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Abstract. The cdsimeq command implements the two-stage probit least squares
estimation method described in Maddala (1983) for simultaneous equations models
in which one of the endogenous variables is continuous and the other endogenous
variable is dichotomous.1 The cdsimeq command implements all the necessary
procedures for obtaining consistent estimates for the coefficients, as well as their
corrected standard errors.
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1 Introduction

The problem of simultaneity (or reciprocal causation) and methods of estimating such
relationships has been widely discussed in the statistical literature (for general introduc-
tions, see Gujarati (1995) and Pindyck and Rubinfeld (1991); for more advanced expo-
sitions, see Davidson and MacKinnon (1993), Greene (2000), and Judge et al. (1985)).
At issue is the problem that standard estimation methods in the presence of simul-
taneity will result in biased and inconsistent estimates. This bias can be corrected by
choosing one of two popular methods: indirect least squares (ILS) or two-stage least
squares (2SLS). The main focus of the literature, however, has been on situations where
the endogenous variables are continuous across equations.

In social science research, however, many phenomena of interest can take on only
two values or can only be observed as dichotomies. For example, a person either voted
or did not vote. This is an example of a phenomenon that naturally has only two
possible values. In other cases, such as involvement in militarized interstate disputes,
one can argue that the propensity to engage in such disputes is a continuous underlying
process, but this propensity can only be observed as a dichotomy; i.e., we can only
observe whether a state is/has engaged in a militarized dispute or not. In a single-
equation setting, this type of model is easy to fit, and all statistical packages have
built-in procedures for estimation; see [R] probit, [R] logit, and [R] logistic.

What if, however, a continuous and a dichotomous variable are hypothesized to
simultaneously determine each other? For example, Keshk et al. (2002) are interested

1To the best of my knowledge, the term 2SPLS was given to the procedure by Alvarez and Glasgow
(2000). Other terms for this procedure include generalized two-stage probit (Amemiya 1978); two-step
probit estimator (Guilkey et al. 1992). I prefer 2SPLS because it provides a more complete description
of steps and estimations used.

c© 2003 Stata Corporation st0038
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in whether a simultaneous relationship between trade and militarized interstate disputes
(MIDs) exists. Trade is a continuous variable whereas MIDs is a dichotomous variable or
only observable as a dichotomous variable. In such situations, the options for estimating
such relationships using current statistical software packages become extremely limited.
This limitation is not due to a lack of statistical literature on how to fit such models, but
to the lack of procedures to fit such models in available statistical software packages.2

Heckman (1978), Amemiya (1978), and Maddala (1983) all discuss appropriate es-
timation procedures for such models. Like their continuous counterparts, estimation
can proceed through indirect methods (i.e., recovering the structural parameters from
reduced form estimates) or through two stage procedures (i.e., creating instruments for
the endogenous variables and then substituting them for their endogenous counterparts
in the structural equations). In spite of this literature, I am not aware of any statistical
package that includes procedures to fit such models. This is puzzling in the age of
programmable statistical software programs such as Stata. The command cdsimeq is
hopefully a first step in filling this void.

2 Background

In order to fully comprehend the usefulness and applicability of the cdsimeq command,
it is essential to understand the nature of the problem that it is trying to estimate.
Equations (1) and (2) present a generic two-equation model,3

y∗

1
= γ1y

∗

2
+ β

′

1
X1 + ε1 (1)

y∗

2
= γ2y

∗

1
+ β

′

2
X2 + ε2 (2)

The proper estimation strategy to be used depends on how y∗

1
and y∗

2
are observed,

as well as whether we are dealing with recursive or nonrecursive models. First, if y1 = y∗

1

and y2 = y∗

2
,4 i.e., both variables are observed, and neither γ1 nor γ2 equal zero, then we

have the typical simultaneous equations models discussed in the statistical literature.
Methods for fitting such models can be found in the previously cited literature. Stata’s
reg3 can fit such models; see [R] reg3. If theory or prior expectation leads us to believe
that γ1 = 0 or γ2 = 0, but not both, and the error terms are not contemporaneously cor-
related, then we have a recursive model and each equation can be estimated separately
by OLS.5

2To the best of my knowledge, no statistical software packages have procedures for fitting this type
of model. One Stata program, probitiv, written by Jonah Gelbach fits such models; however, it does
not correct the standard errors.

3The following discussion borrows heavily from Maddala (1983, 242–7).
4This corresponds to Maddala’s (1983, 243) model 1.
5If the error terms are contemporaneously correlated, then estimation can proceed by using seemingly

unrelated regressions or other methods; for examples and full discussion, see Greene (2000).
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If y∗

1
and y∗

2
are observed as follows6

y1 = y∗

1

y2 = 1 if y∗

2
> 0

y2 = 0 otherwise

and neither γ1 nor γ2 equal zero, then we have a model for which cdsimeq is written.
How to fit such a model is discussed in the next section. If, however, theory or prior
expectation leads us to believe that γ2 = 0, then we have two interesting situations.

First, if it is hypothesized that y∗

1
is only observed given some selection criterion

defined by another variable, in this case y∗

2
, then we have an example of a sample

selection model. While the details of such models are beyond the scope of this paper,
the interested readers are directed to Barnow et al. (1981), Breen (1996), and Maddala
(1983) for discussion of such models and methods for their estimation. Stata’s treatreg
can perform all the necessary estimations (two-stage and maximum likelihood) for such
models; see [R] treatreg. On the other hand, if y∗

1
is not determined by any selection

criterion, γ1 = 0 or γ2 = 0, but not both, and the error terms are not contemporaneously
correlated, then we have a recursive model with a continuous and dichotomous variable
and methods for fitting such models are discussed in Maddala and Lee (1976).

A final model of some relevance to our discussion is the following:7

y1 = y∗

1

y2 = y∗

2
if y∗

2
> 0

y2 = 0 otherwise

If γ1 and γ2 are not equal to 0, then we have what Amemiya (1979) calls a simultaneous
equation tobit model. Estimation of such models is fully discussed in Amemiya (1979)
and Maddala (1983). Readers interested in fitting such a model can cannibalize cdsimeq
to do so, since the estimation procedures for both models are very similar.8 While there
are several other model possibilities, their discussion is beyond the scope of this paper
and interested readers are directed to Maddala (1983).

3 Methods and formulas

The command cdsimeq is written to fit a simultaneous equation model in which one
of the variables is continuous and the other is dichotomous and as was shown above,
this is but one possible model in a class of such models. Adapting current methods for
estimating simultaneous equations to a model in which one of the endogenous variables is
continuous and the other is dichotomous is straightforward. The only difference is in the
appropriate calculation of the standard errors. The discussion that follows will present

6This corresponds to Maddala’s (1983, 244–5) model 3.
7This corresponds to Maddala’s (1983, 243–4) model 2.
8Interested readers should consult Maddala (1983, 243–4).
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the estimation method as it pertains to programming and not to statistical derivation.
Readers interested in the statistical derivation aspect are directed to Heckman (1978),
Amemiya (1978), and Maddala (1983).

We begin with our simultaneous equations model:

y1 = γ1y
∗

2
+ β

′

1
X1 + ε1 (3)

y∗

2
= γ2y1 + β

′

2
X2 + ε2 (4)

where
y1 is a continuous endogenous variable,
y∗

2
is a dichotomous endogenous variable, which is observed as a 1 if y∗

2
> 0, and 0

otherwise,
X1 and X2 are matrices of exogenous variables in (3) and (4),
β

′

1
and β

′

2
are vectors of parameters in (3) and (4),

γ1 and γ2 are the parameters of the endogenous variables in (3) and (4),
ε1 and ε2 are the error terms of (3) and (4).

Because y∗

2
is not observed, the structural equations (3) and (4) are rewritten as

y1 = γ1σ2y
∗∗

2
+ β

′

1
X1 + ε1 (5)

y∗∗

2
=

γ2

σ2

y1 +
β

′

2

σ2

X2 +
ε2

σ2

(6)

Now estimation follows the typical two-stage estimation process. In the first stage, the
following two models are fitted using all of the exogenous variables (i.e., the exogenous
variables in both (5) and (6)),

y1 = Π
′

1
X + υ1 (7)

y∗∗

2
= Π

′

2
X + υ2 (8)

where
X is a matrix of all the exogenous variables in (5) and (6),
Π1 and Π2 are vectors of parameters to be estimated,
υ1 and υ2 are error terms.

Equation (7) is estimated via OLS and (8) via probit. From these reduced-form
estimates, the predicted values from each model are obtained for use in the second
stage.

ŷ1 = Π̂1X (9)

ŷ∗∗

2
= Π̂2X (10)
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In the second stage, the original endogenous variables in (5) and (6) are replaced by
their respective fitted values in (9) and (10). Thus, in the second stage, the following
two models are fitted:

y1 = γ1ŷ
∗∗

2
+ β

1
X1 + ε1 (11)

y∗∗

2
= γ2ŷ1 + β

2
X2 + ε2 (12)

Again, (11) is estimated via OLS and (12) is estimated via probit.

The final step in the procedure is the correction of the standard errors. This is
necessary because, as can be seen from (11) and (12), the outputted standard errors for
each model in the second stage will be based on ŷ∗∗

2
and ŷ1 and not on the appropriate

y∗∗

2
and y1. Thus, the estimated standard errors in (11) and (12) will be incorrect. The

correction that needs to be implemented on the variance–covariance matrices α1 and α2,
which are the variance–covariance matrices of (11) and (12), respectively, is as follows:
First define the following:9
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H = (Π2, J1) (13)

G = (Π1, J2) (14)

V0 = Var(Π̂2) (15)

With these definitions at hand, and noting that in probit models σ2 is normalized to 1,
the corrected variances of α1 and α2 can be obtained as follows:
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′

X
′

XH)−1 + (γ1σ2)
2(H
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X
′

XH)−1H
′

X
′

V0X
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X
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V (α̂2) = (G
′

V −1

0
G)−1 + d(G
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V −1

0
G)−1G

′

V −1

0
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′

X)−1V −1

0
G(G

′

V −1

0
G)−1 (17)

Everything defined above is easily obtainable from built-in Stata procedures, while
others can be obtained by programming Stata. The following are easily obtained via
built-in Stata procedures:

9What follows is from Maddala (1983, 244–5).
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1. The predicted values in (9) and (10) are easily obtained in Stata after running
the appropriate statistical procedures.

2. σ2

1
is the variance of the residuals from (7) and is easily available in Stata after

estimating (7).

3. Π1 in (13) and Π2 in (14) are the coefficient matrices from (9) and (10) and are
available from within Stata, after each estimation.

4. V0 in (15) is easily obtained from within Stata, after running the probit
estimation in (10).

All other values are obtainable through a little programming. For example,

1. J1 and J2 are matrices with ones and zeros such that XJ1 = X1 and XJ2 = X2.
To create these matrices, a loop procedure is used. Thus, in the creation of J1,
the loop checks the location of exogenous variables in X against the location of
exogenous variables in X1. The loop then places a one in the row of J1 for the
column location of the exogenous variable, say x1, in X and simultaneously a
one in the column of J1 for the column location of x1 in X1. A similar loop is
used for the creation of the J2 matrix.

2. Programming is also needed to obtain σ12. It is obtained using the formula
1/N{Σ(dtυ̂1)/f̂ } (Amemiya 1978, 1200), where

a. N is the number of observations.

b. dt is the dichotomous endogenous variable.

c. υ̂1 is the residuals from (7).

d. f̂ is (10) evaluated using the standard normal density.

3. Finally, the corrections outlined in (16) and (17) are easily obtained using
matrix routines within Stata, and the resulting output is easily generated using
Stata’s estimates post and repost features, see [P] estimates.

4 Syntax

cdsimeq (continuous endogenous depvar continuous model exogenous indvar(s) )

(dichotomous endogenous depvar dichotomous model exogenous indvar(s) )
[
if exp

] [
in range

] [
, nofirst nosecond asis instpre estimates hold

]

4.1 Options

nofirst specifies that the displayed output from the first stage estimations be sup-
pressed.
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nosecond specifies that the displayed output from the second stage estimations be
suppressed.

asis is Stata’s asis option; see [R] probit.

instpre specifies that the created instruments in the first stage are not to be discarded
after the program terminates. Note that if this option is specified and the program
is rerun, an error will be issued saying that the variables already exist. Therefore,
these variables have to be dropped or renamed before cdsimeq can be rerun.

estimates hold retains the estimation results from the OLS estimation, with corrected
standard errors, in a variable called model 1 and estimation results from the probit
estimation, with corrected standard errors, in a variable called model 2.10 Note
that if this option is specified the above variables must be dropped before cdsimeq

command is rerun again with the estimates hold option.

4.2 Stata output

Here is a stylized example for cdsimeq:

. cdsimeq (continuous exog3 exog2 exog1 exog4) ( dichotomous exog1 exog2 exog5
> exog6 exog7)

NOW THE FIRST STAGE REGRESSIONS

Source SS df MS Number of obs = 1000
F( 7, 992) = 209.51

Model 617.390728 7 88.1986754 Prob > F = 0.0000
Residual 417.608638 992 .420976449 R-squared = 0.5965

Adj R-squared = 0.5937
Total 1034.99937 999 1.0360354 Root MSE = .64883

continuous Coef. Std. Err. t P>|t| [95% Conf. Interval]

exog3 .1584685 .0218622 7.25 0.000 .1155671 .2013699
exog2 -.009669 .0216656 -0.45 0.655 -.0521846 .0328466
exog1 .1599552 .0212605 7.52 0.000 .1182345 .2016759
exog4 .3165751 .0224563 14.10 0.000 .2725079 .3606424
exog5 .4972074 .021356 23.28 0.000 .4552993 .5391156
exog6 -.0780172 .0217546 -3.59 0.000 -.1207076 -.0353268
exog7 .1611768 .022103 7.29 0.000 .1178028 .2045508
_cons .0107516 .0206197 0.52 0.602 -.0297117 .051215

Iteration 0: log likelihood = -692.49904
Iteration 1: log likelihood = -424.29883
Iteration 2: log likelihood = -382.05354
Iteration 3: log likelihood = -377.16723
Iteration 4: log likelihood = -377.07132
Iteration 5: log likelihood = -377.07127

(Continued on next page)

10When this option is specified the created instruments are also preserved.
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Probit estimates Number of obs = 1000
LR chi2(7) = 630.86
Prob > chi2 = 0.0000

Log likelihood = -377.07127 Pseudo R2 = 0.4555

dichotomous Coef. Std. Err. z P>|z| [95% Conf. Interval]

exog3 .2134477 .0562479 3.79 0.000 .1032039 .3236916
exog2 .2113067 .0537592 3.93 0.000 .1059406 .3166728
exog1 .4559128 .060367 7.55 0.000 .3375958 .5742299
exog4 .3903133 .0620052 6.29 0.000 .2687852 .5118413
exog5 .7595488 .0646746 11.74 0.000 .6327889 .8863088
exog6 .8546139 .0689585 12.39 0.000 .7194577 .98977
exog7 -.1669142 .0566927 -2.94 0.003 -.2780298 -.0557986
_cons .0835167 .0528104 1.58 0.114 -.0199899 .1870232

NOW THE SECOND STAGE REGRESSIONS WITH INSTRUMENTS

Source SS df MS Number of obs = 1000
F( 5, 994) = 141.20

Model 429.827896 5 85.9655791 Prob > F = 0.0000
Residual 605.17147 994 .608824416 R-squared = 0.4153

Adj R-squared = 0.4124
Total 1034.99937 999 1.0360354 Root MSE = .78027

continuous Coef. Std. Err. t P>|t| [95% Conf. Interval]

I_dichotom~s .2575918 .0214505 12.01 0.000 .2154983 .2996854
exog3 .0425202 .026735 1.59 0.112 -.0099435 .0949838
exog2 .0118544 .0267226 0.44 0.657 -.0405848 .0642937
exog1 .0077736 .0282168 0.28 0.783 -.0475978 .063145
exog4 .3186363 .0283114 11.25 0.000 .2630793 .3741933
_cons .0121851 .0248091 0.49 0.623 -.0364991 .0608692

Iteration 0: log likelihood = -692.49904
Iteration 1: log likelihood = -424.31527
Iteration 2: log likelihood = -382.0779
Iteration 3: log likelihood = -377.20169
Iteration 4: log likelihood = -377.10665
Iteration 5: log likelihood = -377.10661

Probit estimates Number of obs = 1000
LR chi2(6) = 630.78
Prob > chi2 = 0.0000

Log likelihood = -377.10661 Pseudo R2 = 0.4554

dichotomous Coef. Std. Err. z P>|z| [95% Conf. Interval]

I_continuous 1.262866 .1604171 7.87 0.000 .9484539 1.577277
exog1 .2509257 .0649992 3.86 0.000 .1235297 .3783218
exog2 .2260372 .0529623 4.27 0.000 .1222331 .3298413
exog5 .1291197 .0958474 1.35 0.178 -.0587377 .3169771
exog6 .9560943 .0721625 13.25 0.000 .8146584 1.09753
exog7 -.3712822 .0674939 -5.50 0.000 -.5035678 -.2389966
_cons .0707977 .0528105 1.34 0.180 -.0327091 .1743044
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NOW THE SECOND STAGE REGRESSIONS WITH CORRECTED STANDARD ERRORS

continuous Coef. Std. Err. t P>|t| [95% Conf. Interval]

I_dichotom~s .2575918 .1043332 2.47 0.014 .0528532 .4623305
exog3 .0425202 .1291476 0.33 0.742 -.210913 .2959533
exog2 .0118544 .1290542 0.09 0.927 -.2413956 .2651044
exog1 .0077736 .1363699 0.06 0.955 -.2598323 .2753795
exog4 .3186363 .1367953 2.33 0.020 .0501956 .587077
_cons .0121851 .1198708 0.10 0.919 -.2230438 .2474139

dichotomous Coef. Std. Err. z P>|z| [95% Conf. Interval]

I_continuous 1.262866 .7397385 1.71 0.088 -.1869952 2.712726
exog1 .2509257 .3130259 0.80 0.423 -.3625938 .8644452
exog2 .2260372 .2737467 0.83 0.409 -.3104964 .7625708
exog5 .1291197 .4827168 0.27 0.789 -.8169878 1.075227
exog6 .9560943 .2825678 3.38 0.001 .4022716 1.509917
exog7 -.3712822 .3265683 -1.14 0.256 -1.011344 .2687799
_cons .0707977 .2666057 0.27 0.791 -.4517399 .5933353

4.3 Saved results

The command cdsimeq provides certain saved results depending on whether the op-
tion estimates hold was specified. Without the estimates hold option, the following
saved results are provided:

Scalars
e(sigma 11) σ11 e(sigma 12) σ12

e(gamma 2) γ2 e(gamma 2 sq) γ2

2

e(MA c) σ2

1
− 2γ1σ12 e(MA d) (γ2/σ2)σ2

1
− 2γ2σ12/σ2

2

e(F) F from 1st stage e(R) OLS R from 1st stage
e(adj R) adjusted R from 1st stage e(chi2) Probit χ2 from 1st stage
e(r2 p) Probit Pseudo R from 1st stage

If estimates hold is specified, then the above results are also returned along with
typical estimation results returned by Stata after estimation. See [P] estimates.
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