecting the observations is independent
of all the variables in the model. The simulations here investigate the properties of
the test with moderately sized samples. In the case of balanced data, sample sizes of
N = 500, T = 5; N = 500, T = 10; N = 1000, T = 5; and N = 1000, T = 10 are
considered. Unbalanced data without gaps were obtained by randomly dropping some of
the first observations from a random selection of the panels out of an initial sample with
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N = 1000, T = 10.6 Unbalanced data with gaps were obtained by randomly deciding to
include or drop the observations at t = 3, t = 6, and t = 7 for some randomly selected
panels.7

If E[µix1it] = E[µix2it] = 0, the model is said to be a random-effects model. Al-
ternatively, if these expectations are not restricted to zero, then the model is said to
be a fixed-effects model. For both designs, the N µi were drawn from a N(0, 2.52)
distribution. In the random-effects design, the NT x1it were drawn from a N(0, 1.52)
distribution, and the NT x2it were drawn from a N(0, 1.82) distribution. The fixed-
effects design was parameterized by drawing the µi, x1it and x2it as in the random-effects
case and then redefining x1it to be x1it + .5µi and redefining x2it to be x2it + .5µi.

The implementations of the size and power simulations differ between the condi-
tionally homoskedastic and conditionally heteroskedastic cases. In the conditionally ho-
moskedastic case, the size simulations were parameterized by drawing the NT ǫit from
a N(0, 1) distribution. The autoregressive power simulations were parameterized by let-
ting ǫit = ρǫit−1 + ξit, where ρ is the autoregressive parameter. The N ǫi0 were drawn
from a N(0, 1) distribution, and the NT ξit were drawn from a N(0, 1) distribution.8

The moving-average power simulations were parameterized by letting ǫit = ξit + ρξit−1,
where ρ is the moving-average parameter, ξi0 were drawn from a N(0, 1) distribution,
and the NT ξit were drawn from a N(0, 1) distribution.9

For the conditionally heteroskedastic case, two modifications were made. For the
size simulations, the NT ǫit were drawn from a N(0, .64(|x1it| + |x2it|)

2) distribution.
For the autoregressive and moving-average power simulations, the NT ξit were drawn
from a N(0, .64(|x1it| + |x2it|)

2) distribution.

5 Results

Tables 1–4 contain the results for the four cases: fixed effects and homoskedastic, fixed
effects and heteroskedastic, random effects and homoskedastic, and random effects and
heteroskedastic. The empirical rejection frequencies over 2,000 runs and their 95%
confidence intervals are reported for the 42 different Monte Carlo experiments in each
table.10

The rows of the tables correspond to different size or power simulations. The columns
of the tables correspond to different sample sizes or structures.

6The probability that a panel would have some observations dropped was .4, and the initial time
period in truncated panels varied uniformly over {2, 3, 4, 5, 6, 7}.

7The probability that a panel was truncated was .4. If a panel was selected to be truncated then
each of the three observations had a probability of being dropped of .6.

8To burn-in the time-series process, 290 extra pre-observations were drawn and discarded for each
panel.

9As in the autoregressive case, to burn-in the time-series process, 290 extra pre-observations were
drawn and discarded for each panel.

10The confidence intervals were calculated using the exact binomial method. For those cases in which
the empirical rejection frequency is 1.00, the one-sided 97.5% confidence interval is reported. See the
Stata Reference manual entry [R] ci for details.
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In the Model column, “AR” stands for “autoregressive”, and “MA” stands for moving
average. The “Corr.” column specifies the value of ρ used for the simulations in that row.
In each table, the first row has Model = AR and Corr. = 0. Because an autoregressive
model with no correlation is a model with no serial correlation, these are the empirical
sizes. In all the size experiments, the nominal size was .05.

Eight general observations can be made about these results.

1. The empirical sizes are all reasonably close to their nominal sizes of .05.

2. For the largest sample size considered, N = 1000, T = 10, the empirical power is
always essentially 100% for all the alternatives considered.

3. When the correlation is .2 or higher, the test has nearly 100% power in all cases.

4. When the errors are conditionally homoskedastic, the test performs equally well
for the random-effects and fixed-effects designs.

5. When the errors are conditionally heteroskedastic, the test may have less power
in the fixed-effects case than in the random-effects case in small samples with low
levels of serial correlation.

6. The addition of conditional heteroskedasticity may cause a small loss of power in
small samples for low levels of serial correlation.

7. The size and power properties of the test are not affected by the panels’ having
an unbalanced structure with or without gaps in the individual series.

8. The test may have more power against the MA alternative than against the AR

alternative in small samples.

(Continued on next page)
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Table 1: Fixed effects and homoskedastic idiosyncratic errors

Model Corr. Balanced No Gaps With Gaps

N=500 N=500 N=1000 N=1000
T=5 T=10 T=5 T=10

AR 0 .05 .056 .050 .052 .057 .060
[.041, .061] [.046, .066] [.04, .06] [.043, .063] [.047, .068] [.05, .071]

AR .1 .713 .986 .948 1.00 1.00 1.00
[.693, .733] [.98, .991] [.937, .957] [.998, 1] [.998, 1] [.997, 1]

AR .2 .999 1.00 1.00 1.00 1.00 1.00
[.996, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

AR .3 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .1 .774 .996 .968 1.00 1.00 1.00
[.755, .792] [.991, .998] [.959, .975] [.998, 1] [.998, 1] [.997, 1]

MA .2 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .3 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

Table 2: Fixed effects and conditionally heteroskedastic idiosyncratic errors

Model Corr. Balanced No Gaps With Gaps

N=500 N=500 N=1000 N=1000
T=5 T=10 T=5 T=10

AR 0 .066 .06 .054 .048 .048 .049
[.056, .078] [.05.071] [.044, .064] [.039, .058] [.039, .058] [.04.059]

AR .1 .56 .949 .811 .999 .994 .989
[.538, .582] [.938, .958] [.793, .827] [.996, 1] [.990, .997] [.983, .993]

AR .2 .972 1.00 1.00 1.00 1.00 1.00
[.963, .978] [.998, 1] [.997, 1] [.998, 1] [.998, 1] [.998, 1]

AR .3 1.00 1.00 1.00 1.00 1.00 1.00
[.997, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .1 .64 .972 .889 1.00 .999 .996
[.619, .661] [.964, .979] [.874, .902] [.998, 1] [.996, 1] [.992, .998]

MA .2 .996 1.00 1.00 1.00 1.00 1.00
[.992, .998] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .3 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]
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Table 3: Random effects and homoskedastic idiosyncratic errors

Model Corr. Balanced No Gaps With Gaps

N=500 N=500 N=1000 N=1000
T=5 T=10 T=5 T=10

AR 0 .055 .053 .058 .058 .057 .052
[.045, .066] [.044.064] [.048, .069] [.048, .069] [.047, .068] [.042, .062]

AR .1 .71 .985 .94 1.00 1.00 1.00
[.69, .73] [.978, .989] [.928, .95] [.998, 1] [.997, 1] [.998, 1]

AR .2 .996 1.00 1.00 1.00 1.00 1.00
[.992, .998] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

AR .3 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .1 .79 .998 .978 1.00 1.00 1.00
[.771, .807] [.994, .999] [.97, .984] [.998, 1] [.998, 1] [.998, 1]

MA .2 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .3 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

Table 4: Random effects and conditionally heteroskedastic idiosyncratic errors

Model Corr. Balanced No Gaps With Gaps

N=500 N=500 N=1000 N=1000
T=5 T=10 T=5 T=10

AR 0 .056 .047 .052 .049 .054 .055
[.046, .066] [.038.057] [.042, .062] [.04, .059] [.044, .064] [.045.065]

AR .1 .617 .98 .885 1.00 .998 .996
[.595, .638] [.972, .985] [.87, .898] [.998, 1] [.994, .999] [.992, .998]

AR .2 .989 1.00 1.00 1.00 1.00 1.00
[.983, .993] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

AR .3 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .1 .704 .99 .938 1.00 1.00 1.00
[.683, .724] [.985, .994] [.926, .948] [.998, 1] [.997, 1] [.998, 1]

MA .2 .999 1.00 1.00 1.00 1.00 1.00
[.996, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]

MA .3 1.00 1.00 1.00 1.00 1.00 1.00
[.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1] [.998, 1]
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Let us now address each of these observations. Some size distortion, although not too
large, does appear with smaller sample sizes in the case of fixed effects and condition-
ally heteroskedastic idiosyncratic errors. Given this caveat, observation 1 is plausible.
Observations 2 and 3 emerge quite clearly from results and need no qualifications.

In the presence of conditionally homoskedastic errors, in only one case out of 42 the
empirical rejection frequency for the random-effects case lies outside the 95% confidence
interval of the empirical rejection frequency for the corresponding fixed-effects empir-
ical rejection frequency and vice versa. This is interpreted as evidence in support of
observation 4.

In contrast, in the conditionally heteroskedastic case, the empirical rejection fre-
quency in the fixed-effects case lies outside the 95% confidence interval of the corre-
sponding random-effects empirical rejection frequency and vice versa in 10 out of 42
cases. In all the power simulations, the empirical rejection frequency in the case of fixed
effects and conditionally heteroskedastic errors is less than or equal to the corresponding
frequency in the case of random effects and conditionally heteroskedastic errors. This
indicates that the test has less power in the case of conditionally heteroskedastic errors
and fixed effects than it does in the case of conditionally heteroskedastic errors and
random effects. However, the loss of power is small and only matters for smaller sample
sizes at low levels of serial correlation, giving rise to observation 5.

In all the power simulations, the empirical rejection frequencies for the fixed-effects
conditionally heteroskedastic case are less than or equal to their counterparts in the
fixed-effects homoskedastic case. Likewise, in all the power simulations, the empirical
rejection frequencies for the random-effects conditionally heteroskedastic case are less
than or equal to their counterparts in the random-effects homoskedastic case. However,
the difference is small and only matters for smaller sample sizes with low levels of serial
correlation. These results give rise to observation 6.

Observation 7 comes from the fact that the unbalanced results are very close to the
N = 1000, T = 10 results. The slight loss of power can be attributed to the smaller
sample size. There is no large loss of power or size distortion that would indicate a
failure of the test with unbalanced data. Most notably, the presence of gaps in the
individual series does not appear to have any effect on the results aside from what can
be attributed to the loss of sample size.

That the test shows higher empirical rejection rates against the MA alternative,
compared to the AR alternative with the same level of correlation in all four tables,
leads to observation 8.

6 Concluding remarks

The simulation results presented in this paper have shown that Wooldridge’s test for
serial correlation in one-way linear panel-data models can have good size and power
properties with reasonably sized samples. The test may need larger sample sizes to
achieve the same power in the presence of conditional heteroskedasticity. As with all
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Monte Carlo results, these results apply only to models with the properties assumed in
the simulations. Confirming these results with alternative parameterizations is a topic
for future research.

The Stata command xtserial and the Stata do-files used to produce the results
documented here are available at http://www.stata.com/users/ddrukker/xtserial.
Alternatively, typing

. findit xtserial

in Stata will make the command and the do-files available within Stata. Both the
command and the do-files require Stata 8 or higher.
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